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Abstract

The goal of MRI reconstruction is to restore a high fi-

delity image from partially observed measurements. This

partial view naturally induces reconstruction uncertainty

that can only be reduced by acquiring additional measure-

ments. In this paper, we present a novel method for MRI re-

construction that, at inference time, dynamically selects the

measurements to take and iteratively refines the prediction

in order to best reduce the reconstruction error and, thus, its

uncertainty. We validate our method on a large scale knee

MRI dataset, as well as on ImageNet. Results show that

(1) our system successfully outperforms active acquisition

baselines; (2) our uncertainty estimates correlate with er-

ror maps; and (3) our ResNet-based architecture surpasses

standard pixel-to-pixel models in the task of MRI recon-

struction. The proposed method not only shows high-quality

reconstructions but also paves the road towards more appli-

cable solutions for accelerating MRI.

1. Introduction

Magnetic Resonance Imaging (MRI) is a commonly

used scanning technique, which provides detailed images

of organs and tissues within the human body. The promises

of MRI, when compared to computed tomography, are the

superior soft tissue contrast and the lack of ionizing radia-

tion [49]. However, its main drawback is the slow acquisi-

tion time; MRI examinations can take as long as an hour.

The acquisition is performed sequentially in k-space – a 2D

complex-valued space that can be linked to the 2D Fourier

transform of the image – at speed controlled by hardware

and physiological constraints [27, 36], causing uncomfort-

able examination experiences and high health care costs.

Therefore, accelerating MRI is a critical medical imaging

problem, with the potential of substantially improving both

its accessibility and the patient experience.

Reducing the number of k-space measurements is a stan-

dard way of speeding up the examination time. However,
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Figure 1: Overview of our proposed pipeline. A MRI scan-

ner (1) acquires measurements given an initial trajectory.

The zero-filled image reconstruction (2) is fed into our sys-

tem (3), which outputs a reconstruction, an uncertainty map

and the next suggested measurement (in red) to scan (4).

These steps are repeated until the stopping criteria is met.

the images resulting from basic reconstructions from the

undersampled k-space often exhibit blur or aliasing effects

[27], making them unsuitable for clinical use. Hence, the

goal of MRI reconstruction systems is to reduce the previ-

ously mentioned artifacts and recover high fidelity images.

Deep learning has recently shown great promise in MRI

reconstruction with convolutional neural networks (CNNs)

[13, 36, 49, 11]. Most of these methods are designed to

work with a fixed set of measurements defining a sam-

pling trajectory1. We argue that this sampling trajectory

should be adapted on the fly, depending on the difficulty

of the reconstruction. Figure 2 depicts box plots obtained

by applying a reconstruction network to a large dataset for

1Throughout the paper, we use horizontal Cartesian acquisition trajec-

tory, where k-space is acquired row-by-row and we use measurement to

refer to a whole row of the Cartesian trajectory.
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three acceleration factors, namely: 10×, 5× and 4×. As

shown in the figure, the 10× plot exhibits the highest vari-

ance. As we introduce more measurements (by reducing

the acceleration factor), the error variance decreases, high-

lighting the existing trade-off between acquisition speedup

and reconstruction error variance when fixing the sampling

trajectory. A natural way to overcome this trade-off is to

define data driven sampling trajectories, via active acqui-

sition2 that adapt to reconstruction difficulty by selecting

sequentially which parts of k-space to measure next.

Partial measurements naturally induce reconstruction

uncertainty, as they might be consistent with multiple,

equally plausible high fidelity reconstructions, which may

or may not correspond to the reconstruction from fully ob-

served k-space. In practice, these reconstructions could

eventually mislead radiologists. Therefore, the ability to

quantify and display the pixel-wise reconstruction uncer-

tainty is of paramount relevance. On one hand, this pixel-

wise uncertainty could allow radiologists to gain additional

insight on the quality of the reconstruction and potentially

yield a better diagnosis outcome. On the other hand, the

reduction in uncertainty via additional measurements could

be used as a signal to guide active acquisition.

