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Abstract

In crowd scenarios, reliable trajectory prediction of

pedestrians requires insightful understanding of their social

behaviors. These behaviors have been well investigated by

plenty of studies, while it is hard to be fully expressed by

hand-craft rules. Recent studies based on LSTM networks

have shown great ability to learn social behaviors. How-

ever, many of these methods rely on previous neighboring

hidden states but ignore the important current intention of

the neighbors. In order to address this issue, we propose a

data-driven state refinement module for LSTM network (SR-

LSTM), which activates the utilization of the current inten-

tion of neighbors, and jointly and iteratively refines the cur-

rent states of all participants in the crowd through a mes-

sage passing mechanism. To effectively extract the social ef-

fect of neighbors, we further introduce a social-aware infor-

mation selection mechanism consisting of an element-wise

motion gate and a pedestrian-wise attention to select use-

ful message from neighboring pedestrians. Experimental

results on two public datasets, i.e. ETH and UCY, demon-

strate the effectiveness of our proposed SR-LSTM and we

achieve state-of-the-art results.

1. Introduction

Pedestrian trajectory prediction is strongly required by

various applications, e.g., autonomous driving and robot

navigation. The trajectory of pedestrian can be influenced

by multiple factors such as scene topologies, pedestrian be-

liefs, and the most complex one, human-human interaction-

s. The intricate and subtle interactions are often taken place

among the pedestrians. For example, strangers avoid col-

lisions, but fellows walk in group. Broken groups can re-
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Figure 1. When predicting for the lady at time t, considering the

trajectory of the man on the right up to time t (a), or the one up

to time t − 1 (b), can cause great deviation in predicting results

(dashed lines).

group to keep the unity [10, 30]. When individuals meet

groups, singles are statistically walking faster and are more

likely to adjust their routes [7, 11]. Stationary groups act as

obstacles [50, 51].

Although various social behaviors have been investigat-

ed, it is challenging to take a comprehensive consideration

of them. Some recent data-driven methods [1,12,13,35,38,

39, 41, 46] try to leverage from Long-Short Term Memory

networks (LSTM) [16], to learn social behaviors from large

scale data. In this paper, we point out two factors which are

important but neglected in different levels:

1). Current states of neighbors are important for timely

interaction inference.

Many of the recent RNN-based approaches make use of

the previous hidden states of neighbors [1, 12, 13, 35, 38,

39]. However, the previous states fail to reveal the newest

status of neighbors especially when they have just change

their intentions in short time period. This effect of lagging

depends on the size of the time step. Within a common time

step in recent works [1, 12, 35], e.g., 0.4s, human can take

one stride, in which the intentions of them could change

unexpectedly. Fig. 1 shows an example. The man on the

right in Fig. 1(a) changes his intention to turn left at time

t. Based on this observation, the predictions of the lady can

be straight on or turning slightly. But if the algorithm only
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Figure 2. (a) Activation trajectory patterns of hidden neurons in L-

STM, which start from the origin. Each trajectory pattern marked

by certain color contains trajectories from database which has top-

20 responses for the hidden neuron. (b) A sample of three pedes-

trian interaction. How will the dyad pay attention to the other

pedestrian on the left?

considers the neighbors’ trajectory till t− 1 (Fig. 1(b)), the

man tends to go straight and forces the lady to largely turn

and avoid collision, which results in large prediction error.

Therefore, we are motivated to take advantage of the current

neighboring states into consideration.

2). Useful information should be adaptively selected

from neighbors, based on their motions and locations.

Neural networks, e.g., LSTM, can be used for extracting

the features representing the trajectory. To better explain

these features, Fig. 2(a) visualizes the trajectory pattern

captured by each feature in the LSTM. It can be seen that

these neurons are responsible for various motion patterns

covering the walking direction and speed. Many approach-

es utilize the features of neighboring pedestrians to estimate

the trajectory of a pedestrian. However, the features (motion

patterns) of neighboring pedestrians are not equally impor-

tant for predicting the trajectory of a pedestrian. As shown

in Fig. 2(b), the two pedestrians on the right mostly pay

more attention to the situation of collision, which can be

represented by the trajectory features of the other pedestri-

an on the left walking towards them. This potential atten-

tion depends on the pairwise motion and relative location

of the pedestrian to be predicted and his neighbor. Notably,

each neighbor should be particularly treated because dif-

ferent kinds of attention should be assigned to pedestrians

according to different interaction conditions. Based on this

motivation, we introduce a motion gate to select the most

useful features from each neighbor, based on the pairwise

motion character and relative location.

