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Abstract

Domain adaptation has shown promising advances for

alleviating domain shift problem. However, recent visual

domain adaptation works usually focus on non-sequential

object recognition with a global coarse alignment, which

is inadequate to transfer effective knowledge for sequence-

like text images with variable-length fine-grained charac-

ter information. In this paper, we develop a Sequence-to-

Sequence Domain Adaptation Network (SSDAN) for robust

text image recognition, which could exploit unsupervised

sequence data by an attention-based sequence encoder-

decoder network. In the SSDAN, a gated attention similar-

ity (GAS) unit is introduced to adaptively focus on aligning

the distribution of the source and target sequence data in an

attended character-level feature space rather than a global

coarse alignment. Extensive text recognition experiments

show the SSDAN could efficiently transfer sequence knowl-

edge and validate the promising power of the proposed

model towards real world applications in various recogni-

tion scenarios, including the natural scene text, handwritten

text and even mathematical expression recognition.

1. Introduction

Deep learning methods have achieved remarkable results

on text image reading [3, 5, 7, 13, 21, 23, 31]. However, it

remains challenging to build a robust text recognizer that

can handle varying data in new scenarios effectively, due to

the inevitable domain shift when the actual data is encoun-

tered at “test time”. As shown in Figure 1, the text data dis-

tribution tends to be changed by multiple factors, such as,

the different appearances in natural scene texts [21], var-

ious handwriting styles in handwritten texts [3], and even
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Figure 1. Examples of different types of domain shift in text image

recognition scenarios.

diverse structures in mathematical expressions [7]. To build

a robust text recognizer for the shifted target text image, a

general solution is to collect large scale annotated text im-

ages, while they are high-cost and cannot cover all diver-

sities. However, unsupervised target text images are easily

available. If we could take advantage of the unsupervised

text images to reduce domain shift, it will be helpful.
Unsupervised domain adaptation is an effective way us-

ing the unlabeled target domain data to mitigate the do-

main shift, which is to align the feature distribution be-

tween the source and target domain. Recent research en-

deavors [30, 38] on domain adaptation have shown the po-

tential results on character recognition. They generally op-

timize the global representation of a character to minimize

some measure of domain shift, such as maximum mean dis-

crepancy (MMD) [24, 38], correlation alignment distance

(CORAL) [35, 41], or adversarial loss [9, 30, 36], where

feature dimensions are fixed in the source and target do-

main. However, a text image is the combination of differ-

ent characters, which is a variable-length label sequence in-

stead of an isolation. Consequently, the most popular do-

main adaptation methods cannot be directly applied to the

sequence prediction, since a global fixed-length represen-

tation lacks important fine-grained information at the char-

acter level, which in turn cannot appropriately describe the

content of sequence-like images.
In this paper, to address the aforementioned issues, we
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Figure 2. The structure of SSDAN consists of: a CNN encoder to map the input images into a sequence of high-level feature vectors

, an attention unit between the encoder and decoder to adaptively focus on the location of character, a GRU decoder to convert encoded

features into output strings recurrently, and a GAS unit to offer the guidance for model to adaptively find character-level domain-invariant

features between the source and target domain. Overall, the unsupervised sequence-to-sequence domain adaptation is achieved by jointly

minimizing character-level similarity loss Lattn and source decoding loss Ldec.

develop a Sequence-to-Sequence Domain Adaptation Net-

work (SSDAN) for robust text image recognition. As shown

in Figure 2, the proposed SSDAN is an attention based

encoder-decoder model for handling sequences, which is

derived from [7, 21]. It could automatically concentrate

on the most relevant region of the character while decod-

ing, which frees a sequence-like text image from having

to squash all the information of a source sequence into a

global fixed-length vector. Furthermore, a gated attention

similarity (GAS) unit is introduced to align distributions of

the source and target domain at an attended character-level

feature space, where we adopt a gate function to control the

model focusing on effective character-level features, instead

of global coarse alignment. In GAS unit, an unsupervised

character-level similarity loss is used to guide the model

to reduce the domain shift between the source and target

sequence. The unsupervised sequence-to-sequence domain

adaptation is then achieved by jointly minimizing unsuper-

vised character-level similarity loss and supervised source

decoding loss, which could learn both domain-invariant and

discriminative features that are effective for the shifted tar-

get domain.
We summarize our contributions as follows:

• We propose a novel Sequence-to-sequence Domain

Adaptation Network dubbed SSDAN for robust text

image recognition, which could be generalized to dif-

ferent scenes, such as natural scene text, handwritten

text and mathematical expression recognition.