In this paper, we propose a system for MRI reconstruc-

tion that, at inference time, actively acquires k-space mea-

surements and iteratively refines the prediction with the goal

of reducing the error and, thus, the final uncertainty (see

Figure 1). To do so, we introduce a novel evaluator net-

work to rate the quality gain in reconstruction of each k-

space measurement. This evaluator is trained jointly with a

reconstruction network, which outputs a high fidelity MRI

reconstruction together with a pixel-wise uncertainty esti-

mate. We explore a variety of architectural designs for

the reconstruction network and present a residual-based

model that exploits the underlying characteristics of MRI

reconstruction. We extensively evaluate our method on a

large scale knee MRI DICOM dataset and on ImageNet

[4]. Our results show that (1) our evaluator consistently

outperforms standard k-space active acquisition heuristics

on both datasets; (2) our reconstruction network improves

upon common pixel-wise prediction networks and; (3) the

uncertainty predictions correlate with the reconstruction er-

rors and, thus, can be used to trigger the halt signal to stop

the active acquisition process.

To summarize, the contributions of the paper are the fol-

lowing:

• We introduce a reconstruction network design, which

outputs both image reconstruction and uncertainty pre-

dictions, and is trained to jointly optimize for both.

• We introduce a novel evaluator network to perform ac-

tive acquisition, which has the ability to recommend

2Note that, in active acquisition, the sampling trajectory would not only

determine the number of measurements but also their sampling order.
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Figure 2: Box plots representing the variance of the recon-

struction mean squared errors (MSE) for different accelera-

tion factors. To obtain the plots, we apply random k-space

trajectories with different acceleration factors to a set of im-

ages and feed them to a reconstruction network.

k-space trajectories for MRI scanners and reduce the

uncertainty efficiently.

• We show through extensive evaluation the superior

performance of the proposed approach, highlighting its

practical value and paving the road towards improved

practically applicable systems for accelerating MRI.

2. Related Work

MRI reconstruction. There is a vast literature tackling

the problem of undersampled MRI reconstruction. State-of-

the-art solutions include both signal processing techniques

(e.g. Compressed Sensing (CS)) as well as machine learn-

ing ones. On one hand, CS-based MRI reconstruction has

been widely studied in the literature [26, 28, 25, 31, 40].

These approaches usually result in over-smoothed recon-

structions, which involve a time consuming optimization

process, limiting their practical scalability. On other hand,

deep learning based approaches have been introduced as a

promising alternative to MRI reconstruction [42, 36, 24, 13,

35]. In [36], a cascaded CNN with a consistency layer

is presented to ensure measurement fidelity in dynamic

cardiac MRI reconstruction. In [13], a Unet architecture

[35] is used to reconstruct brain images, while [24] pro-

poses a recurrent inference machine for image reconstruc-

tion. Moreover, following recent trends, architectures in-

volving image refinement mechanisms seem to be gaining

increasing attention [36, 38, 24]. Although all previously-

mentioned approaches are able to improve the reconstruc-

tion error, the human perception of the results is still not

compelling. Therefore, recent works have also focused on

exploring different training objectives such as adversarial

losses [43, 8, 15] to enhance the perceptual reconstruction

quality [38, 46].

Uncertainty. Significant effort has been devoted in the

computer vision literature to provide uncertainty estimates

[17] of predictions. There are two possible sources of uncer-

tainty [20]: 1) model uncertainty due to an imperfect model
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(epistemic uncertainty) and 2) data uncertainty due to im-

perfect measurements (aleatoric uncertainty). While model

uncertainty can be decreased with better models, data un-

certainty vanishes only with the observation of all variables

with infinite precision. In medical imaging, uncertainty

is often used to display probable errors [3] and has been

mainly studied in the context of image segmentation [6, 22].