In this paper, we propose a states refinement module for

LSTM (SR-LSTM), which aligns all pedestrians together

and adaptively refine the state of each participant through a

message passing framework. Further more, the refinemen-

t process can be performed for multiple times, indicating

deeper interactions among the crowds. SR-LSTM focuses

on the adjustment for current LSTM states, which is quite

different from existing RNN-based approaches. To adap-

tively extract social effects from neighbors for feature re-

finement, we further introduce a social-aware information

selection mechanism, consisting of an element-wise motion

gate and a pedestrian-wise attention layer.

Contributions of this paper are summarized as follows:

• A novel interactive recurrent structure, SR-LSTM, is

proposed as a new pipeline for jointly predicting the

future trajectories of pedestrians in the crowd.

• SR-LSTM aligns all pedestrians in the scene to adap-

tively refine the current states of each other. The re-

finement can be performed for multiple times to model

the deep interactions between humans.

• Motion gate is introduced to effectively focus on the

most useful neighborhood features.

2. Related Work

Research on human-human interaction. Early work

from Helbing and Molnar [15] models the interaction be-

tween humans as “social force”, which is proved to be ef-

fective and applied to crowd analysis [14, 31] and robotic-

s [9, 34]. Succeeding methods take more potential factors

into account, such as pedestrian attributes [50, 54], walk-

ing group [32, 47], stationary group [50, 51]. Some studies

based on game theory model the interaction among pedes-

trian flows [18, 52] and evacuation process [3, 17, 55], Ma

et al. [29] predict pedestrians from a static frame using fic-

titious play. Most of these methods are based on hand-craft

functions and rules, which might fail to generalize for more

complex interaction cases.

RNNs based approaches for trajectory prediction.

Recently, Recurrent Neural Networks (RNN) and its vari-

ant structures such as LSTM [16] and Gated Recurren-

t Units (GRU) [6] is widely used in various tasks includ-

ing pedestrian trajectory forecasting [1, 2, 12, 13, 20, 22,

35, 37–39, 41, 46], where each pedestrian is modeled by

RNN with shared parameters. In order to model the hu-

man interactions, researchers follow two primary ways to

involve information of neighbors, using their current ob-

servations [12, 22, 35, 38, 41] (such as velocity, location,

etc.) or introducing previous states into current RNN recur-

sion [1, 12, 13, 22, 35, 37–39]. These methods treat the in-

formation of neighboring pedestrians as input which serves

in an input-to-output mechanism. In comparison, we treat

the information from neighboring pedestrians as message

provider and construct a message passing mechanism to re-

fine the features of each other. Therefore, our approach uses

the information from current time step and can refine the in-

formation through multiple message passing iterations.

Attention based approaches for trajectory prediction.

Attention mechanisms have been proven to be significantly

effective for relevant data selection in various tasks [24, 40,

43, 45]. Some RNN-based works for pedestrian trajectory
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prediction utilize the attention mechanism to distinguish the

importance of different neighbors [8,35,37,38,41]. Vemula

et al. [41] compute a soft attention score from the hidden

states of the designed edgeRNNs, which gives an impor-

tance value for each neighbor. Sadeghian et al. [35] utilize

the soft attention similar with [45] to highlight the important

neighbors. Su et al. [37, 38] calculate the pairwise velocity

correlation, and emphasis the neighbors who are in similar

velocity. However, our motion gate aims to selects motion

features from each neighboring pedestrian during the refine-

ment, which can extract more socially aware neighboring

features and has not been employed in previous approach-

es.

Graph-based and message passing framework. This

work is also inspired by Graph Convolution Networks (GC-

N) [4, 21] and message passing frameworks used for other

applications such as object detection [19, 53], action recog-

nition [36,48], semantic segmentation [27,28], scene graph

generation [25, 26, 44, 49], video recognition [42], etc.

