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Abstract

The goal of MRI reconstruction is to restore a high fi-

delity image from partially observed measurements. This

partial view naturally induces reconstruction uncertainty

that can only be reduced by acquiring additional measure-

ments. In this paper, we present a novel method for MRI re-

construction that, at inference time, dynamically selects the

measurements to take and iteratively refines the prediction

in order to best reduce the reconstruction error and, thus, its

uncertainty. We validate our method on a large scale knee

MRI dataset, as well as on ImageNet. Results show that

(1) our system successfully outperforms active acquisition

baselines; (2) our uncertainty estimates correlate with er-

ror maps; and (3) our ResNet-based architecture surpasses

standard pixel-to-pixel models in the task of MRI recon-

struction. The proposed method not only shows high-quality

reconstructions but also paves the road towards more appli-

cable solutions for accelerating MRI.

1. Introduction

Magnetic Resonance Imaging (MRI) is a commonly

used scanning technique, which provides detailed images

of organs and tissues within the human body. The promises

of MRI, when compared to computed tomography, are the

superior soft tissue contrast and the lack of ionizing radia-

tion [49]. However, its main drawback is the slow acquisi-

tion time; MRI examinations can take as long as an hour.

The acquisition is performed sequentially in k-space – a 2D

complex-valued space that can be linked to the 2D Fourier

transform of the image – at speed controlled by hardware

and physiological constraints [27, 36], causing uncomfort-

able examination experiences and high health care costs.

Therefore, accelerating MRI is a critical medical imaging

problem, with the potential of substantially improving both

its accessibility and the patient experience.

Reducing the number of k-space measurements is a stan-

dard way of speeding up the examination time. However,
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Figure 1: Overview of our proposed pipeline. A MRI scan-

ner (1) acquires measurements given an initial trajectory.

The zero-filled image reconstruction (2) is fed into our sys-

tem (3), which outputs a reconstruction, an uncertainty map

and the next suggested measurement (in red) to scan (4).

These steps are repeated until the stopping criteria is met.

the images resulting from basic reconstructions from the

undersampled k-space often exhibit blur or aliasing effects

[27], making them unsuitable for clinical use. Hence, the

goal of MRI reconstruction systems is to reduce the previ-

ously mentioned artifacts and recover high fidelity images.

Deep learning has recently shown great promise in MRI

reconstruction with convolutional neural networks (CNNs)

[13, 36, 49, 11]. Most of these methods are designed to

work with a fixed set of measurements defining a sam-

pling trajectory1. We argue that this sampling trajectory

should be adapted on the fly, depending on the difficulty

of the reconstruction. Figure 2 depicts box plots obtained

by applying a reconstruction network to a large dataset for

1Throughout the paper, we use horizontal Cartesian acquisition trajec-

tory, where k-space is acquired row-by-row and we use measurement to

refer to a whole row of the Cartesian trajectory.
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three acceleration factors, namely: 10×, 5× and 4×. As

shown in the figure, the 10× plot exhibits the highest vari-

ance. As we introduce more measurements (by reducing

the acceleration factor), the error variance decreases, high-

lighting the existing trade-off between acquisition speedup

and reconstruction error variance when fixing the sampling

trajectory. A natural way to overcome this trade-off is to

define data driven sampling trajectories, via active acqui-

sition2 that adapt to reconstruction difficulty by selecting

sequentially which parts of k-space to measure next.

Partial measurements naturally induce reconstruction

uncertainty, as they might be consistent with multiple,

equally plausible high fidelity reconstructions, which may

or may not correspond to the reconstruction from fully ob-

served k-space. In practice, these reconstructions could

eventually mislead radiologists. Therefore, the ability to

quantify and display the pixel-wise reconstruction uncer-

tainty is of paramount relevance. On one hand, this pixel-

wise uncertainty could allow radiologists to gain additional

insight on the quality of the reconstruction and potentially

yield a better diagnosis outcome. On the other hand, the

reduction in uncertainty via additional measurements could

be used as a signal to guide active acquisition.

