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Abstract

Light field cameras are considered to have many po-

tential applications since angular and spatial information

is captured simultaneously. However, the limited spatial

resolution has brought lots of difficulties in developing re-

lated applications and becomes the main bottleneck of light

field cameras. In this paper, a learning-based method us-

ing residual convolutional networks is proposed to recon-

struct light fields with higher spatial resolution. The view

images in one light field are first grouped into different im-

age stacks with consistent sub-pixel offsets and fed into dif-

ferent network branches to implicitly learn inherent corre-

sponding relations. The residual information in different

spatial directions is then calculated from each branch and

further integrated to supplement high-frequency details for

the view image. Finally, a flexible solution is proposed to

super-resolve entire light field images with various angu-

lar resolutions. Experimental results on synthetic and real-

world datasets demonstrate that the proposed method out-

performs other state-of-the-art methods by a large margin

in both visual and numerical evaluations. Furthermore, the

proposed method shows good performances in preserving

the inherent epipolar property in light field images.

1. Introduction

With recent advances in camera devices, light field (LF)

imaging technology is commonly used in the market for 3D

reconstruction and virtual reality applications [12, 28, 14].

For large-scale applications, the camera array is often used

to capture high-resolution LF images with a large base-

line. By inserting the micro-lens array between the main

lens and the imaging plane [1], the handheld plenoptic cam-

era [12, 14] is developed and is able to capture LF images

with a small baseline by one shot, which has more broad

applications such as image refocusing [13]. However, the

View-GT: PSNR/SSIM MMSR[29]: 31.41/0.9370 GBSQ[16]: 31.51/0.9228

LFNet[21]: 29.15/0.9373 EDSR[10]: 31.03/0.9263 Ours: 34.16/0.9728

EPI-GT: PSNR/SSIM Bicubic: 27.98/0.8516 GBSQ[16]: 31.41/0.9047

LFNet[21]: 28.84/0.8727 EDSR[10]: 31.04/0.9101 Ours: 34.04/0.9661

Figure 1. The spatially super-resolution results of image

Horses [25] with ×2 magnification factor. Our results of the cen-

tral view images and epipolar plane images (EPIs) outperform the

other state-of-the-art methods with significant higher PSNR and

SSIM. The background letters along the occlusion boundary are

clearly recovered with sharp edges both in view and epipolar plane

images using the proposed method, while the others exhibit strong

artifacts or ambiguous textures.

development of plenoptic cameras is severely limited due

to their lower spatial resolutions compared with traditional

cameras, which has brought a lot of difficulties in many

practical vision applications.

Since light fields record scenes with multiple view im-

ages, disparity information in these view images provides

multiple sampling with sub-pixel offsets to enhance the spa-

tial resolution. Traditional methods register the sub-pixel

information by explicitly warping other view images based

on prior disparity information [16, 23, 29]. However, exist-

ing disparity estimation methods for LF images suffer from

occlusions, noises and textureless regions [7], which lead to

significant artifacts in reconstructed LF images. Recently,

deep-learning-based methods have been proposed for light

field super-resolution (LFSR), in which disparity informa-

tion is implicitly learned during training processes [21, 27].

However, these methods are quite limited in exploring ac-
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curate sub-pixel information and preserving the inherent

epipolar property in LF images.

Taking advantage of the residual structure in super-

resolution networks [8, 10, 30], we design a novel resid-

ual network (resLF) to enhance the spatial resolution of LF

images. In the proposed method, the view images in one

LF are first separated into four groups according to their

angular directions and fed into different network branches

to learn high-frequency details in the specific spatial direc-

tions. Different from other LFSR methods, inherent cor-

responding relations in view images, which reflect dispar-

ity information, are implicitly explored and sub-pixel map-

pings from various directions are learned in the proposed

method. Residual information from different spatial direc-

tions is then combined to generate complete residual details

for final super-resolved central view images. The LF is di-

vided into different parts and the entire view images are fi-

nally super-resolved based on a flexible solution.

