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Abstract

This paper addresses stereoscopic view synthesis from a

single image. Various recent works solve this task by reor-

ganizing pixels from the input view to reconstruct the target

one in a stereo setup. However, purely depending on such

photometric-based reconstruction process, the network may

produce structurally inconsistent results.

Regarding this issue, this work proposes Multi-Scale Ad-

versarial Correlation Matching (MS-ACM), a novel learn-

ing framework for structure-aware view synthesis. The pro-

posed framework does not assume any costly supervision

signal of scene structures such as depth. Instead, it mod-

els structures as self-correlation coefficients extracted from

multi-scale feature maps in transformed spaces. In train-

ing, the feature space attempts to push the correlation dis-

tances between the synthesized and target images far apart,

thus amplifying inconsistent structures. At the same time,

the view synthesis network minimizes such correlation dis-

tances by fixing mistakes it makes. With such adversarial

training, structural errors of different scales and levels are

iteratively discovered and reduced, preserving both global

layouts and fine-grained details. Extensive experiments on

the KITTI benchmark show that MS-ACM improves both

visual quality and the metrics over existing methods when

plugged into recent view synthesis architectures.

1. Introduction

3D display is becoming universal nowadays. Automatic

conversion of the rich 2D images and videos to 3D is now

a demand that can benefit various industrial fields. To ful-

fill this demand, binocular views are rendered to form the

stereoscopic format for an input scene, while only one of

them is known beforehand. Such single-image based view

synthesis problem, however, is still challenging.

In its early research, view synthesis is often based on

at least two known views (or continuous video sequences),
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Figure 1. Structure preservation for view synthesis. Photomet-

ric losses commonly adopted by existing approaches (e.g., Xie et

al. [39], Niklaus et al. [21] and Godard et al. [9]) often lead to

blurred and distorted structures, which is more severe for thin, un-

salient objects. The proposed MS-ACM addresses this limitation

via a novel adversarial training process that accounts for both large

and fine-grained structures. Best viewed in color with zoom.

so that the 3D scene geometry is well-defined [30, 38, 14].

For a single input view, the gap of 3D understanding is

filled very recently by the strong statistical modeling power

of deep learning. Among these methods, 3D view trans-

formations are formulated as 2D warping fields (e.g. pixel

flows [42, 13, 23], spatially-variant kernels [39, 21], or ho-

mographies [15]), which guide the target view to “copy”

pixels from the input image. Photometric reconstruction er-

rors across views are usually adopted to supervise this pro-

cess in training. However, as such loss functions optimize
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color consistency in average statistics, structure degenera-

tion often happens as blurred, distorted details. It harms

especially the objects from the “minority”, e.g., the small

and thin poles with ambiguous appearance shown in Fig. 1.

To maintain structural consistency during view synthe-

sis, various methods leverage explicit supervisions from the

3D world in addition to the photometric consistency. It

finds forms of scene depths/normals [15, 43], multi-view

inputs [7, 13, 33], and 3D correspondences from CAD mod-

els [32, 23, 27]. Despite the rich 3D information, either of

these is costly and difficult to obtain. Moreover, 3D super-

vision is only restricted to a small number of scene/object

types, limiting the model’s applicability in the wild.

In this paper we propose Multi-Scale Adversarial Corre-

lation Matching (MS-ACM), a novel approach for learning

stereoscopic view synthesis. MS-ACM learns the structural

priors directly from data, instead of assuming any costly

form of 3D supervisions. In the proposed approach, a struc-

ture critic network is appended to the view synthesis one,

which transforms the synthesized and target views into la-

tent feature spaces for structure matching. Each feature

location computes normalized correlations within its sur-

rounding window, whose responses serve as surrogates of

local structural configurations. By training the critic net-

work to maximize the distances of correlation coefficients

between the synthesized and target views, it learns to am-

plify any structural mistakes it sees. This in turn guides the

view synthesis network to correct its mistakes by asking it

to minimize the same distance. Such adversarial training is

performed on multi-scale feature maps, so as to be aware of

both coarse-level and fine-grained structures. To avoid get-

ting to bad minima, novel strategies are proposed to make

the critic network adapted to high-level structures and ro-

bust to subtle noise. We show the effectiveness of MSACM

by plugging it into two recent representative view synthesis

architectures [39, 21]. Extensive results on the challenging

KITTI benchmark [8] demonstrate that MS-ACM improves

visual quality as well as quantitative metrics.

