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Abstract

Light field essentially represents the collection of rays in

space. The rays captured by multiple light field cameras

form subsets of full rays in 3D space and can be trans-

formed to each other. However, most previous approach-

es model the projection from an arbitrary point in 3D s-

pace to corresponding pixel on the sensor. There are few

models on describing the ray sampling and transformation

among multiple light field cameras. In the paper, we pro-

pose a novel ray-space projection model to transform sets of

rays captured by multiple light field cameras in term of the

Plücker coordinates. We first derive a 6×6 ray-space intrin-

sic matrix based on multi-projection-center (MPC) model.

A homogeneous ray-space projection matrix and a funda-

mental matrix are then proposed to establish ray-ray corre-

spondences among multiple light fields. Finally, based on

the ray-space projection matrix, a novel camera calibration

method is proposed to verify the proposed model. A linear

constraint and a ray-ray cost function are established for

linear initial solution and non-linear optimization respec-

tively. Experimental results on both synthetic and real light

field data have verified the effectiveness and robustness of

the proposed model.

1. Introduction

Light field cameras [18, 23] can record spatial and an-

gular information of light rays in 3D space. Based on an-

gular sampling of light rays, sophisticated post-processing

techniques [20, 27, 13, 26, 34, 35, 33] ranging from digi-

tal refocusing to depth estimation have been introduced in

decades. However, the major disadvantages of such hand-

held systems are the spatio-angular trade-off and narrow

baseline. Applications of registration [15, 31, 32] and light

field stitching [1, 8, 24, 7] are proposed to overcome these

∗The work was supported by NSFC under Grant 61531014.

limitations. In general, the performance of these applica-

tions can be enhanced by accurate geometric information

of multiple light field cameras. But, there are fewer work-

s on establishing a generalized model for defining the ray

sampling and transformation among multiple light fields.

Existing light field camera models [3, 30] mostly define

the projection from an arbitrary point in 3D space (passing

through micro-lens) to corresponding pixel on the sensor.

Nevertheless, light field essentially represents the collection

of rays in space. The Plücker line coordinates explicitly pro-

vide a homogeneous parameterization for rays to effectively

formulate ray-ray correspondence, which has already veri-

fied in generalized epipolar geometry [22]. Dansereau et

al. [4] describe pixel-ray correspondences in 3D space and

present a 4D intrinsic matrix. However, they only focus on

the transformation of rays in monocular light field camera.

Meanwhile, their model has redundancy and dependency,

which results in irregular ray sampling and makes param-

eterization impossible in term of the Plücker line coordi-

nates. In order to explore the ray sampling and transforma-

tion among multiple light field cameras, multi-projection-

center model (MPC) [30] which provides independent and

effective intrinsic parameters for the Plücker representation

is used.

In the paper, we exploit the transformation of light field-

s captured by multiple cameras and propose a novel ray-

space projection model in term of the Plücker coordinates.

We first propose a so-called ray-space intrinsic matrix (R-

SIM) to relate the recorded indices to corresponding physi-

cal ray. We show that the RSIM is a 6× 6 matrix consisted

of 6-parameter intrinsics, which is analogous to tradition-

al camera matrix. Furthermore, we derive a homogeneous

ray-space projection matrix and a fundamental matrix using

the RSIM and ray-space extrinsic matrix to describe ray-ray

correspondences. Secondly, we propose a novel light field

camera calibration method to certify the proposed model.

According to the ray-sapce projection matrix, a linear con-

straint between 3D point and the rays captured by light field
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cameras is established. Subsequently, an effective linear ini-

tial solution for both intrinsic and extrinsic parameters is

computed for optimization. We also define an effective ray-

ray cost function to minimize the distance among rays in

the Plücker coordinates. Finally, we exhibit empirical per-

formances in calibrating synthetic light field cameras and

commercial light field cameras (Lytro and Lytro Illum [18]).

Quantitative and qualitative comparisons demonstrate the

effectiveness and robustness of the proposed ray-space pro-

jection model.

Our main contributions are:

1) The ray-space projection model and fundamental ma-

trix among multiple light field cameras are exploited.

2) A 6× 6 RSIM is deduced to relate the recorded pixel

to physical ray in the Plücker coordinates.

3) An effective calibration algorithm is proposed to veri-

fy the proposed model, including a linear constraint for ini-

tial solution and a novel ray-ray cost function for optimiza-

tion.