• We introduce a novel GAS unit in SSDAN to bridge

the sequence-like text image recognition and do-

main adaptation, which could adaptively transfer fine-

grained character-level knowledge instead of perform-

ing domain adaptation by global features.

• The proposed SSDAN is capable of using unsuper-

vised sequence data to reduce domain shift effectively.

Extensive experiments on six benchmark datasets vali-

date the promising power of the proposed model towards

large scale real world application in natural scene text,

handwritten text and even more difficult mathematical ex-

pressions recognition.

2. Related Work

In this section, we review the literature of text recogni-

tion methods. Then we discuss the recent trials of applying

domain adaptation techniques on text recognition.
Text Recognition Methods. Deep learning methods have

achieved remarkable results on image text reading [3, 5, 7,

13, 20, 21, 23, 31]. However, the literature is relatively

sparse on building a robust text recognizer that can handle

varying data in abundance of scenarios effectively. Some

methods were designed to handle perspective distortion ex-

hibited in the scene text. For example, [32] and [22] in-

troduce a spatial transformer network to rectify the entire

text before recognition. Furthermore, CharNet [21] tried

to introduce a character-level spatial transformer to rectify

individual characters, which was capable of handling more

complicated forms of distortion that cannot be modeled by

a single global transformation easily. However, they were

only designed for spatial affine distortions and hard to gen-

eralize to the distortion caused by handwriting styles or

various structures in mathematical expressions. In sum-

mary, existing text image recognition methods are usually

designed for a specific scenario, and cannot be generalized

effectively to different tasks. While our domain adaptation

model is designed for different scenarios, including the na-

ture scene text, handwritten text, and mathematical expres-
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sion recognition. Furthermore, the intrinsic domain shift in

the text image data is commonly neglected in existing meth-

ods. On the contrary, our SSDAN utilizes the domain adap-

tation technique to tackle the domain shift problem, which

adaptively performs the character-level adaption in text im-

ages.
Domain Adaptation For Text Recognition. There have

been a plethora of recent works in the field of visual domain

adaptation addressing the domain shift problem [30, 38, 41].

Some methods are evaluated on the character-level hand-

written or natural scene digital dataset for recognition tasks

and have shown effective performance. However, the ma-

jority of recent works use deep convolutional architectures

to map the source and target domains into a shared space

where the domains are aligned. They generally optimize the

global representation via minimizing some measure of do-

main shift, such as MMD [24, 38], CORAL [35, 41], or ad-

versarial loss [9, 30, 36]. Therefore, these methods cannot

be directly applied on sequential text images with multiple

characters, as the domain shift are locally in the characters

rather than the global image. Recently, other methods have

been proposed to adapt the different font styles for image-

to-image translation via adversarial learning [1]. Similarly,

these methods limitedly translate the font in different style

of signal characters on a global image, which are still cannot

be extended to text-line images. To address these problems,

we develop a sequence-to-sequence domain adaptation to

focus on fine-grained character-level features to transfer

variable-length sequence knowledge successfully.

3. Proposed Method

In this paper, unsupervised sequence-to-sequence do-

main adaptation is developed for robust text recognition.

Specifically, the source domain text images with well-

annotated text labels (a sequence of characters or symbols)

are available, while we only have an access to unlabeled

text images in target domain, which is in a different distri-

bution. More formally, we assume that there are Ns an-

notated source domain samples X
s = {xs

i}
Ns

i=0
with the

corresponding labels Ys = {ys
i }

Ns

i=0
, and N t unlabeled

target-domain samples X
t = {xt

i}
Nt

i=0
without any avail-

able annotated labels in the training time. For y ∈ Ys,

y = {y1, y2, ..., yT }, where yk and T denotes a character

label and the variable length of text, respectively.
Considering that typical global domain adaptation meth-

ods lack fine-grained character-level information, we de-

velop a Sequence-to-Sequence Domain Adaptation Net-

work (SSDAN) for robust text image recognition, aligning

the distribution of the source and target sequence data in an

attended character-level feature space rather than a global

coarse alignment. As shown in Figure 2, the proposed SS-

DAN is an attention-based sequence encoder-decoder net-

work, which encodes a text image into a sequence of at-

tended character-level features that are then recomposed

through a GRU decoder with an attention mechanism. In

the proposed SSDAN, a GAS unit is further introduced to

adaptively guide model finding the character-level domain-

invariant features between the source and target domain.