In this paper, we propose a system for MRI reconstruc-

tion that, at inference time, actively acquires k-space mea-

surements and iteratively refines the prediction with the goal

of reducing the error and, thus, the final uncertainty (see

Figure 1). To do so, we introduce a novel evaluator net-

work to rate the quality gain in reconstruction of each k-

space measurement. This evaluator is trained jointly with a

reconstruction network, which outputs a high fidelity MRI

reconstruction together with a pixel-wise uncertainty esti-

mate. We explore a variety of architectural designs for

the reconstruction network and present a residual-based

model that exploits the underlying characteristics of MRI

reconstruction. We extensively evaluate our method on a

large scale knee MRI DICOM dataset and on ImageNet

[4]. Our results show that (1) our evaluator consistently

outperforms standard k-space active acquisition heuristics

on both datasets; (2) our reconstruction network improves

upon common pixel-wise prediction networks and; (3) the

uncertainty predictions correlate with the reconstruction er-

rors and, thus, can be used to trigger the halt signal to stop

the active acquisition process.

To summarize, the contributions of the paper are the fol-

lowing:

• We introduce a reconstruction network design, which

outputs both image reconstruction and uncertainty pre-

dictions, and is trained to jointly optimize for both.

• We introduce a novel evaluator network to perform ac-

tive acquisition, which has the ability to recommend

2Note that, in active acquisition, the sampling trajectory would not only

determine the number of measurements but also their sampling order.
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Figure 2: Box plots representing the variance of the recon-

struction mean squared errors (MSE) for different accelera-

tion factors. To obtain the plots, we apply random k-space

trajectories with different acceleration factors to a set of im-

ages and feed them to a reconstruction network.

k-space trajectories for MRI scanners and reduce the

uncertainty efficiently.

• We show through extensive evaluation the superior

performance of the proposed approach, highlighting its

practical value and paving the road towards improved

practically applicable systems for accelerating MRI.

2. Related Work

MRI reconstruction. There is a vast literature tackling

the problem of undersampled MRI reconstruction. State-of-

the-art solutions include both signal processing techniques

(e.g. Compressed Sensing (CS)) as well as machine learn-

ing ones. On one hand, CS-based MRI reconstruction has

been widely studied in the literature [26, 28, 25, 31, 40].

These approaches usually result in over-smoothed recon-

structions, which involve a time consuming optimization

process, limiting their practical scalability. On other hand,

deep learning based approaches have been introduced as a

promising alternative to MRI reconstruction [42, 36, 24, 13,

35]. In [36], a cascaded CNN with a consistency layer

is presented to ensure measurement fidelity in dynamic

cardiac MRI reconstruction. In [13], a Unet architecture

[35] is used to reconstruct brain images, while [24] pro-

poses a recurrent inference machine for image reconstruc-

tion. Moreover, following recent trends, architectures in-

volving image refinement mechanisms seem to be gaining

increasing attention [36, 38, 24]. Although all previously-

mentioned approaches are able to improve the reconstruc-

tion error, the human perception of the results is still not

compelling. Therefore, recent works have also focused on

exploring different training objectives such as adversarial

losses [43, 8, 15] to enhance the perceptual reconstruction

quality [38, 46].

Uncertainty. Significant effort has been devoted in the

computer vision literature to provide uncertainty estimates

[17] of predictions. There are two possible sources of uncer-

tainty [20]: 1) model uncertainty due to an imperfect model
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(epistemic uncertainty) and 2) data uncertainty due to im-

perfect measurements (aleatoric uncertainty). While model

uncertainty can be decreased with better models, data un-

certainty vanishes only with the observation of all variables

with infinite precision. In medical imaging, uncertainty

is often used to display probable errors [3] and has been

mainly studied in the context of image segmentation [6, 22].

Segmentation errors (i.e. wrong label predictions) are often

easier to detect by domain experts than reconstruction errors

(i.e. shift of pixel values), which could potentially mislead

diagnosis. Therefore, the study of uncertainty is crucial in

the context of MRI reconstruction. In this paper, we focus

on data uncertainty, which is caused by the partially ob-

served k-space. This uncertainty can be captured by proper

model parametrization, e.g. in regression tasks a Gaussian

observation model is often assumed [17, 18]; this assump-

tion can be relaxed to allow the use of arbitrary observation

models as explained in [10].

Active acquisition. Previous research on optimizing

k-space measurement trajectories from the MRI commu-

nity include CS-based techniques [37, 33, 47, 9], SVD

basis techniques [51, 30, 52], and region-of-interest tech-

niques [44]. It is important to note that all these approaches

work with fixed trajectories at inference time. By contrast,

[23] proposed an on-the-fly eigenvalue based approach that

adapts to encoding physics specific to the object. However,

contrary to our approach, it requires solving an optimization

problem at inference time. Moreover, since we train all the

components of our pipeline jointly, our adaptive acquisition

incorporates information on the image physics, the object

being imaged, and the reconstruction process to select the

next measurement.