2. Related Work

Light field model. Since the hand-held light field cam-

era is put forwarded by Ng [21], many research groups

[4, 14, 2, 9, 28, 3, 30, 29] have extensively explored vari-

ous projection models for light field cameras. Johannsen et

al. [14] exhibit a model for reconstructing 3D points from

the parallax in adjacent micro-lens images. Heinze et al.

[9] present a similar model with [14] and deduce a linear

initialization for the focused light field camera.

Dansereau et al. [4] propose a 12-free-parameter light

field camera model, corresponding the recorded pixels to

the rays outside the camera. They derive a 4D decoding ma-

trix from a conventional pinhole lenslet and thin-lens mod-

el. Nevertheless, the calibration method is initialized by a

traditional camera calibration algorithm which is not effec-

tive for light field camera. More importantly, the 4D intrin-

sic matrix has redundancy and dependency, which results in

irregular rays sampling during the calibration and rectifica-

tion. Different from the calibration based on corner features

of sub-aperture images, Bok i.e. [2, 3] utilize line features

which are directly extracted from micro-lens images of raw

data to calibrate light field camera. They formulate a 6-

parameter geometric projection model for light field cam-

era to estimate initial solution of intrinsic parameters. But,

this method confronts a significant challenge to obtain line

features accurately (in practice, the checkerboard should be

shot under an unfocused status in order to make the mea-

surements detectable).

More recently, Zhang et al. [28] exhibit a 4-parameter

projective distortion model to estimate the parameters using

a parallel bi-planar board. However, these parameters are

insufficient to model the light field camera geometry. Zhang

et al. [30] propose a 6-parameter multi-projection-center

(MPC) model for light field cameras, including traditional

and focused light field cameras. A 3D projective transfor-

mation is deduced to describe the relationship between geo-

metric structure and light field camera coordinates. Then, a

light field camera calibration method is presented to verify

the effectiveness of MPC model.

Generalized epipolar geometry. The generalized epipo-

lar geometry is the intrinsic projective geometry in the ray-

space. It only depends on essential parameters of ray and

relative pose instead of scene structure. Techniques for es-

timating camera motion and structure from multiple images

have been improved and perfected over the decades [11].

Grossberg and Nayar [6] define the image pixel as the light

from a cone around a ray and propose a generalized camera

model for calibration. For the geometric analysis of mul-

tiple images, Pless [22] simplifies this calibration so that it

only includes the definition of ray that the pixel samples.

They then propose a general linear framework to describe

any cameras as an unordered collection of rays which are

obtained by sensor elements. The correspondences between

rays need to be established with the assumption that the

rays intersect at a single scene point. Then, the generalized

epipolar constraint is proposed in the Plücker coordinates.

Sturm [25] introduces a hierarchy of general camera model.

In this framework, 17 corresponding rays are sufficient to

solve linearly for pose estimation. Li et al. [17] carry out

a pose estimation based on the generalized epipolar con-

straint. This also can be applied to estimate the motion of

light field camera. Guo et al. [8] propose a ray-space mo-

tion matrix to establish ray-ray correspondences for motion

estimation.

Moreover, all above mentioned methods first reconstruct

the 3D points, and then formulate the Plücker coordinates

based on the 3D points. In other words, the performance

of these techniques are influenced by accurate reconstruc-

tion. Johannsen et al. [15] directly generate the Plücker

coordinates based on light field captured by camera. A lin-

ear mathematical framework is built from the relationships

between scene geometry and light rays for motion estima-

tion. However, little attention has been paid to model the

sampling and transformation of rays captured by multiple

light field cameras in the Plücker coordinates. In the work,

we explore the relationship between a ray in 3D space and

the corresponding ray in light field camera and propose a

ray-space projection model for light field camera.

3. Ray-Space Projection Model

3.1. The MPC Model

Light field cameras, especially micro-lens array assem-

bled inside, which are innovated from traditional 2D cam-

era, record 3D world in different but similar ways. With

the shifted views, light field camera maps 3D space to many
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sub-aperture images, which produces 4D light field. The ray

in 4D light field is parameterized in a relative two-parallel-

plane coordinates [16], where Z = 0 denotes the view plane

and Z = f for the image plane. In this parametrization, the

decoded physical ray is described by r = (s, t, x, y) in term

of specific (e.g., meter) dimension. The ray r intersects with

the view plane at projection center (s, t, 0). The pair (x, y)
is the intersection of the ray r with the image plane, but

it is relative to (s, t, f) which is the origin of image plane.