3.1. Attentive Text Recognition

The attentive text recognition can be essentially con-

sidered as learning a mapping between a sequence of fea-

ture maps encoded from sequence-like text image x, and a

ground truth label sequence y = {y1, y2, ..., yT }. As shown

in Figure 2, the attentive text recognition pipeline consists

of: 1) a CNN encoder that learns high-level visual represen-

tations from an input image. 2) an attention model between

the encoder and the decoder driving the focus of attention

of the model towards a specific part of the sequence of en-

coded features. 3) a GRU decoder that generates a sequence

of symbols as output, one at every time step.
CNN Encoder. CNN encoder F takes the raw input image

x from the source or target domain, and produces a feature

grid F(x) of size H ′×W ′×D, where D denotes the num-

ber of channels, H ′ and W ′ are the resulted feature map

height and width, respectively. The encoder output is then

reshaped as a grid sequence of L elements, L = H ′ ×W ′.

Each of these elements is a D-dimensional feature vector

that corresponds to a local region of the image through its

corresponding receptive field. Hence, the whole encoded

image F(x) could be reformatted as,

F(x) = [f1, ..., fL] , fi ∈ R
D
, (1)

where fi corresponds to i-th grid of the encoded image

F(x), which preserves specific spatial information of the

input image x.
Attention. Although the CNN encoder keeps the spa-

tial information, we cannot decide the location of a specific

character in a text image. Therefore, an attention model is

introduced to learn which part of the text image is the most

relevant to a decoding character. As shown in Figure 2, the

attention is a T -step process, at time-step k, the represen-

tation of the most relevant part to character yk of encoding

feature map F(x) is defined as a context vector ck:

ck =

L
∑

i=0

αk,ifi, (2)

where, the attention weights αk,i is calculated by

αk,i =
exp(sk,i)

∑L

j=0 exp(sk,j)
, (3)

where the attention score sk,i indicates the probability of

that the model attends to the i-th sub-region in the encoded

map F(x) when decoding the k-th character of the text im-

age. Following the past empirical work [7], we defined the

attention score as

sk,i = β
⊤ tanh(Whhk−1 +Wf fi), (4)
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where β, Wh and Wf are the parameters to be learnt, hk−1

is the previous decoding state in the decoder.
GRU Decoder. A GRU decoder is employed to predict the

string of an input text image recurrently, where we use gated

recurrent unit (GRU) neural network. At decoding time step

k, the GRU leverages the context vector ck, previous state

hk−1 and previous predicted character yk−1 to generate a

new hidden state

hk = GRU(hk−1, yk−1, ck), (5)

where, ck is generated by the attention mechanism, which

focuses on the most relevant region of current decoding

character. Then, the probability of current predicted sym-

bol yk is computed by :

p(yk|yk−1, ck) = g (Wo tanh(Eỹk−1 +Wdhk +Wcck)) ,
(6)

where g denotes a softmax activation function, Wo, Wd

and Wc are the mapping matrices, E is the embedding ma-

trix, and ỹk−1 is the one-hot vector of character label yk−1.
The probability of the sequential labels y is finally given

by the product of the probability of each label:

P (y|A(x)) =
T
∏

k=1

p(yk|yk−1, ck), (7)

where A(x) = {c1, c2, ..., cT }, which could be regarded

as a sequence of attended character-level features from an

input text image x.