Our method treats the pedestrian walking space as a ful-

ly connected graph and which can be regarded as a vari-

ant of GCN specially designed for the trajectory prediction

task. We consider message passing for pedestrians with-

in constrained regions, and use pairwise motion character

and relative spatial location between pedestrians for guid-

ing message passing.

3. Method

Problem formulation In this paper, we address the

problem of pedestrian trajectory prediction in the crowd

scenes. We focus on the two-dimensional spatial coordi-

nates at specific time intervals. For the given observed tra-

jectories including Tobs frames and N pedestrians, the tra-

jectory point of the ith pedestrian on the tth frame is rep-

resented by (xt
i, y

t
i). The problem is defined to predict the

future trajectories (x̂t
i, ŷ

t
i), where t = Tobs+1, Tobs+2, . . .

3.1. Vanilla LSTM

Vanilla LSTM (V-LSTM) model infers all pedestrian in-

dependently, without considering the interactions among

them. At time t, the location of the ith pedestrian is em-

bedded as a vector eti = φe(x
t
i, y

t
i ;We), where φe is the

embedding function parameterized by We. The vector eti is

used as the input to the LSTM cell as follows:

gu,ti = δ(Wueti + Uuht−1
i + bu),

gf,ti = δ(W feti + Ufht−1
i + bf ),

go,ti = δ(W oeti + Uoht−1
i + bo),

gc,ti = tanh(W ceti + U cht−1
i + bc),

cti = gf,ti ⊙ ct−1
i + gu,ti ⊙ gc,ti ,

ht
i = go,ti ⊙ tanh(cti),

(1)

LSTM

LSTM

LSTM

LSTMSR

t t+1

LSTM

LSTM

States refinement module 
LSTM states

Input the 
location to 
LSTM 

Ouput the 
prediction

...

Figure 3. Framework overview of proposed SR-LSTM. States re-

finement module is considered as an additional subnetwork of the

LSTM cells, which aligns pedestrians together and updates current

states of them. The refined states are used to predict the location

at the next time step.

where g denotes the gate function inside the LSTM cell, the

superscripts u,f ,o,and c denote the update gate, forget gate,

output gate and cell gate, respectively. W and U denote the

weight matrix connecting input and hidden state to the LST-

M cell. A pedestrian will be treated as a sample when using

LSTM. All LSTM parameters are shared across pedestrians.

With the hidden states ht
i extracted from LSTM, we di-

rectly predict the coordinates at time step t + 1 follow-

ing [12]:

[x̂t+1
i , ŷt+1

i ]T = Wph
t
i, (2)

where Wp is the learned parameter. The parameters of the

LSTM model are directly learned by minimizing the L2 loss

between predicted position and ground truth. In the infer-

ence stage, the coordinates predicted from the previous time

step are used as the input at the current time step.

3.2. The SR-LSTM Framework

The overview of SR-LSTM framework is illustrated in

Fig. 3. In this framework, the LSTM in Section 3.1 is used

for extracting features from the trajectory of each pedestri-

an separately. The main difference is that the States Refine-

ment (SR) module is used for refining the i.e. cell states cti
in Eq. 1 by passing message among pedestrians.

The SR module takes the following three information

sources of all pedestrians as input: the current locations of

pedestrians, hidden states and cell states from LSTM. The

output of the SR module is the refined cell states. Mathe-

matically, the SR module for refining the cell states can be

formulated as follows:

ĉt,l+1
i =

∑

j∈N (i)

Mj(ĥ
t,l
j , ĥt,l

i ) + ĉt,li ,
(3)
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where M is the message passing function detailed in Sec-

tion 3.2.2. N (i) denotes the neighbors of pedestrian i. For

the ith pedestrian, the hidden states ĥt,l
j from neighboring

pedestrians for j ∈ N (i) are integrated through the func-

tion M and then combined with the cell state of i to obtain

the refined cell state. Message passing can be done for mul-

tiple times. l denotes the message passing iteration index.

The states with l = 0 are initialized by the original LSTM

states in Eq. 1.

After the cell states are refined by L refinement iterations

in the SR module, they are used for producing predicted

coordinates as follows:

ĉtj = ct,Lj .