The (x, y, f) describes the direction of ray. Then, accord-

ing to the MPC model [30], a 3D point X = (X,Y, Z)⊤ is

mapped to the pixel (x, y) in the image plane,

λ




x
y
1


 =




f 0 0 −fs
0 f 0 −ft
0 0 1 0







X
Y
Z
1


 . (1)

This is analogous to classical projective camera model with

projection center at (s, t, 0) and principal axis parallelling

to the Z-axis.

The light field L(i, j, u, v) captured by a light field cam-

era is transformed into a normalized undistorted physical

light field L(s, t, x, y) by a homogeneous decoding matrix

D ∈ R
5×5 [30],



s
t
x
y
1



=




ki 0 0 0 0
0 kj 0 0 0
0 0 ku 0 u0

0 0 0 kv v0
0 0 0 0 1







i
j
u
v
1



, (2)

where (ki, kj , ku, kv, u0, v0) are intrinsic parameters of a

light field camera. (ki, kj) are scale factors for s and t axes

in the view plane and (ku, kv) for x and y axes in the image

plane respectively. In addition, (−u0/ku,−v0/kv) repre-

sent the coordinates of principal point in the sub-aperture

image.

3.2. Ray­Space Intrinsic Matrix

According to the MPC model, light field camera is as-

sumed as a pinhole camera array. In this framework, a light

field camera is described by the set of rays sampled by a

collection of perspective cameras. In order to simplify the

discussion of geometric analysis in multiple light fields, the

pixel captured by the camera is generalized and simplified

to a ray [22, 21]. The light field essentially represents a

set of rays. Consequently, we need a new mechanism to

describe arbitrary rays in free space. The Plücker coor-

dinates provide convenience to mathematically formulate

concise and efficient correspondence equations (e.g., rota-

tion and translation). In addition, the Plücker coordinates

representation is also a homogeneous parameterization to

unambiguously represent a ray in 3D projective geometry.

We will briefly review the core theory leading the equations

for ray-space projection model.

In the Plücker coordinates, the ray is mathematically rep-

resented by a pair of vectors (m, q), named moment and

direction vector respectively. Moreover, the moment vector

m = X×q, for an arbitrary point X on the ray. Further,

the physical ray r = (s, t, x, y) in 3D space contains direc-

tional information (x, y) and positional information (s, t).
Therefore, the moment vector and direction vector of r are

defined as,
{
m = (s, t, 0)⊤×(x, y, 1)⊤ = (t,−s, sy − tx)⊤

q = (x, y, 1)⊤
, (3)

where (m⊤, q⊤)⊤ are the Plücker line coordinates.

Substituting Eq. (2) into Eq. (3), there is a transformation

caused by the intrinsic parameters (ki, kj , ku, kv, u0, v0).
Then the RSIM K ∈ R

6×6 is established to describe the

relationship between the ray L = (n⊤,p⊤)⊤ captured by

light field camera and the normalized undistorted physical

ray Lc = (m⊤, q⊤)⊤ in the Plücker coordinates, i.e.,

[
m

q

]
=




kj 0 0 0 0 0
0 ki 0 0 0 0

−kju0 −kiv0 kikv 0 0 0
0 0 0 ku 0 u0

0 0 0 0 kv v0
0 0 0 0 0 1




︸ ︷︷ ︸
=:K

[
n

p

]
, (4)

which needs to satisfy the condition ku/kv = ki/kj . (u, v)
are pixel coordinates extracted from sub-aperture image at

the view (i, j). Then, p = (u, v, 1)⊤ represents the di-

rection of ray in the sub-aperture image coordinates. n =
(i, j, 0)⊤×(u, v, 1)⊤ denotes the moment of ray.

3.3. Ray­Space Projection Matrix

In general, considering Xw is a point in the world coor-

dinates, the transformation between the world and camera

coordinates is described by a rotation matrix R ∈ SO(3)
and a translation vector t = (tx, ty, tz)

⊤ ∈R
3, formulated

as X=RXw+t. Consequently, the Plücker transformation

can be formulated according to generalized epipolar geom-

etry [22]

Lw=

[
R⊤ E⊤

03×3 R⊤

]
Lc, (5)

where E = [t]×R is the essential matrix and [·]× refers to

the vector cross product [11]. The rays Lc = (m⊤, q⊤)⊤

and Lw = (m⊤
w , q

⊤
w )

⊤ are expressed by the camera coor-

dinates and world coordinates respectively. Subsequently,

according to Eqs. (3) and (4), the homogeneous ray-space

projection matrix P can be written as,

Lw=

[
R⊤ E⊤

03×3 R⊤

]
K

︸ ︷︷ ︸
=:P

[
n

p

]
, (6)

which implies the relationship between L = (n⊤,p⊤)⊤ in

the camera coordinates and Lw in the world coordinates.