3.2. Gated Attention Similarity Unit

Given the misalignment of ground truth strings between

the source and target sequence domain, we introduced

Gated Attention Similarity (GAS) Unit, based on an at-

tention encoder-decoder mechanism, to convert a variable-

length input text image into a sequence of character fea-

tures. By decomposing the text strings into a set of charac-

ters, the source and target domain will statistically share the

same label space in character-level, and thus the influence

of the misalignment problem can be alleviated. More for-

mally, through attention mechanism, an input image x can

be adaptively decomposed into a series of character-level

feature set A(x) = {c1, c2, ..., cT }, where ck presents the

feature of k-th character in the text image x. Specifically,

a source text image xs and a target text image xt are de-

composed into a source and target attended character-level

feature set A(xs) and A(xt), respectively.
We notice that if the attention context vector fails to fo-

cus on the region of effective character, the adaptation on

the attention context vector will not help. To overcome this

problem, we introduce a gate mechanism to select effective

attention context vectors to perform domain adaptation. An

intuition is that if the current attention context vector ck
is distinguishable, the probability that ck belongs to one

specific character yk will be relatively higher than others.

Hence, we further introduce an adaption gate function δ(ck)
to judge if a context vector ck is attending to a valid char-

acter,

δ(ck) =

{

1 if p (yk|yk−1, ck) > pc

0 if p (yk|yk−1, ck) < pc
, (8)

where pc is a confidence threshold. Furthermore, a gate

function set G is adaptively changed according to the spe-

cific input image x, which is expressed as:

G(x) = {δ(c1), ..., δ(cT )} , (9)

Through the gate function, we can update attention context

vector set by adaptation gate function set G(x),

Ã(x) = A(x)⊗G(x), (10)

where ⊗ denotes element-wise product operator. Specifi-

cally, if ck × δ(ck) = 0, then current context vector ck will

not be added in a new attention context vector set.
A gated attention similarity loss Lattn is accordingly

introduced to measure the distance on the valid attended

character-level feature set of source and target domain as

Lattn = E[xs∈Xs,xt∈Xt]

{

dist
(

Ã(xs), Ã(xt)
)}

. (11)

There are multiple choices for the distance function dist,
such as (1) MMD [24] computing the norm of difference

between two domain means, (2) CORAL [35] computing

the distance of covariance of two domain, or even (3) adver-

sarial loss [9] minimizing the loss of a domain classifier to

learn a representation that is simultaneously discriminative

of source labels while not being able to distinguish between

domains. In the experiment, we have explored these differ-

ent measurements, and experimentally found that CORAL

is more appropriate for our model. Specifically, CORAL is

to align the second-order statistics-correlation of the source

and target data , which is defined as

dist(Us,Ut) =
1

4d2
||cov(Us)− cov(Ut)||

2
F , (12)

where Us = {us
i}, us ∈ Rd, Ut = {ut

i}, ut ∈ Rd, and

|| · ||2F denotes the squared matrix Frobenius norm, cov(Us)
is the covariance matrix of samples Us, denoted by

cov(Us) =
1

N − 1

(

Us
⊤Us −

1

N
(1⊤Us)

⊤(1⊤Us)

)

, (13)

where 1 is a column vector with all elements equal to 1, N is

the number of samples Us, and Us(i, j) (Ut(i, j)) indicates

the j-th dimension of the i-th source (target) data example.
In our GAS unit, Us and Ut are replaced by the valid

attended character-level feature set Ã(xs) and Ã(xt), re-

spectively. Note that Ã(xs) and Ã(xt) need to be reformat-

ted as a matrix, respectively. Specifically, suppose Ã(xs)
and Ã(xt) contain T1 and T2 elements, respectively. Then

Ã(xs) and Ã(xt) could be reformatted as matrices with

T1×D and T2×D elements, and their covariance matrices

are with the same dimension D ×D.
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3.3. Overall Objective Function

With the well-annotated source-domain data, we could

learn an optimized source text image recognizer by mini-

mizing a supervised decoding loss, where we can use the

negative log likelihood of sequential probability as the de-

coding loss Ldec to measure the differences between the

predicted and the source labeled character sequences:

Ldec = E(xs,ys)∼(Xs,Ys) {− log p(ys|A(xs))} . (14)

Directly optimizing Ldec may cause overfitting in source

domain, and thus fails to perform well for the shifted tar-

get domain. The GAS unit in our model is introduced to

offer guidance to learn domain-invariant features between

the source and target domain. The learnt robust representa-

tions should work effectively on the target domain, where

they are also required to be discriminative. Therefore, the

attention similarity loss Lattn in Eq. 11 is combined with

the discriminative decoder loss Ldec in source domain. The

overall objective function of the attentional domain adapta-

tion model is defined as:

LSSDAN = Ldec + λLattn, (15)

where λ is a hyper-parameter to balance two terms. The

model parameters can be directly optimized by minimizing

the overall objective through stochastic gradient descent op-

timization algorithms.