The experiments are conducted on different LF images

and various challenging scenes, which include noises, oc-

clusions and non-Lambertian surfaces. The resLF networks

can be used for both synthetical and real-world LF im-

ages with different angular resolutions. Experimental re-

sults show that the proposed framework significantly out-

performs the other state-of-the-art methods in terms of nu-

merical and visual evaluations, where the PSNR results

are improved by 1.5 dB on average in ×2 and ×4 super-

resolution tasks. Moreover, the comparison of epipolar

plane images (EPIs) shows that the proposed method is able

to preserve the corresponding relations in super-resolved

view images.

2. Related Work

As LFs capture scenes with multiple view images from

different angles, texture information lost in spatial domain

actually remains in angular domain according to scene

structures. Most LFSR methods can be divided into two cat-

egories, disparity-based and learning-based methods, based

on learning structure information directly or implicitly.

Given estimated structure information as priors, many

researches focus on how to warp multiple view images ac-

curately and find sub-pixel information to improve the spa-

tial resolution. Based on EPIs, Wanner et al. [23, 24] ex-

tracted depth information using structure tensor and inter-

polated lines in EPIs accordingly to super-resolve view im-

ages. By modeling LF patches based on a Gaussian Mix-

ture Model, Mitra et al. [11] proposed to reconstruct patches

with higher resolutions based on estimated disparities. The

other methods [2, 3] focused on recovering view images

by explicitly warping pixels from other view images. Re-

cently, Zhang et al. [29] proposed to estimate matching re-

lationships between micro-lens images and view images,

and used micro-lens images with richer textures to recover

sub-pixel information

pixel information

sub-pixel information

pixel information

Figure 2. Sub-pixel information from surrounding view images in

LF. Different images contain sub-pixel shifts in different directions

according to the disparity information, e.g., the horizontal sub-

pixel position (labeled as yellow) can be found in the horizontal

adjacent images. In our network, we propose to learn the mapping

from sub-pixel shifts in surrounding image to a high-resolution

central view image.

related view images. Based on a graph-based regularizer,

Rossi et al. [16] designed a global optimization problem

to augment the resolution of all LF view images together.

The disparity of each view is roughly estimated to calcu-

late the warping matrix and the geometric structure between

each view is considered to optimize the super-resolution re-

sults. However, although lots of disparity estimation meth-

ods have been proposed [7], reconstructed view images are

still easily affected by estimation errors, which cause sig-

nificant artifacts along occlusion boundaries.

Recently, deep Convolutional Neural Networks (CNN)

have been developed for single image super-resolution

(SISR) [4] and achieved remarkable performances by in-

troducing residual learning, recursive layers or deeper CNN

models [8, 20, 30]. For LF images, several frameworks are

designed to implicitly learn geometric structures and aug-

ment the spatial resolution. Cho et al. [3] proposed to train

a dictionary for high and low quality LF image pairs and

improved the image quality based on sparse coding. Yoon

et al. [26, 27] developed spatial and angular networks to up-

sample angular and spatial resolution simultaneously. The

different view images are augmented separately and then

combined into different types of image pairs to create novel

views. Wang et al. [21] built a bidirectional recurrent CNN

to super-resolve horizontal and vertical image stacks sepa-

rately and then combined them using stacked generalization

technique to obtain complete view images. In their method,

the spatial relations are iteratively investigated between two

adjacent view images. However, as most learning-based

frameworks chose to super-resolve each view image pair or

stack separately, corresponding relations in different views

are not fully considered so that accurate high-frequency de-

tails cannot be well recovered.