10123



Scene

u

v

i

j

o

x
y

s
t

Xc/Xwo

Yc/Yw

Zc/Zw
{ }

w
}

w

{ }
cc

{ }
cc

K K

{ }}} { }
F

,R t

P 'P

Figure 1. Ray-space projection model and ray-ray transformation

among two light field cameras.

3.4. Fundamental Matrix

In order to establish the ray-ray transformation among t-

wo light field cameras, the camera coordinates of the second

light field camera are assumed as the world coordinates, as

shown in Fig. 1. Based on the ray-space projection model

Eq. (6), the fundamental matrix F between two light field

cameras is then derived,

L′⊤
K

′⊤

[
03×3 R⊤

R⊤ E⊤

]
K

︸ ︷︷ ︸
=:F

L = 0, (7)

which represents the ray-ray correspondence {L′}↔ {L}.

R, t denote the rotation and translation between two light

field cameras’ coordinates. For a valid correspondence, all

rays in both light fields must come from the same scene

point, as shown in Fig. 1. The detailed derivation of Eq. (7)

is presented in the supplemental material.

In order to verify the effectiveness of ray-space projec-

tion model, we propose a light field camera calibration al-

gorithm.

4. Light Field Camera Calibration

4.1. Constraint of Ray­Space Projection Matrix

In 3D projective geometry, a point Xw in the world co-

ordinates can be described as the intersection of Lw =
(m⊤

w , q
⊤
w )

⊤ with the plane Z = Zw. The plane is ex-

pressed by a homogeneous vector (π⊤, d)⊤, π ∈ R
3,

d ∈ R. Therefore, according to the theorem X =
(π×m− d q) /π⊤q [12], we find the constraint between

Xw and Lw in the Plücker coordinates,

[
1 0 0 0 Zw −Yw

0 1 0 −Zw 0 Xw

]

︸ ︷︷ ︸
=:M(Xw)

[
mw

qw

]
= 0. (8)

where M is the measurement matrix. The detailed deriva-

tion of Eq. (8) is presented in the supplemental material.

According to the ray-space projection model of Eq. (6),

the relationship among the RSIM K, extrinsic parameters

[R|t], and the points Xw in the world coordinates is extend-

ed by Eqs. (4), (5) and (8),

M(Xw)

[
R⊤ E⊤

03×3 R⊤

]
K

[
n

p

]
= 0. (9)

In summary, the solution space of Eq. (9) is the ray set

intersecting at a point Xw. The set of ray sampled by the

light field camera is a subspace of the whole-solution space

of Eq. (9).

4.2. Initialization

Without a loss of generality, there is an assumption that

the checkerboard is on the plane Zw = 0 in the world coor-

dinates, which leads to a simplified form of Eq. (9),

[
1 0 −Yw

0 1 Xw

]

︸ ︷︷ ︸
=:Ms

⊗
[
n⊤ p⊤

]
~Hs = 0, (10)

where ~Hs is an 18×1 matrix stretched on row from the sim-

plified homogeneous ray-space projection matrix Hs. Ms

is the simplified measurement matrix of checkerboard cor-

ners Xw. ⊗ is a direct product operator. The RSIM is ab-

breviated to a lower triangle matrix Kij and the upper tri-

angle matrix Kuv . Subsequently, Hs denotes a 3×6 matrix

only using intrinsic and extrinsic parameters,

Hs =




r⊤
1 −r⊤

1 [t]×
r⊤
2 −r⊤

2 [t]×
01×3 r⊤

3



[

Kij 03×3

03×3 Kuv

]
, (11)

where ri is the i-th column vector of rotation matrix R.

In order to derive intrinsic parameters, we abbreviate

with [h1,h2,01×3]
⊤ the first three and with [h3,h4,h5]

⊤

the second three columns of Hs respectively. hi denotes

the row vector (hi1, hi2, hi3). Utilizing the orthogonality of

r1 and r2, we have

h1K
−1
ij K

−⊤

ij h
⊤

2 = 0

h1K
−1
ij K

−⊤

ij h
⊤

1 = h2K
−1
ij K

−⊤

ij h
⊤

2 ,
(12)

where K−1

ij =




1/kj 0 0
0 1/ki 0

u0/kjku v0/kikv 1/kikv


.