4. Experiments

Datasets. We conduct extensive experiments to validate

the proposed SSDAN on six general recognition benchmark

datasets, including three different types of text image, i.e.,

scene text, handwritten text, and mathematical expressions

with more complex structure, as shown in Figure 1.

• ICDAR-2003 (IC-03) [25] contains 860 cropped

scene text images, following the protocol used in [31].

• ICDAR-2013 (IC-13) [18] contains 857 cropped

scene images after filtering as did in IC-03.

• Street View Text (SVT) [37] consists of 647 test scene

word images from Google Street View.

• IIIT5K-words (IIIT5K) [27] contains 3, 000 cropped

test scene text images from the Internet.

• IAM [26] is a handwritten English text dataset, written

by 657 different writers. It is partitioned into writer-

independent training, validation and test partitions of

6161, 976 and 2915 lines, respectively. That contains

a total of 46945, 7554 and 20306 correctly segmented

words in each partition.

• CROHME 2014 [28] is a handwritten mathematical

expression dataset. It contains 8836 training and 986

test math expressions. There are 101 math symbols.

The handwritten expressions or LaTeX notations in the

test set never appear in the train set.

Evaluation Metric. For different recognition task, we

adopt different evaluation metric as follows:

• Scene text. The word prediction accuracy is used to

evaluate scene text recognition model, following sev-

eral benchmark [21, 31].

• Handwritten text. Two metrics are used to evalu-

ate the handwritten text recognition model: the Char-

acter Error Rate (CER) and the Word Error Rate

(WER) [3, 34]. CER is defined as the Levenstein

distance between the predicted and real character se-

quence of the word. WER denotes the percentage of

words improperly recognized. For CER and WER,

small values indicate better performance.

• Mathematical expression. We use a global perfor-

mance metric expression recognition rate (ExpRate) to

denote the percentage of predicted formula sequences

matching the real formula sequences [7].

Implementation Details. The architecture of the CNN

encoder is derived from the DenseNet [14], where dense

blocks are densely concatenation of 1×1 convolution layers

and 3× 3 convolution layers. while the transition layers are

composed of 1× 1 convolution and 2× 2 average pooling,

and the channel 0.5 refers to the compression rate, which

is to reduce the number of feature map of each block to

half. All convolutions are followed by batch normalization

layer [15] and rectified linear unit (Relu) activation func-

tion [29] . In order to make the encoder suitable for recog-

nizing text, we use the pooling layer with kernel size 2× 1
to reduce feature dimension along the height axis only. As

a result, the resolution of feature maps produced by encoder

is H/32 × W/4, where the values of H and W are set ac-

cording to the specific dataset. After the CNN encoder, we

use a bi-directional LSTM to capture more context informa-

tion for attention, and each LSTM has 256 hidden units. For

the decoder, we use a GRU cell with 512 memory blocks.
All of our experiments are implemented with Tensorflow.

The complete model is initially pre-trained to minimize the

decoding loss of the source training data, and then is fine-

tuned to minimize the overall domain adaptation objective

with unsupervised target data. The model is trained with the

Adadelta optimizer [39].