Since view images in LF capture scenes from various di-

rections, high-frequency details in spatial domain are actu-
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Figure 3. The overall structure of the proposed resLF network. The different image stacks I
lr
θ are fed into different network branches

including feature extraction layer (HFEθ
) and S residual blocks (HRBθ,s). The output of each branch is then concatenated for D global

residual blocks (HGRBθ,d). The central image I
lr
c after feature extraction (HFEc

) is then added to the global residual output. Finally, the

up-sampling network (HUP ) is introduced to obtain final super-resolution results.

ally kept in view images from different angular directions,

as shown in Fig 2. This special architecture provides the

possibilities of finding sub-pixel information in spatial do-

main from angular domain. Different from the above meth-

ods, we propose a specifically designed super-resolution

framework to find accurate sub-pixel information from dif-

ferent angular directions and preserve the epipolar property

at the same time.

3. Methodology

The objective of the proposed resLF network is to re-

construct a super-resolution (SR) LF image Lsr(x, y, u, v)
from a low-resolution (LR) image Llr(x, y, u, v), where

(x, y) is in the spatial domain and (u, v) is in the angular do-

main [9]. Assuming that the resolution of Llr is described

with (X,Y, U, V ), Lsr with higher spatial resolution can

be denoted with (rX, rY, U, V ), where r represents the up-

sampling factor in spatial resolution and U = V in most LF

images. We convert images to YCbCr color space and only

deal with Y channel images.

3.1. Framework Overview

The view images in one LF, i.e. sub-aperture images,

capture scenes in different directions, which can be ex-

tracted by fixing (u, v) and changing (x, y) coordinates.

Different from traditional multi-view images, viewpoints in

LFs have various angles. As shown in Fig.2, the surround-

ing view image in one angular direction contains sub-pixel

offsets in the specific spatial direction. The shifted pixels in

different directions can be combined according to disparity

information to yield the high-resolution view image. There-

fore, we propose to explore the detail information from sur-

rounding view images which have horizontal, vertical or di-

agonal sub-pixel shifts.

If angular direction tan θ = v/u, we extract image

stacks Iθ=0, Iθ=90, Iθ=45, Iθ=135 around one view image,

whose viewpoints change along horizontal, vertical, left and

right diagonal directions. Inspired by the great performance

of the recently residual learning in SISR [30], we specifi-

cally design a residual network structure for LF images. As

shown in Fig. 3, the resLF network contains four branches

and a global part with several residual blocks. Compared

with other view images, the central view image in one LF

has more available sub-pixel information from the related

image stacks. Therefore, we first design the network to im-

prove the spatial resolution of the central view image (see

Sec. 3.2), where the number of available view images in

each image stack is the same. The network is then trained

using LF images with different angular resolutions and dif-

ferent image stack inputs. Finally, the entire LF images are

recovered according to a flexible solution (see Sec. 3.3).

3.2. Network Design

Suppose that the training data {Llr, Ihrc } is given. Ihrc

is the ground truth, which represents the central view image

with high resolution. The four image stacks from different

directions {I lr0 , I lr45, I
lr
90, I

lr
135} around the central view im-

age I lrc can be calculated. The objective of our network is to

learn a model HU×V that can predict a high-resolution cen-
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Figure 4. The flexible solution for super-resolving complete LF images. As shown in (a–d), the LF is divided into different parts and each

central view image in the LF part is super-resolved using corresponding networks. (e) shows all the views in one LF where each color

represents the corresponding network. In (f), the color of each grid represents the PSNR of the reconstructed view image in Mona.

tral view image Isrc = HU×V (I
lr
0 , I lr45, I

lr
90, I

lr
135, I

lr
c ) from

given input with U × V angular resolution.

Considering the narrow baseline in adjacent view im-

ages, the image stack from one direction is directly con-

catenated as the input of each branch. Similar with [18], the

network is constructed with four branches and each image

stack is encoded individually to learn the residual part in the

specific direction. The disparity information is calculated

implicitly using convolutional networks to find out accurate

sub-pixel shifts between each view image. In each branch,

the first convolutional layer HFEθ
(·) extracts features from

each image stack:

FFEθ
= HFEθ

(I lrθ ), (1)

where I lrθ denotes the image stack in each direction θ and

FFEθ
is given as the input of the following residual blocks.