3. Background and notation

Let y ∈ C
N×N be a complex-valued matrix represent-

ing the fully sampled k-space. Neglecting effects such as

magnetic field inhomogeneity and spin relaxation, the im-

age can be estimated from the k-space data by applying a

2D Inverse Fast Fourier Transform (IFFT) x = F−1(y),
where x ∈ C

N×N is the image and F−1 is the IFFT op-

eration. We denote the binary sampling mask defining the

k-space Cartesian acquisition trajectory as S [49]. The ac-

quired measurements are referred to as observed whereas

the masked measurements are referred to as unobserved.

We define the undersampled, partially observed k-space as

ŷ = S⊙ y, where ⊙ denotes element-wise multiplication.

Thus, the basic zero-filled image reconstruction is obtained

as x̂ = F−1(ŷ). Analogously, we can go from the recon-

structed image to the k-space measurements ŷ = F(x̂),
where F is the Fast Fourier Transform (FFT).

It is worth noting that MRI images x = F−1(y) are

complex-valued matrices. However, most Picture Archiv-

ing and Communication Systems in hospitals do not store
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Figure 3: The training pipeline of the proposed method.

raw k-space measurements, but instead store the magnitude

image abs(x) ∈ R in the DICOM format. Therefore, we

simulate k-space measurements by applying the FFT to the

magnitude image y = F(abs(x)). We do not differentiate

the notation of an image in R or C hereinafter.

We make use of one of the numerous properties of FFT3,

namely Parseval’s Theorem [34]. It implies that the l2-

distance between two images x(1),x(2) is equivalent to the

l2-distance between their representation in the frequency

domain, i.e. ||F(x(1))−F(x(2))||22 = ||x(1) − x(2)||22.

4. Method

Figure 3 illustrates our approach. The framework is com-

posed of (1) a reconstruction network and (2) an evaluator.

The goal of the reconstruction network is to produce high fi-

delity reconstructions from undersampled k-space measure-

ments. The network takes a basic zero-filled image recon-

struction as input and outputs an improved image recon-

struction together with its uncertainty estimates. The goal

of the evaluator network is to rate each corresponding k-

space row of a reconstructed image, where the score should

indicate how much it resembles true measurements. The

rating score guides the measurement selection criterion: the

lowest rated measurement should be acquired first.

4.1. Reconstruction network

Our reconstruction network has a cascaded backbone

composed of residual networks (ResNets) [12], more pre-

cisely fully convolutional ResNets (FC-ResNets) [7, 2] fol-

lowed by data consistency (DC) layers [36].

The DC layer [36]4 builds direct shortcut connections

from the input of the network x̂ to its output f(x̂) to enforce

the preservation of the observed information while estimat-

ing the reconstruction. The DC layer operates in k-space,

and the reconstruction can be formally defined as:

3See Chapter 3.4 of [39] for the full list.
4We use the noiseless version of DC, which makes F(x̂) fully pre-

served in the output, with a hard copy. See [36] for more details.
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Figure 4: Image decomposition into N spectral maps.

r = DC(x̂,S) = F−1((1−S)⊙F(f(x̂))+S⊙F(x̂)). (1)

The rationale behind choosing FC-ResNet followed by

DC layers as building block of our cascaded network is to

learn the residual f(x̂) = r − x̂. Thus, f(x̂) estimates the

image representing the unobserved part of F(x), comple-

menting F(x̂). The rationale behind cascading the previ-

ously described building blocks is to provide intermediate

deep supervision [21].

Overall, the proposed cascaded FC-ResNet (denoted c-

ResNet) concatenates three identical tiny encoder-decoder

networks, interleaved with DC layers. Note that this net-

work is reminiscent of the 3D cascaded CNN proposed in

[36] with minor design changes and endowed with deep su-

pervision. To enhance the information flow between FC-

ResNet modules, we add a shortcut to link residual blocks

between adjacent modules (Figure 3). Hence, each mod-

ule can re-use the representations of its predecessor and en-

hance the representations with further network capacity (see

the supplementary materials for details).