4.1. Comparison with Existing Methods

In this section, we investigate the generalization of our

model in three different domains, including scene text,

handwritten text and mathematical expressions. To validate

the performance of our SSDAN model, we focus on un-

constrained text recognition without any language model or

lexicon. On each task , we consider a baseline for SSDAN
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as SSDAN-base that omits the GAS unit to switch off the

domain adaption process. SSDAN-base is used to investi-

gate the capability of SSDAN for domain adaptation on the

text image recognition task.
Results on Scene Text. In this scenario, we explore the

capability of SSDAN for domain adaptation on the scene

text recognition, where synthetic dataset MJSYNTH [17]

is used as the source training data, and the real scene text

data is used as target test data. MJSYNTH [17] contains 8

millions annotated synthetic images, which are generated

to simulate natural scene text images. Table 1 presents

the test results on four real scene text datasets. Com-

pared to the baseline model SSDAN-base, our SSDAN

method could obtain consistent improvement in different

datasets. It’s mainly attributed to sequence-to-sequence

domain adaptation, which is able to learn more domain-

invariant features. Furthermore, we investigate the perfor-

mance of our model among the recent state-of-the-art ap-

proaches [10, 11, 16, 20–22, 33], which are tailored for

scene text recognition. We can observe that the perfor-

mance of our baseline SSDAN-base are at average level.

However, the SSDAN model with sequence domain adap-

tation can achieve comparable results with the best com-

petitor [21, 33]. It’s notable that the motivations in our

method are substantially different from these works. For

example, RARE [32], STAR-Net [22], ASTER [33] and

Char-Net [21] target the irregular scene text recognition,

which are designed for spatial distortions. They would not

be easily generalized to different distortions, such as vari-

ous handwriting style and complex structures in mathemat-

ical expressions. In contrast, our method aims to perform

sequence-to-sequence domain adaptation to reduce the do-

main shift, and correspondingly allows us to relieve differ-

ent distortions using a general framework in different sce-

narios.

Table 1. Scene text recognition accuracies on general scene text

recognition benchmarks.

Model IIIT5K SVT IC-03 IC-13

ANN [16] − 71.7 89.6 81.8

STAR-Net [22] 83.3 83.6 89.9 89.1

R2AM [20] 78.4 80.7 88.7 90.0

CRNN [31] 81.2 82.7 91.9 89.6

RARE [32] 81.9 81.9 90.1 88.6

Ghosh et al [12] − 75.1 89.3 −
Gao et al [10] 81.8 82.7 89.2 88.0

ASTER [33] 83.2 87.6 92.4 89.7

Char-Net [21] 83.6 84.4 91.5 90.8

SSDAN-base 81.1 82.1 91.2 91.0

SSDAN 83.8 84.5 92.1 91.8

Results on Handwritten Text. To verify the generalization

capability of our model, we evaluate our model on IAM to

validate the effectiveness of the sequence-to-sequence do-

main adaptation on the handwriting recognition. In this

case, the source and target data are the writer-independent

training and test data, respectively. Various handwriting

styles are primary causes of domain shift. What’s more,

it may suffer character-touching problem, which is differ-

ent from scene text. We note that [6] achieved a state-of-

the-art performance on IAM, however, the test data used

in [6] wasn’t same with [2, 3, 34]. For a fair compari-

son, we only show the results using the same test data and

without any language model. Table 2 illustrates the hand-

writing recognition results. Although the performance of

our baseline is not better than sueiras2018offline [34], our

SSDAN model can still achieve significant improvement,

which demonstrates the effectivity of model.

Table 2. Results on handwritten text.

Method WER CER Average

bluche2015deep [2] 24.7 7.3 16.00

bluche2016joint [3] 24.6 7.9 16.25

sueiras2018offline [34] 23.8 8.8 16.30

SSDAN-base 23.9 9.2 16.55

SSDAN 22.2 8.5 15.35

Results on Handwritten Mathematical Expression. To

show the flexibility of our model, we also conduct exper-

iments on handwritten mathematical expression recogni-

tion. Handwritten mathematical expression recognition is

to convert an image into structured language, such as LaTex

strings, which not only denotes the text itself but also de-

notes its structural information. It’s a more complex prob-

lem than traditional scene text or handwriting recognition.

In particular, it suffers variant scales of handwritten math

symbols with more complicated structure, which results in

more difficult domain shift. In the experiment, the train-

ing expressions and the unseen test expressions are used as

source and target data, respectively. The results of the ex-

pression recognition rate (ExpRate) are listed in Table 3.