This paper makes the following contributions:

1) We propose a novel adversarial training framework for

structure-preserving stereoscopic view synthesis. It is

friendly to various existing view synthesis models, im-

proving both their performance and generalizability.

2) Correlation based structure representation is proposed

for adversarial training, which effectively captures

scene structures at different scales. Various strategies

are presented to avoid bad local minima as well.

2. Related Works

Rendering novel viewpoints of a given scene was solved

with multi-view geometry for more than two decades. Per-

forming this task with a single image, however, is relatively

new. This section briefly reviews these related approaches.

Multiple-view based synthesis assumes the input scene

is given from multiple known viewpoints. Rich physical 3D

scene structure is provided in this manner, such that corre-

spondences across views can be explicitly established. This

idea arises since 90’s [19, 30, 1]. Later works improved

this pipeline by proposing stronger 3D scene representa-

tions [35, 24], better occlusion handling models [17, 5] and

more powerful texture transfer techniques [25, 37]. Besides

static scene modeling, view synthesis in videos was also

extensively explored to facilitate stabilization tasks [14, 3].

Recent deep learning methods propose to learn direct multi-

to-novel view synthesis functions [7, 33, 22, 20]. Although

multi-view inputs provide more comprehensive understand-

ing of the 3D structure, it does not fit many applications,

especially those based on a single view.

Single-view based synthesis, on the other hand, gener-

ates novel views based on only a single image. Various ap-

proaches first infer the scene geometry (e.g. depths and nor-

mals [15, 43], then synthesize target views with geometry-

grounded view transformations. CAD models as another

form of geometrical signal for object-level novel view syn-

thesis [27, 23, 32, 41]. However, while scene depth/normal

is costly to collect, CAD models are limited to object cate-

gories and provide little knowledge to scene understanding.

On the other hand, several works advocate a self-taught

learning process that directly reorganizes pixels from the

input image to match the target one [42, 39, 34], without

depending on explicit geometrical supervisions. The ratio-

nale behind is that the collective power of massive training

data provides regularizations on the learned view transfor-

mations. Similar idea has also been explored for other tasks,

including depth estimation [9] and visual tracking [36].

However, usually the only training signals are average pho-

tometric errors. Such errors focus on preserving the struc-

tures of majority cases but may neglect uncommon scenar-

ios, leading to over-smoothed details distortion.

Structure regularization with adversarial training

has been explored recently on image segmentation [18, 40,

11]. In these works, the network outputs and groundtruth

segmentations are fed into a shared structure analysis net-

work, which is adversarially trained to exaggerate predic-

tion errors. The proposed idea is inspired from this line

of works, but has two novel aspects. First, we process high-

dimensional signals (i.e. the synthesized images), instead of

low-dimensional segmentation maps. Novel strategies are

introduced to stabilize training and get rid of bad local opti-

mum. Second, rather than training on feature-space ℓ1 dis-

tances, we propose to adopt feature correlations as the struc-

ture surrogate. In this manner, the network is encouraged to

discover high-level edges in the scene, allowing structure-

related mid-level representations to be more easily learned.
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3. The Proposed Approach

3.1. Adversarial Correlation Matching

Before delving into our view synthesis framework, we

first introduce Adversarial Correlation Matching (ACM), a

novel adversarial training process for structure-aware learn-

ing. The proposed framework consists of a structure predic-

tor P and a critic network S . The predictor takes an input x

and generates a structured output y, i.e. y = P (x;wP),
controlled by model parameters wP . For example, in

stereoscopic view synthesis the input is a left-view image,

and the output is its right view. The structure critic network

S takes responsibility of transforming y into a latent fea-

ture space for structure analysis, i.e. f = S (y;wS). We

assume that f takes the form of convolutional feature maps

with spatial information preserved. For a spatial location p,

its feature is accessed by f (p).
In this learned feature space, ACM models structure as

mutual correlations among different spatial locations. More

specifically, for each location p, its local structure config-

uration is represented by the feature cosine distances com-

puted with its spatial neighbours:

c (p) = vec





{

f (p)
T
f (q)

‖f (p)‖2 ‖f (q)‖2

}

q∈Nk(p)



 , (1)

where Nk (p) is the set of neighbour locations of p within

a k-sized spatial window, and ‖·‖2 denotes the ℓ2 norm.

