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Abstract

In this paper, we propose a novel Pattern-Affinitive Prop-

agation (PAP) framework to jointly predict depth, surface

normal and semantic segmentation. The motivation behind

it comes from the statistic observation that pattern-affinitive

pairs recur much frequently across different tasks as well as

within a task. Thus, we can conduct two types of propaga-

tions, cross-task propagation and task-specific propagation,

to adaptively diffuse those similar patterns. The former in-

tegrates cross-task affinity patterns to adapt to each task

therein through the calculation on non-local relationships.

Next the latter performs an iterative diffusion in the feature

space so that the cross-task affinity patterns can be widely-

spread within the task. Accordingly, the learning of each

task can be regularized and boosted by the complementary

task-level affinities. Extensive experiments demonstrate the

effectiveness and the superiority of our method on the joint

three tasks. Meanwhile, we achieve the state-of-the-art or

competitive results on the three related datasets, NYUD-v2,

SUN-RGBD and KITTI.

1. Introduction

The predictions of depth, surface normal and semantic

segmentation are important and challenging for scene un-
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Figure 1. Statistics of matched affinity (or dissimilar) pairs across

depth, surface normal and segmentation maps. (a) Visual exhi-

bition. The point pairs colored white are the matched affinity

pixels across three tasks at the same positions, while the pairs

of black points correspond to dissimilar pixels across three map-

s. For the similarity metrics, REL/RMSE/Label consistency are

taken respectively for the three maps. (b) Statistical results. We

compute the success ratio of pairs matching across different maps

on NYUD-v2 and SUN-RGBD datasets, and observe that the suc-

cess ratios of pairs matching cross tasks are rather high.

derstanding. Also, they have many potential industrial ap-

plications such as autonomous driving system [4], simul-

taneous localization and mapping (SLAM) [52] and so-

cially interactive robotics [12]. Currently, most method-

s [10, 11, 13, 14, 40, 43] focused on one of the three

tasks, and they also achieved the state-of-the-art perfor-

mance through the technique of deep learning.

In contrast to the single-task methods, recently, several

joint-task learning methods [58, 62, 46, 32] on these tasks

have shown a promising direction to improve the prediction-

s by utilizing task-correlative information to boost for each

other. In a broad sense, the problem of joint-task learning

has been widely studied in the past few decades [3]. But

more recently most approaches took the technique line of

deep learning for possible different tasks [41, 16, 18, 25,

26]. However, most methods aimed to perform feature fu-
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sion or parameter sharing for task interaction. The fusion

or sharing ways may utilize the correlative information be-

tween tasks, but there exist some drawbacks. For examples,

the integration of different features might result into the am-

biguity of information; the fusion does not explicitly model

the task-level interaction where we do not know what infor-

mation are transmitted. Conversely, could we find some ex-

plicitly common patterns across different tasks for the joint-

task learning?

We take the three relative tasks: depth estimation, sur-

face normal prediction and semantic segmentation, and then

conduct a statistical analysis on those second-order pat-

terns across different tasks on NYUD-v2 [49] and SUN-

RGBD [51] dataset. First, we define the metric of any two

pixels in the predicted images. The average relative error

(REL) is used for depth images, the root mean square error

(RMSE) is used for surface normal images, and the label

consistency is for segmentation images. A pair of pixel-

s have an affinity (or similar) relationship when their er-

ror is less than a specified threshold, otherwise they have a

dissimilar relationship. Next, we accumulate the matching

number of those similar pairs (or dissimilar pairs) with the

same space positions across the three types of correspond-

ing images. As shown in Fig. 1(a), the affinity pairs (colored

white points) at the common positions may exist in differ-

ent tasks. Meantime, there exist some common dissimilar

pairs (colored black points) across tasks. The statistical re-

sults are shown in Fig. 1(b), where REL threshold of depth

is set to 20%, and RMSE threshold of surface normal is set

to 26% according to the performances of some state-of-the-

art works [46, 1, 29]. We can observe that the success ra-

tios of matching pairs across two tasks are rather high, and

around 50% - 60% similar pairs are matched. Moreover, we

have the same observation on the matching dissimilar pairs,

where REL threshold of depth is set to 20%, and RMSR

threshold of surface normal is set to 40%. Anyhow, this ob-

servation of the second-order affinities is great important to

bridge two tasks.

Just motivated by the statistical observation, in this paper

we propose a Pattern-Affinitive Propagation (PAP) frame-

work to utilize the cross-task affinity patterns to jointly es-

timate depth, surface normal and semantic segmentation.