ĥt
i = go,ti ⊙ tanh(ĉti),

(4)

[x̂t+1
i , ŷt+1

i ]T = Wpĥ
t
i, (5)

where go,ti is from the LSTM. In the task of pedestrian

trajectory prediction, further refinement could improve the

quality of the interaction model, indicating the intention ne-

gotiation of human interaction natures.

3.2.1 A simple implementation of message passing

A simple implementation of message passing can be formu-

lated as follows:

ĉt,l+1
i =

∑

j∈N (i)

Wmpĥt,l
j /|Ni|+ ĉt,li ,

(6)

where |Ni| denotes the number of elements in N (i). Mes-

sage passing function Mj(ĥ
t,l
j , ĥt,l

i ) = Wmpĥt,l
j /|N (i)|

does not depend on ĥt,l
i in this formula. Wmp is a lin-

ear transformation using for transmitting the message from

neighboring pedestrians to the pedestrian i.
When using the features from other pedestrians, treating

all their features equally is not an appropriate solution. We

design more effective message passing term M in following

section.

3.2.2 Social-aware information selection

To adaptively focus on the most useful neighboring infor-

mation and guide the message passing, we design the fol-

lowing message passing term M with a social-aware infor-

mation selection mechanism:

ĉt,l+1
i =

∑

j∈N (i)

Mj(ĥ
t,l
j , ĥt,l

i ) + ĉt,li ,

=
∑

j∈N(i)

Wmpαt,l
i,j · (g

m,t,l
i,j ⊙ ĥt,l

j ) + ĉt,li ,
(7)

where ⊙ denotes the element-wise product operation. As

that in Eq. 6, Wmp is the linear transform parameter. The

pedestrian-wise attention αi,j and motion gate gi,j in Eq. 7

are introduced below.

Pedestrian-wise attention. αi,j in Eq. 7 is a scalar. It is

the attention for pedestrian j formulated as follows:

ut,l
i,j = waT[rt,li,j ; ĥ

t,l
j ; ĥt,l

i ],

αt,l
i,j =

exp(ut,l
i,j)∑

k

exp(ut,l
i,k)

,
(8)

where rt,li,j is the relative spatial location, which is an impor-

tant factor to guide the information selection. It is embed-

ded by embedding function φr as follows:

rt,li,j = φr(x
t
i − xt

j , y
t
i − ytj ;W

r), (9)

where (xt
i, y

t
i) is the location of pedestrian i at time t, sim-

ilarly for (xt
j , y

t
j). W r denotes the parameters for the em-

bedding function φr.

Motion gate. gmi,j is a vector, which is formulated as:

gm,t,l
i,j = δ(Wm[rt,li,j ; ĥ

t,l
j ; ĥt,l

i ] + bm), (10)

where Wm, bm are parameters and δ denotes the sigmoid

function. gm,t,l
i,j selects features from ĥt,l

j by using the

element-wise product in Eq. 7.

The motion gate and the pedestrian-wise attention have

different functionalities and jointly select the important in-

formation from neighboring pedestrians for message pass-

ing. Further explanation of these two components is as fol-

lows:

• The motion gate gmi,j acts on each hidden state ĥt
j to

perform a pairwise feature selection. It is calculated

based on the combination of rti,j , ĥt
j , ĥt

i (see Eq. 10),

which suggests that the motion of pedestrian i and j
and their relative spatial location are jointly consid-

ered for feature selection. This element-wise feature

selection can not be provided by the pedestrian-wise

attention.

• The pedestrian-wise attention is to emphasize impor-

tant neighbors and control the amount of neighborhood

message. If we only take the motion gate, training pro-

cess could hardly converge due to the uncertain num-

ber of correlated neighbors.

• The simple implementation in Eq. 6, which assigns e-

qual weights for all pedestrians and their features, per-

forms worse than social-aware information selection,

because the simple implementation does not pay suf-

ficient attention to important neighbors and important

trajectories extracted by the features.