The vec (·) operation reorganizes input values into a vec-

tor. With the structure representation of the synthesized im-

age c, we can now quantize errors with that of groundtruth.

To this end, groundtruth of y, denoted by yg , is fed into

the same S and produces structure representations cg . The

structural error is thus measured by

ds
(

y,yg

)

=
1

|P|

∑

p∈P

‖c (p)− cg (p)‖1 , (2)

i.e. the average ℓ1 distance over all the feature locations P.

For simplicity, we refer (2) to the corr-ℓ1 distance.

In adversarial training, the structure critic network S pur-

sues a feature space that best distinguishes between y and

yg by maximizing (2). Meanwhile, the prediction network

P attempts to produce structured output y that can mini-

mize it. In this manner, it is expected that any structural

difference can be amplified during training, which in turn

provides sufficient signals to supervise predictor training.

In the following, we provide several remarks on ACM.

Link to self-similarity. The proposed approach corre-

lates with the concept of self-similarity for visual match-

ing established before a decade [31]. Self-similarity assigns

each image location a descriptor that characterizes its local

layout patterns, computed by comparing a template window

with a larger search region around the same location. In this

manner, per-image textures are filtered out and only struc-

tural configurations are kept, making the matching process

robust. Our structure representation (1) fits this idea and can

be considered as normalized correlations between a size-1
template and a search window.

Intuitions behind corr-ℓ1 distance. Previous works ad-

vocate using feature ℓ1 distance for adversarial structure

learning [40, 11], i.e. 1
|P|

∑

p∈P
‖f (p)− fg (p)‖1. Intu-

itively, corr-ℓ1 loss explicitly models local structural pat-

terns, which should mitigate the difficulty of encoding

structures directly into features. By computing cosine sim-

ilarities among features, only feature-level “edges” are pre-

served while impact of other factors is reduced. This would

save a great power of network capacities in learning tex-

tures, brightness, etc., that are irrelevant to scene structures.

Another shortage of ℓ1 loss, when applied for adversarial

training, is its sensitiveness to the magnitude of features.

It says that when S maximizes feature distance, it tends to

scale the feature magnitudes up and make training unstable,

as recognized in both [40] and [11]. Weight clipping was

adopted to prevent this issue, introducing difficulty in pa-

rameter tuning and limiting the model’s capacity. Instead,

corr-ℓ1 is a bounded, magnitude-insensitive loss. Thus, the

network does not need to scale up features to conform the

training objective. Recent findings also support this claim

and show its positive effect for stabilizing training [16].

3.2. Getting Rid of Bad Minima

Discriminator in adversarial networks easily gets stuck

into bad local minima when trained on high dimensional

signals [26]. There is no exception for ACM as in tasks

like view synthesis, the structure critic network operates on

color images. We address this issue as follows.

Introducing robustness to noise. The prediction y and

groundtruth y0 often have an inherent distribution gap de-

pending on the generation process of the predictor P . For

example, the synthesized pixels of the predicted view are

usually more correlated than those in groundtruth, due to

the interpolation or warping operations during view synthe-

sis. They can also differ in lighting and textures caused by

camera len settings and the data capture environment. If the

critic network notices them, it pushes the predictions and

groundtruths into bad modes far away in feature space, and

contributes nothing to learning.