Let a symmetric matrix B denote K−1

ij K−⊤

ij ,

B =




1/k2
j 0 u0/kuk

2
j

0 1/k2
i v0/kvk

2
i

u0/kuk
2
j v0/kvk

2
i (u2

0 + v20 + 1)/k2
i k

2
j


 . (13)

10124



Note that B has only 5 distinct non-zero elements, ex-

pressed by b = (b11, b13, b22, b23, b33)
⊤. In order to get

the solution of B, Eq. (12) is rewritten as V b = 0, i.e.,




h11h21 h2
11 − h2

21

h11h23+h13h21 2(h11h13−h21h23)
h12h22 h2

12 − h2
22

h12h23+h13h22 2(h12h13−h22h23)
h13h23 h2

13 − h2
23




⊤


b11
b13
b22
b23
b33



=0, (14)

where V is a 2n ×5 matrix. What is more, a general non-

zero solution b is computed, only if there are at least two

such equations (from two positions) as Eq. (14). b is deter-

mined up to an unknown scale factor.

Once b is estimated, it is easy to solve K−1

ij by Cholesky

factorization [10]. The effect of the scale factor is elimi-

nated by calculating the ratio of elements. Therefore the

intrinsic parameters except (ki, kj) are obtained,

ku = k̂11/k̂33, kv = k̂22/k̂33,

u0 = k̂31/k̂33, v0 = k̂32/k̂33,
(15)

where k̂mn is the m-th row and n-th column of the esti-

mated intrinsic matrix K̂−1

ij . Furthermore, the rest intrinsic

parameters and extrinsic parameters of different poses can

be obtained as follows,

λ =
1

2

(∥∥∥K̂−⊤

ij h
⊤

1

∥∥∥+
∥∥∥K̂−⊤

ij h
⊤

2

∥∥∥
)
,

τ = 1/
∥∥∥K̂−⊤

uv h
⊤

5

∥∥∥ ,

r1 =
α

λ
K̂

−⊤

ij h
⊤

1 , r2 =
α

λ
K̂

−⊤

ij h
⊤

2 , r3 = r1 × r2,

t = (G⊤
G)−1(G⊤

g),

G = (−[r1]×,−[r2]×)
⊤, g = (τK̂−⊤

ij h
⊤

3 , τK̂
−⊤

ij h
⊤

4 )
⊤,

α =

{
1 tz > 0
−1 tz < 0

,

ki =
λτ

k̂22
, kj =

λτ

k̂11
,

(16)

where ‖·‖ denotes L2 norm, K̂uv is formed by the intrinsic

parameters which are obtained from Eq. (15). α is deter-

mined by tz because it must be positive (i.e. the checker-

board is put in front of light field camera). The details of

derivation are given in the supplemental material.

4.3. Distortion Model

Due to the special imaging design of two-parallel-plane

in light field camera, there exists a radial distortion on the

image plane and a sampling distortion on the view plane si-

multaneously. With the assumption that the angular sam-

pling is ideal without distortion, only radial distortion is

considered in the paper. The undistorted coordinates (x̃, ỹ)
is rectified by the distorted coordinates (x, y) under the

view (s, t),
{
x̃ = x+ (k1r

2
xy + k2r

4
xy)(x− b1) + k3s

ỹ = y + (k1r
2
xy + k2r

4
xy)(y − b2) + k4t

, (17)

where r2xy = (x− b1)
2 + (y − b2)

2 and r = (s, t, x, y)
is transformed from the measurement l = (i, j, u, v) by

the intrinsic parameters P according to Eq. (2). Com-

pared with existing radial distortion of light field camer-

a, we add k3 and k4 to represent the distortion affected

by the shifted view. k1, k2, b1, b2 regulate conventional ra-

dial distortion on the image plane. In summary, we use

kd=(k1, k2, k3, k4, b1, b2) to denote distortion vector.

4.4. Nonlinear Optimization

The initial solution computed by the linear method is re-

fined via nonlinear optimization. Instead of minimizing the

distance between checkerboard corners and rays [4] and the

re-projection error in traditional multiview geometry [11],

we define a ray-ray cost function to acquire the nonlinear

solution. The ray-ray cost function is the minimization of

the distance between the rays and the line on the checker-

board,

dx =
|m⊤qx + q⊤mx|

‖q×qx‖
, dy =

|m⊤qy + q⊤my|

‖q×qy‖
, (18)

where L = (m⊤, q⊤)⊤ is the ray in the Plücker coordi-

nates. Lx = (m⊤
x , q

⊤
x )

⊤ and Ly = (m⊤
y , q

⊤
y )

⊤ are the

lines parallel to the Xw-axis and the Yw-axis respectively.