4. Experiments

4.1. Datasets and Metrics

We evaluate our proposed model on two public pedestri-

an walking datasets, ETH [33] and UCY [23], which con-
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ID
Pre-processing Performance (MAD/FAD)

Rela/Nabs EUf RR ETH-univ ETH-hotel UCY-zara01 UCY-zara02 UCY-univ AVG

1 Rela - - 1.16/2.29 0.57/1.07 0.68/1.39 0.61/1.27 0.76/1.60 0.76/1.52

2 Nabs - - 1.00/2.04 0.50/1.08 0.58/1.30 0.40/0.87 0.64/1.38 0.63/1.33

3 Nabs � - 0.84/1.90 0.45/0.94 0.43/0.94 0.38/0.87 0.63/1.42 0.55/1.21

4 Nabs � � 0.83/1.77 0.41/0.80 0.49/1.15 0.37/0.85 0.56/1.22 0.53/1.16

Table 1. Performance on V-LSTM with different data pre-processings. Rela: differentiate the sequences as relative spatial offsets. Nabs:

use the absolute position but shift the origin to the latest observed time slot. EUf: frame rate correction on ETH-univ. RR: random rotation

for each data mini-batch. We adopt the configuration of ID 4 for our experiments.

tain rich social interactions. These two datasets contain 5

crowd sets, including ETH-univ, ETH-hotel, UCY-zara01,

UCY-zara02 and UCY-univ. There are 1536 pedestrians in

total with thousands of non-linear trajectories. We evaluate

our model on these 5 datasets. We follow the leave-one-out

evaluation methodology in [12].

There are two types of metrics for evaluating the per-

formance of trajectory prediction, including the Mean Av-

erage Displacement (MAD) error and Final Average Dis-

placement (FAD) error [33] in meters.

• MAD: Mean Euclidean distance between ground truth

and predict points of all predicted time steps.

• FAD: Euclidean distance between ground truth and

predicted point of the last frame.

The interval of trajectory sequences is set to 0.4 seconds.

We take 8 ground truth positions as observation, and predict

the trajectories of following 12 time steps, which follows

the setting of [1, 12, 33].

4.2. Implementation Details

We use single layer MLP to embed the input vectors to

32 dimensions, and set the dimension of LSTM hidden s-

tate as 64. A sliding time window with a length of 20 and

a stride size of 1 is used to get the training samples. All

trajectory segments in the same time window are regarded

as a mini-batch, as they are processed in parallel. We set

the size of mini-batch to 8 during the training stage. We use

the single-step mode for training (Fig. 4 (a)), and multi-step

mode for validating and testing (Fig. 4 (b)). Adam optimiz-

er is adopted to train models in 300 epochs, with an initial

learning rate of 0.001. For training the model with multiple

states refinement layers, we fixed all basic parameters and

only learn the parameters of the additional refinement layer.

4.3. Ablation Study

4.3.1 Data pre-processing

We detail our pretreatment as follows:

• Relative position or normalized absolute position

(Rela/Nabs): Two alternative ways of pre-processing,

Output

(a) (b)

observation          inference

Input

Output

LSTMcell

GT

Input

LSTMcell

GT

Figure 4. Two kinds of teaching mode. (a) Single-step mode. Cur-

rent ground truth (GT) annotation is given to the next time step as

input. (b) Multi-step mode, where the current output is used as the

input of next time step at inference stage.

differentiate the trajectory as relative location offset or

shift the origin to the latest observed time step.

• ETH-univ frame rate issue (EUf): For ETH-Univ s-

cenario, the original video from [5] is an accelerated

version. We treat every 6 frames as 0.4s, rather than

10 frames in [12].

• Random Rotation (RR): For one mini-batch, random

rotation is employed for data augmentation.

Table 1 shows the results of different data pre-processings

on V-LSTM, which shows that: 1) Normalized absolute lo-

cation is superior to relative position in our trials. 2) Cor-

rection of the ETH-Univ frame rate significantly promotes

for about 12.7/9(%). 3) Random rotation is also helpful for

reducing overfitting. We adopt data pre-processing config-

uration of ID4 and use the result of which as baseline.