4.2. Uncertainty estimates

FC-ResNet modules described in the previous section

are trained to also output pixel-wise uncertainty estimates

u(x̂), which we will use to trigger the halt signal to stop the

active acquisition process. The additional benefit of hav-

ing uncertainty estimates is that they highlight regions of

the image that are likely to contain large reconstruction er-

rors. Similarly to [10, 17], we model the uncertainty about

the value of a pixel as a Gaussian centered at reconstruction

mean r and with variance u(x̂), i.e. N (r, diag(u(x̂))). We

train our reconstruction network to maximize the average

conditional log-likelihood, which amounts to minimizing:

LR(x̂, r,x) =
1

N2

N
2∑

i=1

|ri − xi|
2

2u(x̂)i
+

1

2
log(2πu(x̂)i), (2)

where x is the ”ground-truth” target image, x̂ is a zero-filled

reconstruction given as input to the network, r is the recon-

struction it outputs, and N2 is the number of pixels.

4.3. Evaluator network

The role of the evaluator network e is to tell whether a

given k-space row is likely to be a true k-space measure-

ment or to come from a reconstruction. When training the

reconstruction network, we will be using the evaluator as

additional regularization to encourage the reconstructed im-

age to have phantasized k-space rows that look as if they

came from the distribution of true measured rows. To be

proficient in this task, the evaluator has to be able to cap-

ture small structural differences in images that define the

distribution of the true, observed measurements. In our de-

sign, we leverage the idea of adversarial learning [8, 32],

and train a discriminator-like evaluator to score the mea-

surements and meanwhile encourage the reconstruction net-

work to produce results that match the true measurement

distribution.

The first step of the evaluator decomposes the output im-

age reconstruction r ∈ C
N×N into N spectral maps, each

one corresponding to a single k-space row. To obtain these

spectral maps, we first transform r into the k-space repre-

sentation y = F(r). Then, we mask out all the k-space

rows except of the i-th one using a binary mask Ŝ(i). The

i-th spectral map of a reconstruction output is obtained as

M(r)
(i)

= F−1(Ŝ(i) ⊙ F(r)). Analogously M(x)
(i)

de-

notes the i-th spectral map of the ground truth reconstruc-

tion 5. This process is depicted in Figure 4. Moreover, it

embeds the acquisition trajectory S into a 6D vector. Fi-

nally, both the spectral maps and the trajectory embedding

as a 3D tensor are fed to a CNN, whose full architectural

details are provided in the supplementary material.

We train the evaluator so that it assigns a high value to

spectral maps that correspond to actually observed rows of

the k-space and a low value to the unobserved ones. The

simplest approach would be to train a discriminator to dis-

tinguish between observed and unobserved rows. However,

we found that such strategy does not work well: the evalua-

tor tends to output polarized scores (close to 0 or 1), making

it hard to use to rank unobserved measurements. Instead, we

decompose both the ground truth image x and the recon-

struction output r into spectral maps and train the evaluator

network e(r,S) to fit target scores given by the following

kernel:

t(r,x)i = exp(−γ||M(r)
(i) −M(x)

(i)||22), (3)

where γ is a scalar hyper-parameter. Specifically e is trained

to minimize the following objective:

LE

E(r,x,S) =

N∑

i

|e(r,S)i − t(r,x)i|
2, (4)

where e(r,S)i is the score of measurement i. Note that

t(r,x)i is close to 1 when M(r)
i

is similar to M(x)
i

and is

close to 0 otherwise6. Note that the DC layer always ensures

that M(r)
i

is equal to M(x)
i

for the observed rows of the

k-space. Hence ti ≡ 1 for observed measurements.

5Note that using the linearity of the Fourier transform, one could write:

r =
∑

N

i
M(r)(i).

6Thus, ti can be viewed as an energy function [48] we expect to mini-

mize by updating the parameters of the reconstruction network.
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Method MSE SSIM

pix2pix 0.100 0.61

FC-DenseNet 0.072 0.70

Unet 0.065 0.72

ResNet 0.055 0.75

Ours (c-ResNet) 0.050 0.77

Ours 0.052 0.76

Table 1: MSE /SSIM at kMA = 21%.
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Figure 5: Plots depicting MSE and SSIM for different kMA values.