Both lines cross the checkerboard corners Xw. The deriva-

tion of the distance between two lines is given in the supple-

mental material. Further, we formulate the following cost

function according Eq. (18),

#pose∑

p=1

#point∑

n=1

#view∑

i=1

‖d(L̃′

w(P,kd,Rp, tp),Lw(Xw))‖, (19)

where L̃′
w is expressed as the Plücker coordinates after com-

puting by Eq. (2), followed by the distortion according to

Eq. (17). L′
w denotes the line in Eq. (18). P represents

intrinsic parameters, kd is distortion vector and Rp, tp are

extrinsic parameter at each position, 1 ≤ p ≤ P .

Eq. (19) are nonlinear objective functions which can be

solved using Levenberg-Marquardt algorithm based on the

trust region reflective method [19]. In addition, R is param-

eterized by Rodrigues formula [5]. MATLAB’s lsqnonlin

function is utilized to implement the optimization.

5. Experiments

In this section, we evaluate the performance of our al-

gorithm on calibrating synthetic light field cameras as well

as commercial light field cameras. We compare the pro-

posed method in ray re-projection error and re-projection
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Algorithm 1 Light Field Camera Calibration.

Input: Checkerboard corners Xw,

Corresponding rays l=(i, j, u, v).
Output: Intrinsic parameter P = (ki, kj , ku, kv, u0, v0),

Distortion vector kd=(k1, k2, k3, k4, b1, b2),
Extrinsic parameters Rp, tp, (1 6p 6P ).

1: for p = 1 to P do

2: Hs = EstimateProjectionMatrix(Xw, l) ⊲ Eq. (10)

3: end for

4: B = EstimateMatrix(Hs) ⊲ Eqs. (13), (14)

5: (ku, kv, u0, v0) = CalculateKuv(B) ⊲ Eq. (15)

6: for p = 1 to P do

7: (Rp, tp) = CalculateRT (Hs, ku, kv, u0, v0) ⊲ Eq. (16)

8: end for

9: (ki, kj) = CalculateKij(K̂ij) ⊲ Eq. (16)

10: Optimization(P,kd,
⋃P

p=1(Rp, tp)) ⊲ Eq. (19)

error with state-of-the-arts, including DPW by Dansereau

et al. [4], BJW by Bok et al. [3] and MPC by Zhang et al.

[30].

5.1. Simulated Data

In order to evaluate the performance of our algorithm, we

simulate a light field camera, whose intrinsic parameters are

listed in Tab. 1. These parameters are close to the setting of

a Lytro camera so that we obtain plausible input close to

real-world scenarios. The checkerboard is a pattern with a

12×12 grid of 3.51mm cells.

Table 1. Intrinsic parameters of the simulated light field camera.
ki kj ku kv u0 v0

2.4e-4 2.5e-4 2.0e-3 1.9e-3 -0.32 -0.33

Performance w.r.t. the noise level. In this experiment,

we employ the measurements of 3 poses and 7×7 views

to verify the robustness of calibration algorithm. The rota-

tion angles of 3 poses are (6◦, 28◦,−8◦), (12◦,−10◦, 15◦)
and (−5◦, 5◦,−27◦) respectively. Gaussian noise with zero

mean and a standard deviation σ is added to the project-

ed image points. We vary σ from 0.1 to 1.5 pixels with a

0.1 pixel step. For each noise level, we perform 150 inde-

pendent trials. The estimated intrinsic parameters are eval-

uated by the average of relative errors with ground truth.

As shown in Fig. 2, the errors almost linearly increase with

noise level. For σ = 0.5 pixels which is larger than nor-

mal noise in practical calibration, the errors of (ki, kj) and

(ku, kv) are less than 0.14%. Although the relative error of

(u0, v0) is 0.25%, the absolute error of (−u0/ku,−v0/kv)
is less than 0.24 pixel (In Eq. (2), u = (x − u0)/ku and

v = (y − v0)/kv , where (−u0/ku,−v0/kv) is the princi-

pal point of a sub-aperture image), which demonstrates the

robustness of the proposed method to high noise level.

Performance w.r.t. the number of poses and views.