We note that the WAP approach [40] achieved the state-

of-the-art result, which involved 5 ensemble models to im-

prove the performance. However, our model doesn’t use

any ensemble trick, which might be investigated as the fu-

ture work. Compared with the best 3 systems in CROHME

2014 competition, which only use the CROHME training

data, our model obviously outperforms these participat-

ing systems with large gaps. Furthermore, compared to

[7, 8, 19], our SSDAN model can still achieve better per-

formance. It’s remarkable that our model is competitive,

especially after domain adaptation. Hence, we can believe

that our SSDAN model is able to capture the complex do-

main shift in structural images.

4.2. Ablation Study

We firstly evaluate the necessity of character-level do-

main adaptation. Then we analyze the contributions of dif-

ferent components, and investigate the effect of different
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Table 3. Results on handwritten mathematical expression.

Method ExpRate

I [28] 37.2

VI [28] 25.7

VII [28] 26.1

WYCIWYS [8] 28.7

Le et al [19] 35.2

IM2TEX [7] 38.7

SSDAN-base 39.9

SSDAN 41.6

domain shift measurement and parameter sensitivity. Fur-

thermore, we visualize some recognition results, and ex-

plore the effect of unsupervised data.
Comparison to Standard Domain Adaptation. Measur-

ing similarity on CNN outputs directly can be treated as a

STandard Domain Adaptation method (STDA), which lacks

of fine-grained character-level information in a text image.

Our SSDAN method introduces a GAS unit to adaptively

perform domain adaptation on a set of character-level fea-

ture vectors via attention scheme, which focuses on most

relevant region towards a specific character instead of global

CNN outputs. To validate the the necessity of character-

level domain adaptation, we have done experiment to com-

pare the STDA with our SSDAN on IAM dataset. The re-

sults in Table 4 show that STDA obtains worse results than

the baseline SSDAN-base, while SSDAN gets significant

improvement. It validates the advantages of our SSDAN

that the fine-grained character-level knowledge transfer be-

tween the source and target sequence data is more effective

in the decoder than the CNN outputs.

Table 4. Comparison to standard domain adaptation.

Method SSDAN-base SSDAN STDA

WER 23.9 22.2 25.0

CER 9.2 8.5 11.1

Component Analysis. In this scenario, we evaluate

the contribution of different components of the proposed

model. These variants include: 1) using different CNN en-

coder to investigate the contribution of encoder, i.e., V1,

V3 and V5 using VGG-based (VGG) [31], ResNet-based

(ResNet) [4], and DenseNet encoder, respectively; 2) intro-

ducing the GAS unit for different encoder to evaluate the

effect of GAS unit among different encoders, i.e., V2, V4,

and V6 are developed based on the V1, V3, and V5, re-

spectively. For the analysis, we choose handwritten text

dataset IAM to evaluate model from both CER and WER,

and all the experiments are on the same training protocol.

Table 5 presents the comparison between the variants of our

model. Firstly, we can observe that DenseNet is a more

powerful encoder from the comparisons among the model

V1, V3, and V5. Furthermore, the comparison pairs (V1,

V2), (V3, V4) and (V5, V6) show that the GAS unit could

always improve performance despite of the types of en-

coders, which demonstrates that considering the sequence-

to-sequence domain adaptation makes sense.

Table 5. Component Analysis.

Components Model V1 V2 V3 V4 V5 V6

Encoder

VGG X X

ResNet X X

DenseNet X X

Adaptation GAS X X X

Evaluation
WER 32.8 26.9 29.9 27.9 23.9 22.2

CER 15.9 12.6 14.3 13.1 9.2 8.5

Effect of Different Domain Shift Measurement. Our

SSDAN learns domain invariant representations by min-

imizing some measure of domain shift between the dis-

tributions of attended fine-grained character-level features

from the source and target text images. In this scenario,

we investigate the effect of different domain shift measure-

ment among CORAL, MMD and adversarial loss (Adver-

sarial). The adversarial loss is measured by an extra domain

classifier, which is a single layer fully-connected network

with 128 hidden units. Specifically, adversarial loss based

method needs to minimize the adversarial loss with respect

to parameters specific to the domain classifier, while maxi-

mizing it with respect to the parameters of text image rec-

ognizer. To unify the training procedure in a single step,

we use a a gradient reversal layer [9] for the minimax opti-

mization. Table 6 shows the results using different measure-

ment of domain shift on the IAM dataset. We can observe

that CORAL-based method outperforms the MMD-based

method and adversarial loss-based method. This may show

that CORAL is more appropriate for adapting attended fine-

grained character-level features.