Figure 6: Qualitative comparison of different reconstruction networks, including reconstruction results and error maps (nor-

malized for improved visualization). The binary image below target is the sampling trajectory with 25% kMA.

4.4. Joint adversarial training

Following the principle of adversarial training, the eval-

uator network is used to update the reconstruction network

using the following objective:

LR

E(r,S) =

N∑

i

|e(r,S)i − 1|2, (5)

which encourages the reconstruction network to produce re-

constructions that can obtain high evaluator scores e(r,S).
Overall, the reconstruction network is trained with the fol-

lowing objective:

L(R,x,S) =
1

K

K∑

k=1

Lk

R(r
k−1, rk,x)+βLR

E(r
K ,S), (6)

where R = [r0, ..., rK ], r0 = x̂, rk for k ≥ 1 is the output

of the k-th cascading block, β is a hyper-parameter control-

ling the influence of the evaluator loss on the global objec-

tive and K is the number of cascaded FC-ResNets in the

reconstruction network.

We train the full model end-to-end, by alternating the

reconstruction and evaluator networks’ updates as in the

standard adversarial training fashion [8]. We use the Adam

solver (β1 = 0.5, β2 = 0.999) [19] with an initial learn-

ing rate of 0.0006 for 50 epochs. The learning rate is then

linearly decreased per epoch for another 50 epochs, until it

reaches 0. For all experiments, we set β = 0.1, K = 3 and

γ = 100. All models are trained using 6 Tesla P100 GPUs,

with a batch size of 48 per GPU.

4.5. Active acquisition

As illustrated in Figure 1, at inference time, the evalu-

ator scores e(r,S) are used to select the next unobserved

measurement to acquire. Then, the input image is updated

accordingly and the process iterates until all measurements

are acquired or a stopping criteria is met, e.g. a low global

uncertainty score.

5. Experiments

In this section, we provide an in depth analysis of all the

components of the proposed active acquisition pipeline. All

experiments are conducted on a large scale Knee DICOM

dataset from [45] as well as on ImageNet [5].

The Knee DICOM dataset is composed of 10k volumes.

In our experiments, we use a subset of the data set and slice

images from three axials at close-to-central positions of vol-

umes, resulting in 11049 training images and 5048 test im-

ages. Among the training images, 10% are used for vali-

dation for hyperparameter search. We report results on the

test set. All images are resized to have resolution 128×128.

Volumes are from different machines and they have differ-

ent intensity range. We standardize each image using mean

and standard deviation computed on the corresponding vol-

ume.

In order to evaluate the quality of reconstruction on

a downstream classification task, we use the ImageNet

dataset [5]. We pre-process the dataset in order to have gray

scale images of 128×128 pixels. Since we can not apply
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Figure 7: Correlation plot between MSE and the mean un-

certainty score, each dot represents one image.

any off-the-shelf RGB pre-trained classification model, we

train a ResNet50 [12] on the pre-processed images7.

The training acquisition trajectory S is obtained follow-

ing the Cartesian sampling by fixing 10 low frequency mea-

surements in top and bottom rows and randomly sampling

from the remaining ones until a desired number of measure-

ments is obtained. In our experimental setup, the desired

number of measurements is randomly chosen between 13

and 47. To evaluate the system, we characterize the acquisi-

tion trajectory S with the number of observed k-space mea-

surements w.r.t. the total number of possible measurements

as kMA = # of acquired measurements

# of all possible measurements
8. Since, acquisition time

in MRI is proportional to the number of measurements ac-

quired, the acceleration factor is computed as 1
kMA . Thus,

the lower kMA the higher acceleration factor (e.g. 25%
kMA implies a speedup of 4x).

In the remainder of the section, we analyze the different

components of our model, highlighting the obtained com-

petitive results and its practical values.

5.1. Comparison of reconstruction architectures

In this subsection, we build two variants of our recon-

struction architecture: (1) a vanilla c-ResNet trained by

removing both the uncertainty estimates and the evaluator

to minimize the mean squared error (MSE); and (2) a c-

ResNet trained within the whole pipeline as described in

Section 3. We compare these architectures to state-of-the-

art deep learning models, commonly used in the MRI lit-

erature (Unet [13] and ResNet defined in CycleGAN [50])

and in dense prediction problems (FC-DenseNet103 [16],

pix2pix [15, 43]). Note that pix2pix includes additional ad-

versarial losses. We use MSE and Structural Similarity In-

dex (SSIM) [41] as evaluation metrics.