Segmentation errors (i.e. wrong label predictions) are often

easier to detect by domain experts than reconstruction errors

(i.e. shift of pixel values), which could potentially mislead

diagnosis. Therefore, the study of uncertainty is crucial in

the context of MRI reconstruction. In this paper, we focus

on data uncertainty, which is caused by the partially ob-

served k-space. This uncertainty can be captured by proper

model parametrization, e.g. in regression tasks a Gaussian

observation model is often assumed [17, 18]; this assump-

tion can be relaxed to allow the use of arbitrary observation

models as explained in [10].

Active acquisition. Previous research on optimizing

k-space measurement trajectories from the MRI commu-

nity include CS-based techniques [37, 33, 47, 9], SVD

basis techniques [51, 30, 52], and region-of-interest tech-

niques [44]. It is important to note that all these approaches

work with fixed trajectories at inference time. By contrast,

[23] proposed an on-the-fly eigenvalue based approach that

adapts to encoding physics specific to the object. However,

contrary to our approach, it requires solving an optimization

problem at inference time. Moreover, since we train all the

components of our pipeline jointly, our adaptive acquisition

incorporates information on the image physics, the object

being imaged, and the reconstruction process to select the

next measurement.

3. Background and notation

Let y ∈ CN � N be a complex-valued matrix represent-

ing the fully sampled k-space. Neglecting effects such as

magnetic field inhomogeneity and spin relaxation, the im-

age can be estimated from the k-space data by applying a

2D Inverse Fast Fourier Transform (IFFT) x = F � 1(y ),
where x ∈ CN � N is the image and F � 1 is the IFFT op-

eration. We denote the binary sampling mask defining the

k-space Cartesian acquisition trajectory as S [49]. The ac-

quired measurements are referred to as observed whereas

the masked measurements are referred to as unobserved.

We define the undersampled, partially observed k-space as

ŷ = S⊙ y , where ⊙ denotes element-wise multiplication.

Thus, the basic zero-filled image reconstruction is obtained

as x̂ = F � 1(ŷ ). Analogously, we can go from the recon-

structed image to the k-space measurements ŷ = F(x̂ ),
where F is the Fast Fourier Transform (FFT).

It is worth noting that MRI images x = F � 1(y ) are

complex-valued matrices. However, most Picture Archiv-

ing and Communication Systems in hospitals do not store
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Figure 3: The training pipeline of the proposed method.

raw k-space measurements, but instead store the magnitude

image abs(x) ∈ R in the DICOM format. Therefore, we

simulate k-space measurements by applying the FFT to the

magnitude image y = F(abs(x)). We do not differentiate

the notation of an image in R or C hereinafter.

We make use of one of the numerous properties of FFT3,

namely Parseval’s Theorem [34]. It implies that the l2-

distance between two images x (1) ; x (2) is equivalent to the

l2-distance between their representation in the frequency

domain, i.e. ||F(x (1) )−F(x (2) )||22 = ||x (1) − x (2) ||22.

4. Method

Figure 3 illustrates our approach. The framework is com-

posed of (1) a reconstruction network and (2) an evaluator.

The goal of the reconstruction network is to produce high fi-

delity reconstructions from undersampled k-space measure-

ments. The network takes a basic zero-filled image recon-

struction as input and outputs an improved image recon-

struction together with its uncertainty estimates. The goal

of the evaluator network is to rate each corresponding k-

space row of a reconstructed image, where the score should

indicate how much it resembles true measurements. The

rating score guides the measurement selection criterion: the

lowest rated measurement should be acquired first.

4.1. Reconstruction network

Our reconstruction network has a cascaded backbone

composed of residual networks (ResNets) [12], more pre-

cisely fully convolutional ResNets (FC-ResNets) [7, 2] fol-

lowed by data consistency (DC) layers [36].

The DC layer [36]4 builds direct shortcut connections

from the input of the network x̂ to its output f (x̂ ) to enforce

the preservation of the observed information while estimat-

ing the reconstruction. The DC layer operates in k-space,

and the reconstruction can be formally defined as:

3See Chapter 3.4 of [39] for the full list.
4We use the noiseless version of DC, which makes F(x̂ ) fully pre-

served in the output, with a hard copy. See [36] for more details.
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