Table 6. Effect of Different Domain Shift Measurement.

Method CORAL MMD Adversarial

WER 22.2 22.7 24.6

CER 8.5 8.8 10.8

Parameter Sensitive Analysis. In this subsection, we eval-

uate the sensitiveness of the hyper-parameter pc and λ in

the Eq. 9 and Eq. 15, respectively. Here, we conduct the

experiments on the MJSYNTH → SVT task. Specifically,

we explore the different λ and pc from {0.01, 0.1, 1, 10}
and {0, 0.1, 0.2, 0.4, 0.8}, respectively. The evaluation is

conducted by changing one parameter while keeping the

other hyper-parameters fixed. The λ in the objective func-

tion Eq. 15 controls the contribution of sequence domain

adaptation. λ = 0 indicates the proposed model switch-

ing off the sequence domain adaptation, which equals to

the SSDAN-base. While λ > 0 means to perform domain

adaptation. Furthermore, the pc in the gate function of Eq. 9
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decides whether an attended feature performs domain adap-

tation or not. Specifically, if the probability that the current

feature vector belongs to a valid character is larger than pc,

the vector will be performed domain adaptation, otherwise,

it will be neglected as a noise. From other perspective, if

pc = 0, the gate function will not work, which means per-

forming sequence domain adaptation on character-level fea-

ture without any guidance. While pc is too large, the gate

function will be too strict to select enough valid features.

Figure 3 shows different gains of pc values, where λ = 1.

The results experimentally prove that the gate function is

important to the overall performance.
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Figure 3. The effect of model parameters λ (left) and pc (right).

Visualization. In this section, we visualized some recog-

nition results from IAM. The results are shown in the pair

of attention visualization and prediction text. The selected

attention visualization shows the attending location at one

specific time, where the SSDAN-base model suffers recog-

nition error. As shown in Figure 4, while SSDAN-base

failed to deal with the distortion of individual character

caused by handwriting style, SSDAN successfully worked.

As the first two cases shown in Figure 4, even though the

SSDAN-base and SSDAN model attend to the same loca-

tion at one specific time, SSDAN could achieve a better

performance through alleviating the domain shift. More in-

terestingly, we find the SSDAN model can learn more pre-

cise alignment, according to the last two cases in Figure 4.

These results again validate the effectiveness of SSDAN.

Effect of Unsupervised Data. In order to quantify the ef-

fectiveness of unsupervised data, we train our model with

different size of labeled data and unlabeled data, while keep

other hyper-parameters fixed. Figure 5 presents the results

with different data size. Firstly, we observe the SSDAN-

base model, which is a full supervised learning, with dif-

ferent amounts of labeled samples randomly sampling from

the MJSYNTH dataset. The more labeled samples are used,

the higher accuracies on real test datasets get. It’s notable

that using additional unlabeled samples can get consistent

performance improvement by SSDAN, where the size of

unsupervised data is in accordance with the amount of la-

beled data. It indicates that our SSDAN is able to learn the

knowledge from unsupervised data. We also observe that

our model could get significant improvement when avail-

able annotated data is small.
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practicallydractically
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miserable miscracble miserable
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langhed

Input image SSDAN-base SSDAN

Figure 4. Examples showing the recognition result, the left col-

umn is the input image with ground truth, the second column and

the last column denote the recognition result without and with do-

main adaptation, respectively. Each result is shown in the pair of

attention visualization and prediction text.
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Figure 5. The effect of training dataset size on IC-03 (left) and

IIIT5K (right).

5. Conclusion

In this paper, we present a novel SSDAN model for ro-

bust text image recognition, which bridges the sequence-

like text image recognition and domain adaptation. It’s ca-

pable of taking advantage of unsupervised sequence data

to learn more robust representations. The proposed model

could also be generalized to different scenes, which include

scene text, handwritten text and mathematical expression

recognition. Comprehensive experimental results on sev-

eral datasets and extensive analyses have demonstrated the

effectiveness of our algorithm. An interesting open issue

for future research is to further adjust SSDAN framework

to better deal with various sequence domain shift.
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