We also define a similar convolution operation HFEc
(·) for

the central view image I lrc to extract corresponding features

for residual learning:

FFEc
= HFEc

(I lr
c
). (2)

Suppose that we have S residual blocks (RB) in each

branch, the output FRBθ,s of the s-th RB can be calculated

as:

FRBθ,s = HRBθ,s(FRBθ,s−1), (3)

where HRBθ,s(·) denotes the s-th RB. The structure of RB

is defined similar with [10], which contains a convolution

layer, rectified linear units (ReLU) and a convolution layer

in order. In each block, the input is directly added to the

output as a residual part.

After extracting features from RBs with different direc-

tions, we integrate all the features in a global way and fur-

ther feed them into more residual learning blocks:

FGRB,d = HGRB,d(FGRB,d−1)

= HGRB,d(· · ·HGRB,1(FGRB,0) · · · ),

where FGRB,0 = [FRB0,S , FRB90,S , FRB45,S , FRB135,S ]
refers to the concatenation of features from S residual

blocks in each branch. Since the image stack is grouped

according to different angular directions, the output of each

group is corresponding to sub-pixels in the specific spatial

direction. We define D global residual block HGRB,d(·)
to further exploit the sub-pixel residual information from

different directions. HGRB,d(·) has the similar structure

with residual block HRB,s(·) in each branch but has 4 times

larger number of filters to extract more features.

The global features are then fed into a convolution layer

HGF (·) and combined with the features FFEc
from the cen-

tral view image. After extracting local and global features

for the central image in the low-resolution space, we intro-

duce an up-sampling net HUP (·) to obtain the final image

in the high-resolution space. Inspired by the work in [17],

one convolution layer and one shuffle layer followed by one

convolutional layer is used to construct the up-sampling net.

The final super-resolved view image can be denoted as:

Isrc = HUP (HGF (FGRB,D) + FFEc
), (4)

where FGRB,D refers to the output of D global residual

blocks. The super-resolved view image combines the resid-

ual information learning from surrounding view images

with different directions.

3.3. Light Field SuperResolution

As different view images of one LF capture scenes in

their specific directions and have their specific features, it

is difficult to super-resolve all view images in one network

simultaneously. State-of-the-art learning-based LFSR al-

gorithms built complex networks to reconstruct complete

LF images by either applying the super-resolution process

for each image individually [27] or calculating view images

based on already super-resolved view images [21]. In this

way, the view images in one LF are super-resolved with un-

balanced information and related results show big differ-

ences. At the same time, corresponding relations in view

images are also hard to preserve. Moreover, for LF images

with different angular resolutions, these networks should be

trained from the beginning, whose performances decrease

sharply for LFs with small angular resolution. Different

from these complicated networks, we choose to deal with

each view image individually by combining surrounding
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Table 1. Quantitative comparisons using different network structures for ×2 super-resolution results.

Network
Incomplete Images Stacks Different Angular Resolutions Different Image Stacks

H3×3(3×2) H3×3(2×3) H3×3(2×2) H3×3 H5×5 H7×7 H9×9 H1×9,h H9×1,v H9×9,c

Avg. PSNR 37.19 37.09 37.02 37.24 37.60 37.65 37.77 36.27 36.32 37.35

Avg. SSIM 0.9756 0.9748 0.9742 0.9756 0.9777 0.9782 0.9788 0.9687 0.9701 0.9768

view images to keep geometric structures, which also pro-

vides a more flexible solution to obtain entire LF images

with various angular resolutions.

In order to super-resolve complete LF images, we train

different resLF networks with various angular resolutions.