7We use the following implementation: https://github.com/

pytorch/examples/tree/master/imagenet
8For DICOM data, we define the number of all possible measurements

to be N/2 - the true degrees of freedom of our data due to the Fourier

Transform’s conjugate symmetry property. See supplementary material

for details.

For the sake of fair comparison, we add a DC layer to all

models. Moreover, we found that that batch normalization

(BN) [14] works poorly for undersampled MRI reconstruc-

tion, whereas instance normalization (IN) [1] is an impor-

tant operation to improve results. Our findings are aligned

with the recent work of [29], which suggests that IN learns

features that are invariant to appearance changes, while BN

better preserves content related information. Therefore, we

endow all models with IN instead of BN and tune them to

improve performance.

Table 1 reports MSE and SSIM performance for all

above-mentioned models at kMA = 21% (∼ 5x speedup).

We observe that ResNet-based architectures outperform

Unet and FC-DenseNet. As shown in the table, our vanilla

reconstruction network (Ours (c-ResNet)) outperforms all

above-mentioned pixel-wise baselines in terms of MSE and

SSIM. Our full method (Ours) also optimizes uncertainty

estimates and evaluator to perform active acquisition, which

hinders the direct optimization of MSE and thereby results

in a slight performance drop. Similarly, the weak perfor-

mance of pix2pix could be explained by its discriminator.

Figure 5 depicts the MSE and SSIM performance met-

rics as a function of kMA. To validate the models, we

create multiple validation sets by varying number of ob-

served measurements from 10% to 50% kMA. All results

were obtained with a single model trained on random ac-

quisition trajectories with kMA varying from 10% to 37%.

From these experiments, we observe the same trend as

reported before, namely ResNet-based architectures being

better suited to perform undersampled MRI reconstruction,

for all kMA values. Moreover, we can observe that all

the tested models scale gracefully to unseen kMAs, namely

from 38% to 50%. Finally, we illustrate some qualitative

results in Figure 6.

5.2. Uncertainty analysis

The goal of this subsection is to delve into the estimated

uncertainty estimates and their correlation with the recon-

struction errors. We select 512 test images, apply random

random acquisition trajectories with kMA ranging from

[10%, 95%], feed them to our reconstruction network and

output both high fidelity reconstructions and uncertainty

maps. Next, we compute the MSE between the obtained re-

constructions and their corresponding ground truths as well

as their mean uncertainty score. Figure 7 shows the result-

ing correlation plot. As it can be seen, the the mean uncer-

tainty score correlates well with the MSE. We observe that

the correlation is weaker as both MSE and uncertainty in-

crease. These results indicate that the uncertainty estimates

of our system could be useful to monitor the quality of re-

construction throughout our active acquisition process.
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Figure 8: Simulation of k-space acquisition at the inference time. The left panel shows (top to bottom): reconstruction results,

error maps, uncertainty maps, and sampling trajectories (in DFT coordinates). The initial mask includes 10 low-frequency

rows (in white). The plots on the right monitors both MSE and the mean uncertainty value at different kMA ratios.

Figure 9: Comparison of different k-space acquisition

heuristics to our model on the Knee dataset. The plot de-

picts MSE as a function of number of measurements.

5.3. k-space active acquisition analysis

Simulating the active acquisition process of an MRI

scanner is straightforward. Given an input with a certain ac-

quisition trajectory, we firstly obtain the reconstructed im-

age. Then, we select the next unobserved row to acquire and

measure it by copying it from the ground truth to the input

image. After that, the updated input image is processed by

our system. We iterate this process until the the stopping

criteria is met or the k-space is fully observed.

We initialize the process with an input image resulting

from the observation of 10 measurements (7.8% kMA),

containing only low-frequency information. The active ac-

quisition process is depicted in Figure 8, which contains

qualitative intermediate results at different kMA values (in-

cluding reconstructions, error maps, uncertainty estimates

and acquisitions trajectories) as well as the progression of

the mean uncertainty score and MSE on the test set. As

shown in the figure, as we introduce additional measure-

ments, the reconstruction quality improves and the error and

uncertainty decrease; reaching very low values around kMA

= 30%. Note that the uncertainty is condensed in complex

image regions, often containing high frequency informa-

tion. Moreover, higher uncertainty regions appear to have

higher reconstruction error values. Please refer to the sup-

plementary video for more simulation results.