4.3.2 Component analysis

We analyze the components of the proposed model, includ-

ing the Motion Gate (MG) (Eq. 10), the Pedestrian-wise

Attention layer (PA) (Eq. 8), and the number of refinement

layers (L). As we consider the finite neighborhood region,

we also take the region size as a variable denoted as Neigh-

borhood Size (NS) in meters. To testify the efficiency of the

utilize of current neighboring feature, we also consider us-

ing Current or Pervious(C/P) hidden states in Eq. 7. For all

variants without PA, we divide the number of neighbors on
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Variant Components Performance (MAD/FAD)

ID MG PA NS L C/P ETH-univ ETH-hotel UCY-zara01 UCY-zara02 UCY-univ AVG

1 - - 2 1 C 0.76/1.64 0.37/0.77 0.44/0.97 0.37/0.82 0.55/1.21 0.50/1.08

2 - - 10 1 C 0.79/1.71 0.41/0.89 0.47/1.07 0.38/0.85 0.56/1.27 0.52/1.16

3 � - 10 1 C 0.69/1.35 0.40/0.83 0.43/0.95 0.36/0.80 0.53/1.16 0.48/1.02

4 - � 10 1 C 0.67/1.43 0.39/0.81 0.47/1.09 0.36/0.80 0.54/1.19 0.49/1.06

5 � � 10 1 C 0.64/1.28 0.39/0.78 0.42/0.92 0.34/0.74 0.52/1.13 0.46/0.97

6 � � 2 1 C 0.71/1.45 0.37/0.75 0.43/0.93 0.40/0.97 0.54/1.21 0.49/1.06

7 � � 10 2 C 0.63/1.25 0.37/0.74 0.41/0.90 0.32/0.70 0.51/1.10 0.45/0.94

8 � � 10 3 C 0.64/1.27 0.38/0.75 0.42/0.91 0.32/0.71 0.51/1.10 0.45/0.95

9 � � 10 1 P 0.71/1.42 0.39/0.87 0.47/1.05 0.35/0.78 0.53/1.16 0.49/1.06

Table 2. Ablation Study on SR-LSTM. MG denotes introducing the motion gate, PA denotes the pedestrian-wise attention layer. NS

denotes the neighborhood size in meters, the value of 10 and 2 respectively give a neighborhood region of 20 × 20 and 4 × 4. L is the

refinement iterations. C/P denotes that we use current or previous hidden states to perform the refinement. Variant 1,2 perform the simple

states refinement without any feature selection (Eq.3).

message passing term for normalization. The quantitative

results of different model variants are reported in Table 2.

Simple states refinement. Performing the simple states

refinement (Eq.6) without any feature selection and consid-

ering the neighborhood size of 2 meters (Variant 1) out-

performs V-LSTM by 6.4/6.8(%), as the human interaction

is involved through the states refinement module. But the

model with neighborhood size of 10 meters results in slight

changes (1.4/-0.2(%)). The effect of neighborhood size is

summarized in following paragraph.

Neighborhood size. We test two value of neighborhood

size, 2 and 10, the effect of which are summarized: 1) Sim-

ple states refinement model with the equal treatment of al-

l pedestrians within 10 meters (Variant 2), where useless

features from far neighbors are still considered for message

passing, causes performance deterioration of 5.6/7.5(%) rel-

ative to the same model with the neighborhood size of 2 me-

ters. 2) With the proposed information selection mechanis-

m, considering larger neighborhood size is generally better

(Variant 5 vs 6). Therefore, our SR-LSTM could take ad-

vantage of useful information from farther neighbors.

Information selection. With neighborhood size fixed

as 10 meter, only introducing the motion gate (Variant 3)

or pedestrian-wise attention (Variant 4) is resultful, which

respectively improves the performance by 7.8/12.2(%) and

6.7/8.3(%). Utilization of both these two components (Vari-

ant 5) achieves the improvement of 11.8/16.4/(%), which

demonstrates the effectiveness of our information selection

mechanism. When neighborhood size is set to 2 meters,

adding motion gate and pedestrian-wise attention (Variant

6) still outperforms the simple refinement model (Variant 1)

on average.

States refinement from current states. Utilization of

the current states (Variant 5) outperforms the one using the

previous states (Variant 9) by 6/8.3(%), which demonstrates

the importance of latest features of neighbors.

Refinement iterations. Employing the second states re-

finement layer (Variant 7) performs consistently better than

only refine the states once (Variant 5) by 2.8/3(%). While

the third layer introduced could not bring further promotion.

It may suggest that the choice of two refinement iterations

is the appropriate for this task.