In training GANs, such distribution gap problem was ac-

tively studied and a working trick is Instance Noise [2]. We

adapt this idea into ACM as follows. When training S , we

add random noises into the groundtruth yg to generate yn,

and feed it into S to get the structure representation cn. We

ask S to learn noise resistant features, by constraining cn to
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Figure 2. The proposed framework for stereoscopic view synthesis. The view synthesis network predicts the synthesized view of the

input image, which is fed into the structure critic network along with its groundtruth to produce mutli-scale feature maps. Meanwhile, a

noisy version of the groundtruth image goes through the same procedure. During training, the view synthesis network minimizes the pixel

ℓ1 distance, the ℓ1 and corr-ℓ1 distances of extracted feature maps between the synthesized image and groundtruth. The structure critic

network maximizes the same corr-ℓ1 distance, while minimizing it between the groundtruth and its noisy transform. At the same time, the

extracted feature maps reconstruct the inputs with a regularization network jointly trained with the critic. Best viewed in color.

be close to cg . It equals to minimizing

dn
(

yg,yn

)

=
1

|P|

∑

p∈P

‖cg (p)− cn (p)‖1 . (3)

In this manner, predictor/dataset-specific characteristics are

broken by noise, forcing S aware of the real image content.

Making features content-aligned. Although in princi-

ple S finds any differences between two images, it is better

to make learned features align with the inputs. This idea

was originally proposed by Hwang et al. [11], which facil-

itates the network to learn good structure basis more effec-

tively. To this end, a structure regularization network R is

appended behind S , which consumes its output features and

reconstructs the input image. Networks R and S are jointly

trained, minimizing the ℓ1 reconstruction loss

dr
(

y,yg

)

= ‖y −R (c;wR)‖1 +
∥

∥yg −R (cg;wR)
∥

∥

1
.

(4)

Closing the gap of feature scaling. Since corr-ℓ1 is in-

sensitive of feature magnitudes, there exists a potential risk

of overfitting. Imagine that S pushs the predictions and

groundtruths into different feature spaces with their own

scale of magnitude, but correlation values are still the same.

If this happens, optimizing structure distance in two differ-

ent feature spaces may generate unpredictable results. To

prevent this from happening, we train the predictor P to

pursue the feature space of groundtruth:

df
(

y,yg

)

=
1

|P|

∑

p∈P

‖f (p)− fg (p)‖1 . (5)

In summary, the ACM training objective for C is

max
wC,wR

LC

(

y,yg,yn

)

=− λnds
(

yn,yg

)

−
λr

2
dr

(

y,yg

)

+ ds
(

y,yg

)

,

(6)

where λn and λr are positive weights. For P , the training

objective is defined by

min
wP

LP

(

y,yg

)

= ds
(

y,yg

)

+ df
(

y,yg

)

. (7)

In the rest of this section, we show how ACM is instan-

tiated in solving stereoscopic view synthesis.

3.3. View Synthesis with Multi­Scale ACM

The proposed training framework for stereoscopic view

synthesis is summarized in Fig. 2. In this framework, the

view synthesis network takes a left view as input and reorga-

nizes its pixels to generate a predicted right view. The pre-

dicted view, groundtruth, and a noisy version of groundtruth

are fed into the critic network for structure analysis. During

testing, only the view synthesis network is kept and other

parts are discarded.

The view synthesis network can be implemented with

various existing architectures [42, 39, 21]. It is trained with

the ℓ1 photometric reconstruction loss as well as the ACM

loss (7). The structure critic network S and regularization

network R from a encoder-decoder structure, for which we
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adopt U-Net [28]. It consists of three downsampling stages,

and three upsampling ones. Each downsampling stage has

two convolution layers interleaved with Leaky ReLU non-

linearity. Average pooling is applied after each stage. As

such, the structure critical network actually provides feature

maps of three scales. We perform ACM at each scale to

capture structures at different granularities. We refer this

extended version of ACM to Multi-Scale ACM (MS-ACM).

The training algorithm. Following the practice of train-

ing GANs [10], we alternate updating P and S till conver-

gence. At each training step, the groundtruth is transformed

by three types of noises: additive Gaussian noise, Gaussian

blur and random pixel shifts, as well as their combinations.

For random pixel shifting, we generate a small local random

offset field at all pixel locations, and apply bilinear warp-

ing [12, 44]. The strength of noise is decayed overtime.

In this manner, we expect S to focus on high-level coarse

structures and neglect other details at first to avoid bad min-

ima. We summarize the training algorithm in Alg. 1.