Comparison to standard active acquisition heuristics.

We compare our evaluator-based approach to several base-

lines, including:
• Random+Copy(C): We randomly select an unobserved

measurement, add it to the acquisition trajectory and

compute the zero-filled reconstruction. We repeat this

selection process without replacement until k-space is

fully observed.

• Random+C+Reconstruction(R): Following Ran-

dom+C selection strategy, we pass the zero-filled

solution through our reconstruction network every

time a measurement is added.

• Order+C: We select measurements following the low

to high frequency order. Following the copy strategy,

we add the measurement to the acquisition trajectory

and compute the zero-filled reconstruction. We repeat

this selection process until k-space is fully observed.

• Order+C+R: Following Order+C selection strategy,

we pass the zero-filled solution through our recon-

struction network every time a measurement is added.
Figure 9 analyzes the MSE as function of kMA. We ob-

serve that all methods have the same initial MSE and end up

with zero MSE when all measurements are acquired. Ran-

dom+C+R outperforms random+C notably, highlighting the

benefit of applying the reconstruction network. However,

order+C (even without any reconstruction) performs on par

with random+C+R. This is not surprising, given that low

frequency contains most of the information needed to re-

duce MSE. Finally, our method exhibits higher measure-

ment efficiency when compared to the baselines.

ImageNet simulation. MSE is unable to reflect how well
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Figure 10: Comparison of different k-space acquisition heuristics to with our pipeline on ImageNet. The plots depict MSE

and accuracy (top-1&5) as a function of number of measurements.

Binary labels

MSE regressor

Ours

Figure 11: Evaluator score as a function of the number of

measurements. We compare our evaluator design to two

baselines: MSE regressor and adversarial loss trained with

binary labels.

the semantic details, which may be required for diagnosis,

are recovered. Since we don’t have access to classifica-

tion information on our knee dataset, we reach out to an

auxiliary classification dataset and test our pipeline. We

evaluate the method by means of MSE and top-k classifi-

cation accuracy. Results are presented in Figure 10. The

MSE results for different acquisition heuristics follow the

same pattern as in the knee dataset. Interestingly, when it

comes to the classification accuracy, random+C+R outper-

form other baselines (which were better in terms of MSE,

e. g. order+C+R), achieving results comparable to our

method. This experiment suggests that semantic informa-

tion could exist in arbitrary high-frequency parts of images.

Our method demonstrates excellent effectiveness at recov-

ering both image quality and semantic details.

Evaluator ablation study. Finally, we compare our eval-

uator training strategy, described in subsection 4.3, with

two alternatives. First, we train our evaluator network with

binary labels (following adversarial training of image-to-

image translation networks [15]), i.e. 0 for spectral maps

corresponding to unobserved measurements (fake), and 1
for spectral maps corresponding to observed measurements

(real). Second, we adapt the recently proposed [6] to score

our spectral maps in terms of MSE. This approach trains a

regression network on top of pre-trained regression model.

Note that this is different to adversarial training, since the

regression network does not affect the weights of the recon-

struction network. The results of the comparison are shown

in Figure 11, where the scores of different evaluators are

depicted as a function of kMA. Note that only the scores of

spectral maps corresponding to unobserved measurements

are considered. A good evaluator should produce increas-

ing scores (up to a maximum value of 1) as the number of

acquired measurements increases. Similarly, the evaluator

score variance should decrease with the number of acquired

measurements. As it can been observed, our method is the

only one satisfying both requirements, highlighting the ben-

efits of our evaluator design.

6. Conclusions

In this paper, we presented a novel active acquisition

pipeline for undersampled MRI reconstruction, which can

iteratively suggests k-space trajectories to best reduce un-

certainty. We extensively validated our approach on a large

scale knee dataset as well as on ImageNet, showing that

(1) our evaluator design consistently outperforms alterna-

tive active acquisition heuristics; (2) our uncertainty esti-

mates correlate with the reconstruction error and thus, can

be used to trigger the halt signal of active acquisition at in-

ference time; (3) our reconstruction architecture surpasses

previously introduced architectures. Finally, we argued that

the proposed method paves the road towards more appli-

cable solutions for accelerating MRI, which ensure the op-

timal acquisition speedup while maintaining high fidelity

image reconstructions with low uncertainty.
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