In order to encode long-distance correlations, the PAP uti-

lizes non-local similarities within each task, different from

the literatures [39, 5] only considering local neighbor re-

lationships. These pair-wise similarities are formulated as

an affinity matrix to encode the pattern relationships of

the task. To spread the affinity relationships, we take two

propagation stages, cross-task propagation and task-specific

propagation. The affinity relationships across tasks are first

aggregated and optimized to adapt to each specific task by

calculating on three affinity matrices. We then conduct an

iterative task-specific diffusion on each task by leveraging

the optimized affinity information from the corresponding

other two tasks. The diffusion process is performed in the

feature space so that the affinity information of other tasks

can be widely spread into the current task. Finally, the

learning of affinitive patterns and the two-stage propaga-

tions are encapsuled into an end-to-end network to boost

the prediction process of each task.

In summary, our contributions are in three aspects: i)

Motivated by an observation that pattern-affinitive pairs re-

cur much frequently across different tasks, we propose a

novel Pattern-affinitive Propagation (PAP) method to utilize

the matched non-local affinity information across tasks. i-

i) Two-stage affinity propagations are designed to perform

cross-task and task-specific learning. An adaptive ensemble

network module is designed for the former while the strat-

egy of graph diffusion is used for the latter. iii) We make

extensive experiments to validate the effectiveness of PAP

method and its modules therein, and achieve the competi-

tive or superior performances on depth estimation, surface

normal prediction and semantic segmentation on NYUD-

v2 [49], SUN-RGBD [51], and KITTI [53] datasets.

2. Related Works

Depth Estimation: Many works have been proposed

for monocular depth estimation [10, 11, 37, 32, 42, 29, 63,

54, 47, 60, 58, 46, 62]. Recently, Xu et al. [59] employed

multi-scale continuous CRFs as a deep sequential network

for depth prediction. Fu et al. [15] tried to consider the

ordinal information in depth maps and designed a ordinal

regression loss function.

RGBD Semantic Segmentation: As the large RGBD

dataset was released, some approaches [17, 21, 48, 8, 22,

34] attempted to fuse depth information for better segmen-

tation. Recently, Qi et al. [45] designed a 3D graph neu-

ral network to fuse the depth information for segmentation.

Cheng et al. [6] computed the important locations from RG-

B images and depth maps for upsampling and pooling.

Surface Normal Estimation: Recent methods designed

for surface normal estimation are mainly based on deep neu-

ral networks [13, 14, 61, 55]. Wang et al. [56] designed a

network to incorporate local, global and vanishing point in-

formation for surface normal prediction. In work of [1],

a skip-connected architecture was proposed to fuse features

from different layers for surface normal estimation. 3D geo-

metric information was also utilized in [46] to predict depth

and normal maps.

Affinity Learning: Many affinity learning methods

were designed based on physical nature of the problem-

s [19, 28, 30]. Liu et al. [38] improve the modeling of

pair-wise relationships by incorporating many priors into d-

iffusion process. Recently, work of [2] proposed an convo-

lutional random walk approach to learn the image affinity

by supervision. Wang et al. [57] proposed a non-local neu-
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Figure 2. The overview of our Pattern-Affinitive Propagation network for jointly predicting depth, surface normal and semantic segmen-

tation. The initial predictions are produced from each task-specific network. During cross-task propagation, the network firstly learns an

affinity matrix by affinity learning layer to represent the pair-wise relationships of each task, then adaptively combines these matrices to

propagate the cross-task affinitive patterns. Note that, the combined affinity matrices is different for each task. Then we use the combined

matrix to conduct task-specific propagation by a diffusion layer, propagating the affinitive patterns back to the features for each task. Finally

the diffused features are applied to three reconstruction networks to produce the final results with higher resolution.

ral network to mine the relationships with long distances.

Some other works [39, 5, 23] tried to learn local pixel-wise

affinity for semantic segmentation or depth completion. Our

method is different from these approaches in the following

aspects: needs no prior knowledge and is data-driven; need-

s no task-specific supervisons; learns the non-local affini-

ty rather than limited local pair-wise relationships; learns

the cross-task affinity information rather than learning the

single-task affinity for task-level interaction.