4.4. Comparison with Existing Works

We compare our model with several recent existing

works: (1) Social-LSTM [1]: A cubic tensor is used in this

approach to gather the social information. The recommend-

ed neighborhood size is 32 pixels in image space, we choose

it as 2 and 10 meters respectively referred as S-LSTM 1 and

S-LSTM 2. (2) SGAN [12]: A multimodal method to re-

trieve multiple possible future paths. (3) Sophie [35]: An

improved multimodal method which introduces the atten-

tion on social relationship and physical acceptability.

The results are shown in Table 3. All of methods are

under the same dataset setting and evaluation methodolo-

gy. Note that SGAN and Sophie report the results that best

match groundtruth in 20 samples, the other methods only

produce one prediction; Sophie also requires the scene im-

age.

V-LSTM vs V-LSTM*. V-LSTM models implemented

by ourselves in Table 1 could not completely match the re-

sult of V-LSTM*, which is reported in [12]. This is possibly

due to the deviation on hyper-parameters, data organization,

or the teaching mode. In addition, we try our best to search

for better data reprocessing which results in a considerable

promotion.

SR-LSTM vs others. By the captured multimodality, S-

GAN and Sophie improve significantly in comparison with

V-LSTM*. But SGAN could not outperform V-LSTM*

with only a single sample [12]. Our best model increases

the performance relative to V-LSTM for 15.4/18.8(%), with

only a single prediction.

S-LSTM 1 outperforms V-LSTM but still has higher pre-

diction error than our approach, because it only takes advan-
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Method Notes
Performance (MAD/FAD)

ETH-univ ETH-hotel UCY-zara01 UCY-zara02 UCY-univ AVG

V-LSTM* - 1.09/2.41 0.86/1.91 0.41/0.88 0.52/1.11 0.61/1.31 0.7/1.52

SGAN* 20 samples 0.81/1.52 0.72/1.61 0.34/0.69 0.42/0.84 0.60/1.26 0.58/1.18

Sophie* 20 samples+scene 0.70/1.43 0.76/1.67 0.30/0.63 0.38/0.78 0.54/1.24 0.54/1.15

S-LSTM 1 NS=2, grid: 4×4 0.70/1.40 0.37/0.73 0.49/1.15 0.39/0.89 0.60/1.32 0.51/1.10

S-LSTM 2 NS=10 grid: 4×4 0.77/1.60 0.38/0.80 0.51/1.19 0.39/0.89 0.58/1.28 0.53/1.15

V-LSTM - 0.83/1.77 0.41/0.80 0.49/1.15 0.37/0.85 0.56/1.22 0.53/1.16

SR-LSTM 1 ID 6 in Tab.2 0.64/1.28 0.39/0.78 0.42/0.92 0.34/0.74 0.52/1.13 0.46/0.97

SR-LSTM 2 ID 7 in Tab.2 0.63/1.25 0.37/0.74 0.41/0.90 0.32/0.70 0.51/1.10 0.45/0.94

Table 3. Comparison with several baselines models. NS denotes the neighborhood size in meters. The results of methods marked with *

are directly obtained from [12, 35].

tage of previous hidden states of local neighbors. In addi-

tion, S-LSTM is not able to take advantage of the far neigh-

bors according to the results of S-LSTM 2. Our SR-LSTM

makes it possible to consider far neighbors and utilize their

current states to refine each other.

4.5. Qualitative Results

Feature refinement from current states. Benefiting

from our states refinement module, SR-LSTM is able to

take advantage from the current neighboring states. Fig.

5(a) shows examples in which pedestrians’ walking direc-

tion have suddenly changed before few time steps. V-LSTM

(first column) does not consider the interaction and results

in large error. S-LSTM (S-LSTM 1 in Table 3, second col-

umn) utilizes the previous neighboring LSTM states, but is

still insensitive to these cases. Our SR-LSTM (SR-LSTM 2

in Table 3, third column) refines the current LSTM states

through message passing, which can timely capture changes

of the others’ intention and make suitable adjustment.

Social behaviors. SR-LSTM can moderately explain

implicit social behaviors. In Fig.5(b), we illustrate three

cases, consistent group walking, collision avoidance and

group avoidance. In V-LSTM, pedestrians are walking in

their own. S-LSTM performs weaker to model pedestrian

interactions and ignores the potential effect from far neigh-

bors. Our SR-LSTM shows pretty ability to make appropri-

ate prediction towards social interaction.