The LF image is divided into different parts, where the other

view images are treated as the central view image in the

corresponding LF part. As in Fig. 4, we show the super-

resolution process for the LF image with 7× 7 angular res-

olution. For the central view image, each stack has 7 im-

ages and network H7×7, is used to generate the result. The

adjacent view images are recovered using H5×5 and H3×3

network, respectively. As for border view images, we lack

the image information from one or more directions in the

image stacks. One solution is to change the network struc-

ture with different branches for border views using avail-

able surrounding views. In the proposed framework, we

choose another solution to pad lacking views with 0 in each

image stack and use the same network structure. Specif-

ically, we train network H3×3(3×2) for left and right bor-

der images, H3×3(2×3) for up and down border images and

H3×3(2×2) for four corner images, separately. The resLF

networks with various angular resolutions are then used for

super-resolving all view images in LFs.

We evaluate the different resLF networks on a part of our

test dataset and the results are shown in Table 1. The net-

work with more view images in each image stack achieves

better performances in general. For LF images with 3 × 3
angular resolution, even for border images with incomplete

image stacks, the proposed network also produces compara-

ble super-resolution results after training accordingly. The

numerical results for the example image Mona are shown in

Fig. 4. For this image, the center view image achieves the

highest accuracy and the border view images also obtain

similar performances.

3.4. Implementation Detail

Due to the small baseline of LF images, we set 3 × 3 as

the kernel size and pad zero in all convolutional layers. The

convolutional layers in the individual branch have 32 filters

and the layers in global residual blocks after concatenation

have 32 × 4 filters. The global feature extraction layer has

32 filters to combine the residual details with the original

image. The final convolutional layer has 1 channel to out-

put the desired SR image. We set S = 4 in each branch and

Ground Truth (a) 26.66, 30.72 (b) 29.18, 34.90

(c) 30.23, 34.67 (d) 32.26, 36.56 (e) 32.81, 37.87

Figure 5. Super-resolution results using different network struc-

tures, where the PSNR value of each image is shown accord-

ingly. (a) Bicubic Interpolation (b)H9×1,v (c)H1×9,h(d) H9×9,c

(e) H9×9. The network combined with image stacks from more

directions obtains sharper edges and textures than the others.

D = 4 in the global part after several experimental tests.

The L1 loss function is used as it provides better perfor-

mances than L2 loss function in the proposed network.

In each training batch, we randomly extract 64 LF

patches with the spatial size of 35 × 35 as inputs. We ran-

domly augment the dataset by flipping the images horizon-

tally or vertically, or rotating 180 degree. As pixel shifts

are related to disparity information, the image order in each

stack should be changed accordingly to preserve the epipo-

lar property in LF images. We train our model with Adam

optimizer and the weights in each layer are initialized us-

ing Xaviers algorithm [5]. The learning rate is initialized

to 10−3 for all weights and decreases by a factor of 0.1 for

every 100 epoch. We implement the resLF network with

Torch7 framework and the training process roughly takes

1 day with a Titan GPU. Using the proposed model, each

view image can be spatially ×2 super-resolved within 7 ms.

4. Experiment

The synthetic images from HCI1 [25] and HCI2 [6],

and real-world images [19, 15, 21] from Lytro Illum cam-

eras [12] are used in the experiment. The training, val-

idation and test datasets are chosen from the above im-
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Table 2. Quantitative evaluations (PSNR / SSIM) of ×2 super-resolution results on synthetic light field image Buddha and Mona .

Methods

Buddha Mona

Min Avg Max Min Avg Max

Mitra [11] 28.83 / 0.8665 29.91 / 0.8994 31.17 / 0.9343 28.54 / 0.8541 29.28 / 0.8911 30.07 / 0.9319

Wanner [23] 24.43 / 0.7662 29.69 / 0.8691 36.97 / 0.9470 25.40 / 0.8542 30.76 / 0.9324 37.60 / 0.9862

Yoon [27] 36.25 / 0.9579 36.95 / 0.9623 37.35 / 0.9657 37.03 / 0.9833 37.99 / 0.9863 38.53 / 0.9878