3. Non-Local Affinities

Our aim is to model the affinitive patterns among tasks,

and utilize such complementary information to boost and

regularize the prediction process of each task. According to

our analysis aforementioned, we want to learn the pair-wise

similarities and then propagate the affinity information into

each task. Instead of learning local affinities as literature

[39, 5], we attempt to utilize non-local affinities, which also

recur frequently as illustrated in Fig. 1. Formally, suppose

xi,xj are the feature vectors of the i-th and j-th positions,

we can define their similarity s(xi,xj) through some func-

tions such as L1 distance ‖xi − xj‖, inner product xT
i xj ,

and so on. We employ the exponential function (es(·,·) or

e−s(·,·)) to make the similarities non-negative and larger for

those similar pairs than dissimilar pairs. To reduce the in-

fluence of scale, we normalize the similarity matrix M into

Mij/
∑

k Mik, where M is the matrix of pair-wise simi-

larities across all pixel positions. In these ways, the ma-

trix M is symmetric, has non-negative elements and finite

Frobenius norm. Accordingly, for the three tasks, we can

compute their similarity matrices Mdepth,Mseg,Mnormal re-

spectively. According to the above statistic analysis, we can

propagate the affinities by integrating the three similarity

matrices for one specific task, which will be introduced in

the following section.

4. Pattern-Affinitive Propagation

In this section, we introduce the proposed Pattern-

Affinitive Propagation (PAP) method. We efficiently imple-

ment the PAP method into a deep neural network through

designing a series of network modules. The details are in-

troduced in the following.

4.1. The Network Architecture

We implement the proposed method into a deep network

as shown in Fig. 2, which depicts the network architecture.

The RGB image is firstly fed into a shared encoder (e.g.,

ResNet [20]) to generate hierarchical features. Then we

upsample the features of the last convolutional layer and

feed them to three task-specific networks. Note that we also

integrate multi-scale features derived from different layer-

s of encoder with each task-specific network, as shown by

the gray dots. Each task-specific network has two residu-

al blocks, and produces the initial prediction after a con-

volutional layer. Then we conduct cross-task propagations

to learn the task-level affinitive patterns. Each task-specific

network firstly learns an affinity matrix by the affinity learn-

ing layer to capture the pair-wise similarities for each task,

and secondly adaptively combine the matrix with other two

affinity matrices to integrate the task-correlative informa-

tion. Note that, the adaptively combined matrix is different

for each task. After that, we conduct task-specific propa-

gation via a diffusion layer to spread the learned affinitive

patterns back to the feature space. In each diffusion process,

we diffuse both initial prediction and the last features from

each task-specific network by the combined affinity matrix.
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Figure 3. The detailed information of affinity learning layer and

diffusion process, and each block describes the feature and its

shape. ⊗ represents the matrix multiplication. (a) affinity learn-

ing layer. The dashed box is corresponding to the function for

computing similarities, and we only illustrate the dot-product as

an example. (b) diffusion process. ⊕ represents the weighted sum

with a parameter β. The dashed arrows are only performed when

the iteration is not finished.

Finally, the diffused features of each task are fed into

a reconstruction network to produce final prediction with

higher resolution. We firstly use a shared and a task-specific

upsampling block to upscale the feature maps. Each up-

sampling block is built as a up-projection block [29], and

parameters in the shared upsampling block are shared for

every task to capture correlative local details. After the up-

sampling with the two blocks, the features are concatenated

and fed into a residual block to produce final prediction-

s. The scale factor of each upsampling block is set to 2,

and the final predictions are half of the input scale. This

means that the number of upsampling blocks depends on

the scale on which we want to learn affinity matrix. In ex-

periments, we learn affinity matrices on 1/16, 1/8 and 1/4

input scale, which means there are 3, 2 and 1 upsampling

stages in the reconstruction network respectively. The w-

hole network can be trained in an end-to-end manner, and

the details of the cross-task and task-specific propagations

will be introduced in the following sections.

4.2. Cross­Task Propagation

In this section we elaborate how to conduct cross-task

propagation. Firstly, we learn an affinity matrix by affini-

ty learning layer to represent the pair-wise similarities for

each task. The detailed architecture of the affinity learning

layer can be observed in Fig. 3(a). Assuming the feature

generated by the last layer of each task-specific network is

F ∈ R
H×W×2C , we firstly shrink it using a 1 × 1 convo-

lutional layer to get the feature F̃ ∈ R
H×W×C . Then F̃

is reshaped to X ∈ R
HW×C . We utilize matrix multipli-

cation to compute pair-wise similarities of inner product,

and obtain the affinity matrix M = XX
⊺ ∈ R

HW×HW .