4.6. Social-aware Information Selection

Motion gate. When predicting the position of pedestrian

i, motion gate acted on the hidden features of his/her neigh-

bor j is calculated based on the pairwise features between

pedestrian i and j (Eq.10). Fig.6 shows how motion gate

selects the features, where each row is related to a certain

dimension of hidden feature.

In Fig.6, the first column shows the trajectory patterns

captured by hidden features started from origin and ended

at the dots, which are extracted in similar way as Fig.2(a).

The motion gate for a feature considers pairwise input tra-

V-LSTM SR-LSTMS-LSTM

Observation Groundtruth

(a)

V-LSTM SR-LSTMS-LSTM

(b)

Figure 5. Illustration of the prediction trajectories. (a). In SR-

LSTM, current states of pedestrians can timely refine each other,

particularly in the case where pedestrians change their intentions.

(b). SR-LSTM are able to implicitly explain for common social

behaviors, which gives moderate future predictions and relatively

low errors.

jectories with similar configurations. Some examples for

high response of the gate are shown in the other columns of
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Fig.6. In these pairwise trajectory samples, the red and blue

ones are respectively the trajectories of pedestrian i and j,

and the time step we calculate the motion gate are shown

with dots (where the trajectory ends). These pairwise sam-

ples are extracted by searching from database with highest

activation for the motion gate neuron. High response of gate

means that the corresponding feature is selected.

Figure 6. Selected feature patterns by motion gate. Each row is

related to a hidden neuron (feature) of LSTM. Column 1: Activa-

tion trajectory pattern of the hidden feature. Column 2-6: Pairwise

trajectory examples (end with solid dots) having high activation to

the motion gate. Prediction for the pedestrian in red is mostly sen-

sitive to the other’s potential trajectories showed in first column,

which are selected by our motion gate.

As shown in Fig.6, a gate for the same feature is respon-

sible for roughly similar interaction conditions. When pre-

dicting the trajectory of pedestrian i (red), our motion gate

attentively select features of pedestrian j (blue). These se-

lected features shown in first column represent the potential

trajectories that the pedestrian j might cause future interac-

tion with the pedestrian i.
We explain effects of four gate elements in each row of

Fig.6: 1) Row 1: The trajectory pairs are very close and are

walking together. The selected hidden feature follows the

walking direction. 2) Row 2: The trajectories are somewhat

close but walking in opposite direction. The pedestrian i in

red cares about whether the other will walk towards him/her.

3) Row 3: This case is similar to row 2. This gate element

considers more distant neighbor walking in opposite direc-

tion. 4) Row 4: The neighbor in blue is static, the selected

hidden feature shows that pedestrian i in red potentially pay

attention on this stationary neighbor in case he is about to

walk towards him/her.

Pedestrian-wise attention. We illustrate some exam-

ples of the pedestrian-wise attention expected by our SR-

LSTM in Fig.7. It shows that 1) dominant attention is paid

to the close neighbors, while the others also take slight at-

tention, 2) the attention given by the first refinement layer

often largely focuses on the close neighbors, and the second

refinement tends to strengthen the effect of farther neigh-

bors with group behavior or may influence the pedestrian in

longer time range.

Figure 7. Illustration of the pedestrian-wise attention. Circle in

magenta represents the attention in first round states refinement,

the dashed circle represents for the attention in the second refine-

ment. Larger circle corresponds to higher attention. Red triangle

represents the target pedestrian for trajectory prediction, and green

ones are his/her neighbors, the arrows on each of them represent

their walking directions.

5. Conclusion

In this paper, we propose a states refinement module for

LSTM network to address the the problem of joint trajec-

tory prediction for pedestrians in the crowd. Our states re-

finement module treats LSTM as feature extractor, which

adaptively refines current features of all pedestrians based

on a message passing mechanism. In addition, we introduce

a social-aware information selection mechanism consisting

of an element-wise motion gate and a pedestrian-wise atten-

tion, to select useful features of each neighbor. The states

refinement module with information selection outperforms

the state-of-the-art approaches.
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