This experiment investigates the performance with respect
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Figure 2. Performance evaluation of intrinsic parameters on the

simulated data with different levels of noise σ.

to the number of poses and views. We vary the number of

poses from 3 to 10 and the number of views from 3×3 to

7×7. For each combination of pose and view, by adding

a Gaussian noise with zero mean and a standard deviation

of 0.5 pixel, 200 trails with independent checkerboard pos-

es are conducted. The rotation angles are randomly gen-

erated from −30◦ to 30◦. The average relative errors of

calibration results with increasing measurements are shown

in Fig. 3. The relative errors decrease with the number of

poses. Meanwhile, when the number of poses is fixed, the

errors reduce with the number of views. In particular, when

#pose≥ 4 and #view≥ 4 × 4, all relative errors are less

than 0.5%, which further exhibits the effectiveness of the

proposed calibration method.

5.2. Real Data

We also perform experiments on real scene light fields,

including light field datasets (Lytro) released by DPW and

light field datasets1 (Lytro and Illum) released by MPC.

The sub-aperture images are easy to be decoded by raw

data. We improve the preprocessing of raw data described in

[4] to obtain sub-aperture images. First, normalized cross-

correlation (NCC) of the white images is used to locate

the centers of micro-lens images and estimate the average

size of micro-lens images. In addition, due to a slight ro-

tation between micro-lens array and the image sensor, a

line fitting is utilized to estimate the rotation and refine the

misalignment of micro-lens array. It is easy to extract 4D

light field from 2D raw data once the centers and size of

micro-lens images are obtained. The preprocess of raw data

begins with demosaicing after alignment of micro-lens ar-

ray. Then, the vignetting raw data is refine by divided by

1http://www.npu-cvpg.org/opensource
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Figure 3. Relative errors of intrinsic parameters on simulated data

with different numbers of poses and views.

Table 2. RMS ray re-projection errors (unit: mm).

A B C D E

DPW [4] 0.0835 0.0628 0.1060 0.1050 0.3630

MPC [30] 0.0810 0.0572 0.1123 0.1046 0.5390

Ours 0.0705 0.0438 0.1199 0.0740 0.2907

white image. Finally, a resampling is utilize to extract sub-

aperture images.

We firstly conduct calibration on the datasets collected

with DPW [4]. For a fair comparison, the middle 7× 7
sub-apertures are utilized. Tab. 2 summarizes the root mean

square (RMS) ray re-projection error. Compared with D-

PW which employs 12 intrinsic parameters, the proposed

ray-space projection model only employs a half of param-

eters but achieves smaller ray re-projection error except on

dataset C. Considering the fact that the errors exhibited in

DPW are minimized in its own optimization (i.e., ray re-

projection error), we additionally evaluate the performance

in mean re-projection error with DPW and BJW. As exhib-

ited in Tab. 3, the errors of the proposed method are obvi-

ously smaller than those of DPW and BJW, which further

verifies the effectiveness of nonlinear optimization (i.e. the

cost function in Eq. (19)).

Unlike the core idea of DPW, BJW conducts the calibra-

tion on the raw data directly instead of sub-aperture images.

Table 3. Mean re-projection errors (unit: pixel). The errors of DP-

W are calculated by their least released code. The errors of BJW

are obtained from their extended work [3].

A B C D E

DPW [4] 0.2284 0.1582 0.1948 0.1674 0.3360

BJW [3] 0.3736 0.2589 - - 0.2742

MPC [30] 0.2200 0.1568 0.1752 0.1475 0.2731

Ours 0.1843 0.1245 0.1678 0.1069 0.1383

Table 4. RMS ray re-projection errors of optimizations without and

with distortion rectification (unit: mm). The datasets are captured

with Lytro and Illum cameras.

Illum-1 Illum-2 Lytro-1 Lytro-2

Optimized

without

Rectification

DPW [4] 0.5909 0.4866 0.1711 0.1287

BJW [3] - - - -

MPC [30] 0.5654 0.4139 0.1703 0.1316

Ours 0.5641 0.4132 0.1572 0.1237

Optimized

with

Rectification

DPW [4] 0.2461 0.2497 0.1459 0.1228

BJW [3] 0.3966 0.3199 0.4411 0.2673

MPC [30] 0.1404 0.0936 0.1400 0.1124

Ours 0.1294 0.0837 0.1142 0.0980

It poses a significant challenge to obtain line feature accu-

rately which is extracted from raw data to estimate an ini-

tial solution of intrinsic parameters. The light field data for

calibration must be out of focus to make the measurement

detectable. Therefore, as shown in Tab. 3, several datasets,

i.e. C and D by [4], can not be estimated by BJW.