Other pair-wise functions such as e−‖Xi−Xj‖ can also be

used, just not shown in the figure. Note that, differen-

t from non-local blocks [57], our affinity matrix must sat-

isfy the symmetric and nonnegative properties to represent

the pair-wise similarities. Finally, as each row of the ma-

trix M represents the pair-wise relationships between one

position and all other positions, we conduct normalization

along each row of M to reduce the influence of scale. In

this way, the task-level patterns can be represented in each

M. Note that we add no supervision to learn M as literature

[2], because such supervision will cost extra memories and

be not easy to define for some tasks. After that, we want to

integrate the cross-task information for each task. Denote

these three tasks as T1, T2, T3, and the corresponding affin-

ity matrices as MT1
MT2

MT3
, then we can learn weights

αTi

k (k = 1, 2, 3,
∑n

k=1 α
Ti

k = 1) to adaptively combine the

matrices as:

M̂Ti
= αTi

1 ·MT1
+ αTi

2 ·MT2
+ αTi

3 ·MT3
. (1)

In this way, the cross-task affinitive patterns can be propa-

gated into M̂Ti
. In practice, we implement affinity learning

layers at decoding process on 1/16, 1/8 and 1/4 input scale

respectively, hence it actually learns non-local patch-level

relationships.

4.3. Task­Specific Propagation

After obtaining the combined affinity matrices, we

spread such affinitive patterns into the feature space of each

task by the task-spacific propagation. Different from non-

local block [57] and local spatial propagation [39, 5], we

perform an iterative non-local diffusion process in each d-

iffusion layer to capture long-distance similarities, as illus-

trated in Fig. 3(b). The diffusion process is performed on

initial prediction as well as features from task-specific net-

work. Without loss of generality, assuming feature or initial

prediction P ∈ R
H×W×C is from task-specific network, we

firstly reshape it to h ∈ R
HW×C , and perform one step dif-

fusion by using matrix multiplication with M̂. In this way,

the feature vector of each position is obtained by weight-

ed accumulating feature vectors of all positions using the

learned affinity. Note that such one-step diffusion may not

deeply and effectively propagate the affinity information to

the feature space, we perform the multi-step iterative diffu-

sion as:

h
t+1 = M̂h

t, t ≥ 0, (2)

where ht means the diffused feature (or prediction) at step t.
Such diffusion process can be also expressed with a partial

differential equation (PDE):

h
t+1 = M̂h

t = (I− L)ht,

h
t+1 − h

t =− Lh
t,

∂th
t+1 =− Lh

t,

(3)
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where L is the Laplacian matrix. As M̂ is normalized and

has finite Frobenius norm, the stability of such PDE can be

guaranteed [39]. Assuming we totally perform t∗ steps in

each diffusion layer, in order to prevent the feature devi-

ating too much from the initial one, we use the weighted

accumulation on the initial feature (or prediction) h0 as:

h
out = βht∗ + (1− β)h0, 0 ≤ β ≤ 1, (4)

where h
out means the final output from a diffusion layer. In

this way, the learned affinitive patterns in each M̂Ti
can be

effectively propagated into each task Ti.

4.4. The Loss Function

In this section we introduce a pair-wise affinity loss for

our PAP network. As PAP method is designed to learn

task-correlative pair-wise similarities, we also hope our loss

function can enhance the pair-wise constraints. Firstly we

define the prediction at position i is ẑi, and the corre-

sponding ground truth is zi. Then we define the pair-wise

distance in prediction and corresponding ground truth as

d̂ij = |ẑi − ẑj | and dij = |zi − zj |. We hope the dis-

tance in prediction to be similar to ground truth, so the pair-

wise loss can be defined as Lpair-wise =
∑

∀i,j |d̂ij − dij |.
As the calculation of the pair-wise loss in each task will

have a high memory burden, so we randomly select S
pairs from each task and then compute the pair-wise loss

Lpair-wise =
∑

S |d̂ij − dij |. As the pairs are random-

ly selected, such pair-wise loss can capture similarities of

various-distance pairs, not only the adjacent pixels in [10].

Meanwhile, we also use berHu loss [29], L1 loss and cross-

entropy loss for depth estimation, surface normal prediction

and semantic segmentation respectively, which are denoted

as LTi (Ti means the i-th task). Finally the total loss of the

joint task learning problem can be defined as:

L =
∑

Ti

λTi
(LTi + ξTi

LTi

pair-wise), (5)

where LTi

pair-wise is the pair-wise loss for the corresponding

i-th task, and λTi
and ξTi

are two weights for the i-th task.