MMSR [29] - / - 39.83 / 0.9745 - / - - / - 34.44 / 0.9702 - / -

GBSQ [16] 39.29 / 0.9678 40.00 / 0.9730 40.37 / 0.9754 39.88 / 0.9795 40.41 / 0.9812 40.73 / 0.9821

LFNet [21] 38.09 / 0.9709 38.42 / 0.9731 38.77 / 0.9760 38.38 / 0.9884 38.73 / 0.9891 38.80 / 0.9895

EDSR [10] 39.72 / 0.9680 39.93 / 0.9703 40.43 / 0.9726 42.21 / 0.9800 42.35 / 0.9803 42.46 / 0.9806

Proposed 41.09 / 0.9881 41.62 / 0.9897 42.24 / 0.9910 42.88 / 0.9929 43.13 / 0.9934 43.56 / 0.9941

ages, which include 250, 50 and 50 LF images, respec-

tively. All the dataset are preprocessed with 9 × 9 angu-

lar resolution and are cropped with smaller angular resolu-

tions to train different networks. The images are spatially

×2 and ×4 downsampled using bicubic interpolation and

super-resolved using the proposed method. We train the

synthetic and real-world images all together to obtain ro-

bust super-resolution results. The super-resolution results

are evaluated with PSNR and SSIM [22]. The results are

compared with state-of-the-art LFSR algorithms, including

disparity-based method [23, 11, 29, 16] and learning-based

methods [27, 21]. The state-of-the-art SISR method [10] is

also used for further comparisons.

4.1. Ablation Investigation

In this subsection, we investigate the performances of

networks with different branches. We design network

H1×9,h and H9×1,v using only horizontal or vertical image

stacks as input, and H9×9,c using both horizontal and verti-

cal image stacks. The number of parameters and the archi-

tectures of the networks are kept the same with the original

network for a fair comparison.

The quantitive comparisons on the part of our test dataset

are illustrated in Table 1. The network with image stacks

from more angular directions achieves better performances

than single angular direction. Moreover, compared with

H9×9,c, H5×5 network with input images from more direc-

tions obtains better results, where the number of input view

images in each network is almost the same. We also show

some examples in Fig. 5, which contain complex textures

along with a lot of occlusions. It is obvious that the results

from H9×9 network achieve better visual effects than the

others.

4.2. EPIs Comparison

As we deal with each view using different networks, it

is important to verify whether the method is able to keep

the inherent geometric structure. We integrate the super-

resolved views into EPIs and compare the epipolar property

in Fig. 1, Fig. 6 and Table 3, where the SSIM values of

EPIs are provided. As shown, EPIs from GBSQ [16] have

blurry results. Although the image stacks are simultane-

ously super-resolved in LFNet [21], the oblique lines are

still distorted since the epipolar constraint in each image

stack is not fully considered in the super-resolution process.

As EDSR [10] only focuses on one single view image, high-

frequency textures are super-resolved individually in each

view image so that the corresponding cues in EPIs are dis-

ordered. By contrast, our method uses surrounding view

images to take the epipolar constraint into consideration for

each view image so that the geometric structure is well pre-

served in final reconstructed LF images.

4.3. Sythetic Images

We compare the proposed method with state-of-the-art

methods on synthetic LF images (HCI1 [25] and HCI2 [6])

in this subsection. The LF images are cropped with

5 × 5 angular resolution and super-resolved with ×2
spatial resolution. As explained in Sec. 3.3, the net-

works H5×5, H3×3, H3×3(3×2), H3×3(2×3) and H3×3(2×2)

are used to super-resolve different view images in one LF.

The detailed comparisons for image Buddha and Mona are

listed in Table 2, where the minimum, average and maxi-

mum PSNR and SSIM is shown. Results from disparity-

based methods [23, 11, 29] vary greatly in different view

images due to the uncertain disparity information. As most

of the textures in Mona are regular, the EDSR [10] achieves

the second best scores compared with the other LF specific

methods. Our method outperforms the other methods with

more than 1.62 dB (PSNR) in Buddha and 0.78 dB (PSNR)

in Mona. The differences in our super-resolved view images

are small for one LF and the minimum PSNR and SSIM val-

ues of our results are still higher than the others.