In order to comprehensively compare with DPW, BJW

and MPC, we also carry out calibration on the datasets cap-

tured by MPC [30]. Tab. 4 lists the RMS ray re-projection

errors compared with DPW, BJW and MPC at two calibra-

tion stages. As exhibited in Tab. 4, the proposed method

obtains smaller ray re-projection errors on the item of op-

timization without rectification compared with DPW and

MPC. Furthermore, it is more important we achieve smal-

l errors once the distortion is introduced in the optimiza-

tion. According to the item of optimization with rectifi-

cation, the proposed method outperforms DPW, BJW and

MPC. Consequently, such optimization results substantiate

that our 6-parameter ray-space projection model is effective

to describe light field camera.

Fig. 4 demonstrates the results of pose estimation on

datasets of MPC. In addition, we carry out light field stitch-

ing to examine the accuracy of intrinsic and extrinsic pa-

rameters estimation. 4-th and 7-th poses are center poses

of datasets Illum-1 and Illum-2 respectively (see Fig. 4(a-

b)). They are regarded as the reference views for stitch-

ing. Fig. 5 illustrates stitching results of light fields (actu-

ally these light fields are shot at a calibration board), from

which we can see all light fields are registered and stitched

very well.

It is vital to accurately calibrate light field camera and

reconstruct 3D geometry. In order to verify the effective-
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Table 5. Quantitative comparison of different calibration methods (unit: mm). The relative error is indicated in parentheses.

‘C’ ‘V’ ‘P’ ‘R’ ‘2’ ‘0’ ‘1’ ‘9’

Ruler 128.0 97.5 99.0 78.5 147.5 102.0 84.5 158.0

DPW [4] 124.3 (2.89%) 100.2 (2.77%) 97.6 (1.41%) 80.2 (2.17%) 145.7 (1.22%) 106.6 (4.51%) 86.1 (1.89%) 157.4 (0.69%)

BJW [3] 120.6 (5.78%) 106.8 (9.54%) 101.5 (2.53%) 80.7 (2.80%) 151.9 (2.98%) 103.4 (1.37%) 86.1 (1.89%) 160.6 (1.20%)

MPC [30] 127.5 (0.39%) 97.0 (0.51%) 98.3 (0.71%) 77.4 (1.40%) 144.9 (1.76%) 103.6 (1.57%) 85.7 (1.42%) 159.3 (0.82%)

Ours 127.4 (0.47%) 97.0 (0.51%) 98.9 (0.10%) 77.7 (1.02%) 145.9 (1.08%) 103.6 (1.57%) 85.3 (0.95%) 158.6 (0.38%)
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Figure 4. Pose estimation results of our datasets.

(a) Illum-1 (b) Illum-2

Figure 5. The stitching results of Illum-1 and Illum-2 datasets.

ness of geometric reconstruction of the proposed method

compared with state-of-the-art methods, we capture four re-

al scene light fields and reconstruct several specific corner

points and estimate the distances between them. As shown

in Tab. 5, the estimated distances between the reconstruct-

ed points are nearly equal to those measured lengths from

real objects by rulers (see Fig. 6). For these four measure-

ment examples, the relative errors of distance between re-

constructed points demonstrate the performance of the pro-

posed model compared with state-of-the-art methods.

6. Conclusion

In the paper, we explore the linear projection relationship

between the rays in 3D space and the corresponding rays

captured by multiple light field cameras. We first deduce a

6×6 RSIM composed of 6-parameter under the Plücker co-

(a) ‘C’: 128.0mm, ‘V’: 97.5mm (b) ‘P’: 99.0mm, ‘R’: 78.5mm

(c) ‘2’: 147.5mm, ‘0’: 102.0mm (d) ‘1’: 84.5mm, ‘9’: 158.0mm

Figure 6. Measurements between specific points by rulers.

ordinates. A linear ray-space projection matrix and a funda-

mental matrix are then formulated to describe the ray sam-

pling and transformation among multiple view light field-

s. Consequently, a linear constraint between 3D point and

rays captured by light field camera is established to actuate

an effective initial solution for both intrinsic and extrinsic

parameters. Finally, a novel ray-ray cost function is estab-

lished to nonlinearly optimize the 12-parameter model (6

for intrinsics and 6 for distortion). Extensive experiments

are conducted on synthetic and real light field data. Quali-

tative and quantitative comparisons verify the effectiveness

and robustness of the proposed ray-space projection model.

In the future, we intend to focus on exploring the invari-

ance for multiple light field cameras based on the ray-space

projection model. The future work also includes improving

the effectiveness of initial solution and reconstructing large-

scale complex scenes using multiple light field cameras.
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