5. Experiment

5.1. Dataset

NYUD-v2: The NYUD v2 dataset [49] consists of RGB-

D images of 464 indoor scenes. There are 1449 images with

semantic labels, 795 of them are used for training and the

remaining 654 images for testing. We randomly select more

images (12k, same as [29, 62] ) from the raw data of official

training scenes. These images have the corresponding depth

maps but no semantic labels or surface normals. We follow

the procedure in [13] and [46] to generate surface normal

ground truth. In this way, we can use more data to train our

model for jointly depth and surface normal prediction.

SUN RGBD: The SUN RGBD dataset [51] contains

10355 RGBD images with semantic labels of which 5285

for training and 5050 for testing. We use the official train-

ing set with depth and semantic labels to train our network,

and the official testing set for evaluation. There is no surface

normal ground truth on this dataset, so we perform experi-

ments on jointly predicting depth and segmentation on this

dataset.

KITTI: KITTI online benchmark [53] is a widely-used

outdoor dataset for depth estimation. There are 4k images

for training, 1k images for validating and 500 images for

testing on the online benchmark. As it has no semantic la-

bels or surface normal ground truth, we mainly transform

such information using our PAP method to demonstrate that

PAP can distilling knowledge to improve the performance.

5.2. Implementation Details and Metrics

We implement the proposed model using Pytorch [44] on

a single Nvidia P40 GPU. We build our network based on

ResNet-18 and ResNet-50, and each model is pre-trained

on the ImageNet classification task [7]. In diffusion pro-

cess, we use a same subsampling strategy as [57] to down-

sample h in Eqn. (2), which can reduce the amount of pair-

wise computation by 1/4. We set the trade-off parameter

β to 0.05. 300 pairs are randomly selected to compute the

pair-wise loss in each task. We simply set λTi
= 1

3 and

ξTi
= 0.2 to balance the loss functions. Initial learning rate

is set to 10−4 for the pre-trained convolutional layers and

0.01 for the other layers. For NYUD-v2, we train the model

of 795 training images for 200 epochs and fine-tune 100 e-

pochs, and train the model of 12k training images for jointly

depth/normal predicting for 30 epochs and fine-tune for 10

epochs. For SUN-RGBD dataset, we train the model for 30

epochs and fine-tune it for 30 epochs using a learning rate of

0.001. For KITTI, we first train the model on NYUD-v2 for

surface normal estimation, and then freeze the surface nor-

mal branch to train depth branch on KITTI for 15 epochs,

finally we freeze the normal branch and fine-tune the model

on KITTI for 20 epochs.

Similar to the previous works [29, 10, 59], we evaluate

our depth prediction results with the root mean square error

(rmse), average relative error (rel), root mean square error

in log space (rmse-log), and accuracy with threshold (δ): %

of x̃i s.t. max( x̃i

xi
, xi

x̃i
)=δ, δ = 1.25, 1.252, 1.253, where x̃i

is the predicted depth value at the pixel i, n is the number of

valid pixels and xi is the ground truth. The evaluation met-

rics for surface normal prediction [56, 1, 10] are mean of an-

gle error (mean), medians of the angle error (median), root

mean square error for normal (rmse-n %), and pixel accura-

cy as percentage of pixels with angle error below threshold

η where η ∈ [11.25◦, 22.50◦, 30◦]. For the evaluation of

semantic segmentation results, we follow the recent works

[6] [24] [35] and use the common metrics including pixel
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Table 1. Analyses on Joint task learning on NYU Depth V2.

Metric rmse iou rmse-n

Depth only 0.570 -

Segmentation only - 42.8 -

Normal only - - 28.7

Depth&Seg jointly 0.556 44.3 -

Depth&Normal jointly 0.550 - 28.1

Segmentation&Normal jointly - 44.5 28.3

Three task jointly 0.533 46.2 26.9

Table 2. Comparisons of different network settings and baselines

on NYU Depth v2 dataset.

Method rmse IoU rmse-n

initial prediction 0.582 41.3 29.6

+ PAP w/o cross-t prop. 0.574 41.8 29.1

+ PAP cross-t prop. 0.558 43.1 28.5

+ PAP cross-t prop. + recon-net 0.550 43.8 28.2

+ PAP cross-t prop + recon-net + pair-loss 0.543 44.2 27.8

+ cross-stich [41] 0.550 43.5 28.2

+ CSPN [5] 0.548 43.8 28.0

aff-matrix on 1/16 input scale 0.543 44.2 27.8

aff-matrix on 1/8 input scale 0.533 46.2 26.9

aff-matrix on 1/4 input scale 0.530 46.5 26.7

Inner product 0.543 44.2 27.8

L1 distance 0.540 44.0 27.9

accuracy (pixel-acc), mean accuracy (mean-acc) and mean

intersection over union (IoU).