We provide the average results on the synthetic datasets

in Table 3. The proposed resLF exceeds second best re-

sults by 1.62 dB in PSNR and 0.02 in SSIM on average.

The qualitative comparisons are shown in Fig. 1 and Fig. 6.

MMSR [29] obtains clear textures in flat regions but fails

in occlusion edges due to the wrong estimated disparity

information. EDSR [10] cannot predict complex textures
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Ground Truth MMSR [29] / Bicubic GBSQ [16] LFNet [21] EDSR [10] Proposed

PSNR / SSIM 39.83 / 0.9745 40.37/ 0.9754 38.77 / 0.9760 40.43 / 0.9726 42.24 / 0.9910

EPI-PSNR / EPI-SSIM 37.53 / 0.9530 40.26 / 0.9728 37.82 / 0.9576 40.08 / 0.9697 41.64 / 0.9899

PSNR / SSIM 31.43 / 0.9285 33.22 / 0.9392 32.38 / 0.9403 31.80 / 0.9378 34.35 / 0.9764

EPI-PSNR / EPI-SSIM 29.95 / 0.8886 32.30 / 0.9203 31.00 / 0.9075 32.21 / 0.9254 34.50 / 0.9727

PSNR / SSIM 33.13 / 0.9447 35.00 / 0.9544 32.05 / 0.9293 36.58 / 0.9668 38.99 / 0.9865

EPI-PSNR / EPI-SSIM 31.81 / 0.9170 34.47 / 0.9412 32.51 / 0.9200 36.44 / 0.9597 37.75 / 0.9820

Figure 6. The detailed ×2 super-resolution results for synthetic image Buddha [25] and real-world image occlusion 4 [19],

ISO Chart 12 [15]. The super-resolved central view images and EPIs are shown, where the corresponding PSNR and SSIM values are

illustrated below. As MMSR [29] is only effective for central view in LF, we show the EPIs using Bicubic methods. Our method is able to

recover more accurate details in view images and preserve the epipolar features in EPIs than the others.

Table 3. Avg. PSNR/SSIM of the ×2 super-resolved view images in each LF dataset and Avg. SSIM of the related EPIs in all datasets.

Methods HCI1 [25] HCI2 [6] Lytro [15] Bikes [19] Occlusions [19] Reflective [19] Overall EPIs

Bicubic 35.23 / 0.9303 31.67 / 0.8816 31.23 / 0.8856 29.76 / 0.9014 33.60 / 0.9273 36.94 / 0.9495 0.9210

MMSR [29] 35.44 / 0.9621 31.46 / 0.9189 29.83 / 0.9284 29.83 / 0.9284 33.38 / 0.9440 36.13 / 0.9571 -

GBSQ [16] 38.04 / 0.9635 34.61 / 0.9423 32.46 / 0.9295 31.69 / 0.9445 36.23 / 0.9596 38.29 / 0.9649 0.9411

LFNet [21] 36.46 / 0.9645 33.63 / 0.9317 32.70 / 0.9348 31.92 / 0.9499 35.92 / 0.9630 38.80 / 0.9706 0.9367

EDSR [10] 39.24 / 0.9657 35.07 / 0.9489 33.94 / 0.9473 33.86 / 0.9638 37.61 / 0.9692 40.64 / 0.9758 0.9560

Proposed 41.09 / 0.9882 36.45 / 0.9786 35.48 / 0.9727 35.21 / 0.9806 39.71 / 0.9876 42.32 / 0.9904 0.9778

based on one single view image and produces blurry de-

tails. LFNet [21] is trained with horizontal and vertical im-

age stacks and results are combined in the stacked gener-

alization. As they analyzed in [21], their final results after

the combination only achieve tiny improvements in PSNR,

which means sub-pixel information from different direc-

tions is not well integrated. Therefore, the related results

are recovered with artifacts. In our method, the proposed

network combines surrounding view images from different

directions in a global way so that it is able to deal with com-

plex textures. The results show significantly better image

qualities where the textures are recovered accurately in both

flat and occlusion regions.