5.3. Ablation Study

In this section we perform many experiments to analyse

the influence of different settings in our method.

Effectiveness of joint task learning: We first analyse

the benefit of joint predicting depth, surface normal and se-

mantic segmentation using our PAP method. The networks

are trained on NYUD v2 dataset, and we select ResNet-18

as our shared network backbone and only learn the affinity

matrix on 1/8 input scale in each experiment. As illustrat-

ed in Table 1, we can see that joint-task models gets supe-

rior performances than the single task model, and further

jointly learning three tasks obtains best results. It can be

revealed that our PAP method does boost each task in the

jointly learning procedures.

Analysis on network settings: We perform many exper-

iments to analyse the effectiveness of each network mod-

ules. In each experiment we use ResNet-18 as our net-

work backbone for equally comparing, and each model is

trained on NYUD v2 dataset for the three tasks. The re-

sult can be seen in Table 2. Note that the results of first

five rows are computed from the model with affinity matrix

learned on 1/16 input scale. We can observe that PAP, re-

construction net and pair-wise loss can all contribute to im-

prove the performance. We also compare two approaches

in the same settings, i.e., cross-stich units [41] and convo-

lutional spatial propagation layers [5] which can also fuse
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Figure 4. The influence of the iterations in diffusion process. The

performance and time burden changes can be seen as a trade-off.
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Cross-task  

Affinity in PAP 

Figure 5. Visualization of the single-task and our cross-task affin-

ity maps at the white point for each task. We can see that the pair-

wise similarities at the white point can be improved and corrected

in our PAP method.

and interact cross-task information. We find that they ob-

tain weaker performances. It may be attributed to that: a)

cross-stich layer only combines features, but cannot repre-

sent the affinitive patterns between tasks; b) they only use

limited local information. The middle three rows of the Ta-

ble 2 show the influence on which scale the affinity matrix is

learned. We can find that learning affinity matrix on a larger

scale may be beneficial, as the larger affinity matrices can

describe the similarities between more patches. Note that

the improvements of learning matrix on 1/4 input scale are

comparatively smaller, and the reason may be that learning

good non-local pair-wise similarities becomes more diffi-

cult with scale increasing. Finally we show the results using

different functions to calculate the similarities. We find that

these two functions does produce different performances,

but with little difference. Hence, we mainly use dot prod-

uct as our weight function in the following experiments for

convenience.

Influence of the iteration: Here we make experiments

to analyse the influence of the iterative steps in Eqn. (2).

The models are based on ResNet-18 and trained on NYUD

v2 dataset, and the affinity matrices are learned on 1/8 input

scale. While testing, the input size is 480×640. As illustrat-

ed in Fig. 4, we can see that the performances of all tasks

are improved with more iterations, at least in such a range.

These results demonstrate that the pair-wise constraints and

regularization may be enhanced with more iterations in d-

iffusion. But the testing time will also increase with more

steps, which can be seen as a trade-off.

Visualization of the affinity matrices: We show several
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Table 3. Comparisons with the state-of-the-art depth estimation

approaches on NYU Depth V2 Dataset.

Method data rmse rel log δ1 δ2 δ3
HCRF [32] 795 0.821 0.232 - 0.621 0.886 0.968

DCNF [37] 795 0.824 0.230 - 0.614 0.883 0.971

Wang [54] 795 0.745 0.220 0.262 0.605 0.890 0.970

NR forest [47] 795 0.744 0.187 - - - -

Xu [60] 795 0.593 0.125 - 0.806 0.952 0.986

PAD-Net [58] 795 0.582 0.120 - 0.817 0.954 0.987

Eigen [11] 120k 0.877 0.214 0.285 0.611 0.887 0.971

MS-CNN [10] 120k 0.641 0.158 0.214 0.769 0.950 0.988

MS-CRF [59] 95k 0.586 0.121 - 0.811 0.954 0.987

FCRN [29] 12k 0.573 0.127 0.194 0.811 0.953 0.988

GeoNet [46] 16k 0.569 0.128 - 0.834 0.960 0.990

AdaD-S [42] 100k 0.506 0.114 - 0.856 0.966 0.991

DORN [15] 120k 0.509 0.115 - 0.828 0.965 0.992

TRL [62] 12k 0.501 0.144 0.181 0.815 0.962 0.992

Ours d+s+n 795 0.530 0.142 0.190 0.818 0.957 0.988

Ours d+n 12k 0.497 0.121 0.175 0.846 0.968 0.994

(a) 

(b) 

(c) 

(d)

Figure 6. Visualization of our predicted depth maps. (a) image;

(b) predictions of [60]; (c) our results; (d) ground truth. We can

find that our predictions have obviously finer details and closer to

ground truth.

examples of the learned affinity maps in Fig. 5. Note that

the affinity maps belong to the white point in each image.

We can see that the single-task affinity maps often show

improper pair-wise relationships, while the cross-task affin-

ity maps in our PAP method have closer relationships with

the points which have similar depth, normal direction and

semantic label. As the affinity matrices is non-local and ac-

tually a dense graph, it can well represent the long-distance

similarities. Such observations demonstrate that the cross-

task complementary affinity information can be learned to

refine the single-task similarities in PAP method. Though

without supervision as [2], our PAP method can still learn

good affinity matrices in such task-regularized unsupervised

approach.

5.4. Comparisons with state­of­the­art methods

Depth Estimation: We mainly perform experiments on

NYUD-v2 dataset to evaluate our depth predictions. The

models are based on ResNet-50. As illustrated in Table 3,

our model trained for three tasks (ours d+s+n) obtains com-

petitive results, though only 795 images are used for train-

ing. Such results demonstrate that our PAP method can well

boost each task and benefit joint task learning with limited

Table 4. Comparisons with the state-of-the-art surface normal es-

timation approaches on NYU Depth V2 Dataset.

Method mean median rmse-n 11.25◦ 22.50◦ 30◦

3DP [13] 36.3 19.2 - 16.4 36.6 48.2

UNFOLD [14] 35.2 17.9 - 40.5 54.1 58.9

Discr. [61] 33.5 23.1 - 27.7 49.0 58.7

MS-CNN [10] 23.7 15.5 - 39.2 62.0 71.1

Deep3D [56] 26.9 14.8 - 42.0 61.2 68.2

SkipNet [1] 19.8 12.0 28.2 47.9 70.0 77.8

SURGE [55] 20.6 12.2 - 47.3 68.9 76.6

GeoNet [46] 19.0 11.8 26.9 48.4 71.5 79.5

Ours-VGG16 18.6 11.7 25.5 48.8 72.2 79.8

(a) image (b) MS-CNN (c) SkipNet (d) GeoNet (e) Ours (f) GT

Figure 7. Visualization of our predicted surface normal. (a) image;

(b) predictions of [10]; (c) predictions of [1] ; (d) predictions of

[46]; (e) our results; (f) ground truth.

Image GT Ours Image GT Ours 

Figure 8. Qualitative semantic segmentation results of our method

on NYUD-v2 and SUNRGBD datasets.

training data. For the model trained for depth&normal pre-

diction (ours d+n), with more training data can be used, our

PAP method gets significantly best performances in most

of the metrics with more training data, which well proves

the effectiveness of our approach. Qualitative results can

be observed in Fig. 6, compared with the recent work [60],

our predictions are more fine-detailed and closer to ground

truth.

Surface Normal Estimation: We mainly evaluate our

surface normal predictions on NYUD-v2 dataset. As pre-

vious methods mainly build their network based on VGG-

16 [50], we also utilize the same setting in our experiments.

As illustrated in Table 4, our PAP method obtains obviously

superior performances than the previous approaches in all

metrics. Such results well demonstrate that our joint task

learning method can boost and benefit the surface normal

estimation. Qualitative results can be observed in Fig. 7, we

can find that our method can produce better or competitive

results.

RGBD Semantic Segmentation: We evaluate our seg-

mentation results on widely-used NYUD-v2 and SUN-

RGBD datasets. The model in each experiment is build
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Table 5. Comparisons the state-of-the-art semantic segmentation

methods on NYU Depth v2 dataset.

Method data pixel-acc mean-acc IoU

FCN [40] RGB 60.0 49.2 29.2

Context [36] RGB 70.0 53.6 40.6

Eigen et al. [10] RGB 65.6 45.1 34.1

B-SegNet [24] RGB 68.0 45.8 32.4

RefineNet-101 [35] RGB 72.8 57.8 44.9

PAD-Net [58] RGB 75.2 62.3 50.2

TRL-ResNet50 [62] RGB 76.2 56.3 46.4

Deng et al. [8] RGBD 63.8 - 31.5

He et al. [22] RGBD 70.1 53.8 40.1

LSTM [34] RGBD - 49.4 -

Cheng et al. [6] RGBD 71.9 60.7 45.9

3D-GNN [45] RGBD - 55.7 43.1

RDF-50 [48] RGBD 74.8 60.4 47.7

Ours-ResNet50 RGB 76.2 62.5 50.4

Table 6. Comparison with the state-of-the-art semantic segmenta-

tion methods on SUN-RGBD dataset.