We also train a set of 4× networks for a harder super-

resolution task. The quantitative results are illustrated in

Table 4 and the qualitative results are shown in Fig. 7. Our

method also outperforms the others with more than 1 dB in

most of the evaluated images. The results from EDSR [10]

are over-smoothed with ambiguous details and LFNet [21]

produces blurry and noisy results. By contrast, our results

preserve the boundaries and textures well and show superior

performances in visual effects.

4.4. RealWorld Images

As the proposed networks are designed and trained for

all kinds of LF images, the models can be directly used

for Lytro images. The ×2 results are shown in Table 3

and Fig. 6, where different categories in [19] are evaluated

separately. The ×4 results are compared in Fig. 7 and Ta-

ble 4. As these LF images are captured using plenoptic cam-

eras, original view images contain noticeable artifacts and

noises, which make it more difficult to estimate disparity in-
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Proposed Ground Truth Bicubic LFNet [21] EDSR [10] Proposed

Bicycle ×4 PSNR / SSIM 25.08 / 0.6567 26.06 / 0.7492 27.36 / 0.7953 28.02 / 0.8918

Flower ×4 PSNR / SSIM 29.38 / 0.8334 31.39 / 0.8720 32.56 / 0.9158 34.08 / 0.9675

Stone ×4 PSNR / SSIM 27.61 / 0.6713 28.54 / 0.7193 28.92 / 0.7940 30.26 / 0.9016

Figure 7. Image comparisons of ×4 super-resolution results, where the super-resolved central view image is shown. The average PSNR

and SSIM values are illustrated below. Our results show fewer artifacts and superior image quality compared with other methods.

Table 4. Quantitative evaluations (Avg. PSNR / Avg. SSIM) of ×4 super-resolution results on different light field datasets.

Methods Budda [25] Sideboard [6] ISO Chart 12 [15] Reeds [15] Stone [21] Flower [21]

Bicubic 32.30 / 0.8470 23.41 / 0.5886 26.60 / 0.7755 37.09 / 0.8853 27.61 / 0.6713 29.38 / 0.8334

LFNet [21] 33.51 / 0.8827 24.67 / 0.7273 27.59 / 0.8776 37.71 / 0.9624 28.54 / 0.7193 31.39 / 0.8720

EDSR [10] 34.98 / 0.9059 26.10 / 0.7968 30.96 / 0.9148 38.02 / 0.9071 28.92 / 0.7940 32.56 / 0.9158

Proposed 36.06 / 0.9623 27.35 / 0.8840 32.57 / 0.9551 39.25 / 0.9731 30.26 / 0.9016 34.07 / 0.9675

formation and reconstruct LF images, especially for the 4×
task. The LFNet in [21], which trains real-world images

especially, produces obvious artifacts in the super-resolved

images. The results from EDSR [10] are ambiguous and

over-smoothed since the information from other view im-

ages is not considered. By contrast, our results achieve sig-

nificantly higher PSNR and SSIM in different kinds of real-

world images for both tasks, which shows that the proposed

network can not only handle the noisy input but also recover

more high-frequency details.

5. Conclusions

In this paper, a residual convolutional network has been

proposed to augment the spatial resolution of light field im-

ages. The inherent structure information in light field im-

ages is explored in different network branches from differ-

ent angular directions and used to infer sub-pixel informa-

tion in high-resolution view images through the network.

The entire light field images with different angular resolu-

tions can be super-resolved based on different trained mod-

els. Experimental results show that our method outperforms

the state-of-the-art methods by a large margin in PSNR and

SSIM and exhibits significantly better visual effects. The

proposed network can preserve the epipolar property of the

images well and can be used for different kinds of light field

images with different angular resolutions.
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