Method data pixel-acc mean-acc IoU

Context [36] RGB 78.4 53.4 42.3

B-SegNet [24] RGB 71.2 45.9 30.7

RefineNet-101 [35] RGB 80.4 57.8 45.7

TRL-ResNet50 [62] RGB 83.6 58.9 50.3

LSTM [34] RGBD - 48.1 -

Cheng et al. [6] RGBD - 58.0 -

CFN [9] RGBD - - 48.1

3D-GNN [45] RGBD - 57.0 45.9

RDF-152 [48] RGBD 81.5 60.1 47.7

Ours-ResNet50 RGB 83.8 58.4 50.5

Table 7. Comparison with the state-of-the-art methods on KITTI

online benchmark (lower is better).

Method SILog sqErrRel absErrRel iRMSE time

DORN [15] 11.77 2.23 8.78 12.98 0.5s

VGG16-Unet∗ 13.41 2.86 10.60 15.06 0.16s

FUSION-ROB∗ 13.90 3.14 11.04 15.69 2s

BMMNet∗ 14.37 5.10 10.92 15.51 0.1s

DABC [33] 14.49 4.08 12.72 15.53 0.7s

APMoE [27] 14.74 3.88 11.74 15.63 0.2s

CSWS [31] 14.85 3.48 11.84 16.38 0.2s

Ours single 14.58 3.96 11.50 15.24 0.1s

Ours cross-stich [41] 14.33 3.85 11.23 15.14 0.1s

Ours 13.08 2.72 10.27 13.95 0.2s

based on ResNet-50 and trained for the three tasks on

NYUD-v2, and jointly depth prediction and semantic seg-

mentation on SUN-RGBD. The performance on NYUD-

v2 dataset is shown in Table 5. We can observe that the

performances of our PAP method are superior or competi-

tive, though using only RGB images as input. Such results

can demonstrate that although depth ground truth is not di-

rectly use, our method can benefit the segmentation from

jointly learning depth information. The performances on

SUN-RGBD dataset are illustrated in Table 6, we can see

that though slightly weaker than RDF-152 [48] in mean-acc

metric, our method can obtain best results in other metric-

s. Such results reveal that our predictions are superior or

at least competitive with state-of-the-art methods. Visual-

ized results can be observed in Fig. 8, we can see that our

predictions are with high quality and close to ground truth.

Image Our Depth Our Normal 

Figure 9. Qualitative results of our method on KITTI dataset. We

can find that our model obtains good depth predictions and normal

estimations.

5.5. Effectiveness On Distilling

Sometimes the ground truth data cannot be always avail-

able for each task, e.g., some widely-used outdoor depth

datasets, such as KITTI [53], has no or very limited sur-

face normal and segmentation ground truth. However, we

can use PAP method to distill the knowledge from other

dataset to boost the target task. We train our model on

NYUD-v2 for depth and normal estimation, and then freeze

the normal branch to train the model on KITTI. We evalu-

ate our predictions on the KITTI online evaluation server,

and the results are shown in Table 7 (∗ means anonymous

method). Our PAP method outperforms our single-task and

cross-stich based model. Compared with the state-of-the-

art methods, though slightly weaker than DORN [15], our

method obtains superior performances than all other pub-

lished or unpublished approaches. Note that our method

runs faster than DORN, which can be seen as a trade-off.

These results demonstrate the effectiveness and potential of

PAP method on task distilling and transferring. Qualitative

results can be seen on Fig. 9, and our predictions on depth

and normal are both with high quality.

6. Conclusion

In this paper, we propose a novel Pattern-affinitive Prop-

agation method for jointly predicting depth, surface normal

and semantic segmentation. Statistic results have shown

that the affinitive patterns among tasks can be modeled in

pair-wise similarities to some extent. The PAP can ef-

fectively learn the pair-wise relationships from each task,

and further utilize such cross-task complementary affinity

to boost and regularize the joint task learning procedure vi-

a the cross-task and task-specific propagation. Extensive

experiments demonstrate our PAP method obtained state-

of-the-art or competitive results on these three tasks.In the

future, we may generalize and improve the efficiency of the

method on more vision tasks.
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