Algorithm 1 Training algorithm of MS-ACM for stereo-

scopic view synthesis.

Require: training set: left views X, and right views Yg

repeat

1. Sample a batch
{

x(i)
}m

i=1
∈ X,

{

y
(i)
g

}m

i=1
∈ Yg;

2. Get predictions y(i) = P
(

x(i);wP

)

, and generate

noisy groundtruth y
(i)
n , i ∈ {1, 2, · · · ,m};

3. Compute feature correlations c(i), c
(i)
g , c

(i)
n by (1);

4. Update S , R by ascending their gradients:

∇wS ,wR

1
m

∑m

i=1 LC

(

y(i),y
(i)
g ,y

(i)
n

)

;

5. Update P by descending its gradients:

∇wP

1
m

∑m

i=1

(∥

∥

∥y(i) − y
(i)
g

∥

∥

∥+ LP

(

y(i),y
(i)
g

))

;

6. (Optionally) decay learning rate and noise;

until maximum training iteration is reached.

4. Experiments

4.1. Experimental Settings

Dataset and evaluation metrics. To benchmark exist-

ing approaches for stereoscopic view synthesis, we set up

experiments on the challenging KITTI dataset [8]. The raw-

form KITTI contains a total of 42382 rectified stereo pairs

captured from 61 scenes. We benchmark models on the 400
pairs provided as the official training set in KITTI’s 2015

challenge. These images span across 28 scenes, which are

excluded and the rest 33 ones are kept for training, result-

ing into 34071 training pairs in total. The Eigen split [6]

is also included in evaluation. It provides a test split cover-

ing 697 pairs from 29 scenes, and suggests training with the

23488 pairs sampled from the rest 32 scenes. Across this

section, these two splits will be referred to KITTI-Raw and

KITTI-Eigen, respectively.

We follow previous works on view synthesis [15, 42]

and adopt Root Mean Square Deviation (RMSE), Peak

Signal-to-noise Ratio (PSNR) and Structure Similarity In-

dex (SSIM) as evaluation metrics. As this work aims to

improve the quality of structures, we also perform evalua-

tions in gradient space. Specifically, the metrics Grad. x

and Grad. y measure the mean squared errors between the

gradients of the synthesized and groundtruth images in hor-

izontal and vertical directions, respectively.

Baselines. We integrate MSACM into two recent rep-

resentative architectures, Deep3D [39] and SepConv [22].

SepConv is originally designed for video frame interpo-

lation, which requires two frames as input. We tailor it

for stereoscopic view synthesis by removing one image in-

put and keeping other layers fixed. We choose these two

baselines for their concise designs and strong performance.

However, it should be noted that the proposed approach is

general and not restricted to certain architectures.

Besides Deep3D and SepConv, we also compare with

LRDepth [9]. All these approaches do not assume addi-

tional inputs such as scene depths or multi-view images,

thus are directly comparable. For LRDepth, we make use

of the models released by the authors. As Deep3D and Sep-

Conv do not report results on KITTI or release the training

scripts, we retrain them by integrating the authors’ source

codes into our training framework, as described as follows.

We ensure that our integrations keep their original details of

model definition that can reproduce their released results.

Implementation details. During training, the high-

resolution KITTI images are firstly downsampled by half

at resolution 188× 621. Patches of size 128× 256 are ran-

domly cropped on the downsampled images, which form

mini-batches of 8 images. We apply Adam optimizer with

the first and second moment decay equal 0.5 and 0.999, re-

spectively. Training lasts for 50 epochs, with a learning rate

10−4 that is exponentially decayed by half every 20 epochs.

In training MS-ACM, noise is decayed every epoch with

exponential factor 0.95. During testing, the image is down-

sampled to a size 188 × 621, on which a 160 × 608 region

is cropped from the top-left corner, to meet the aspect ratio

requirement of baselines.

Throughout the evaluations, the weights λr and λn in (6)

are set to 10, while the window size for computing correla-

tions is set to 3, if not specifically explained.

4.2. Comparisons with Existing Approaches

Benchmarking results on KITTI. The results are sum-

marized in Table 1. Besides the baselines trained with the

ℓ1 pixel reconstruction loss, we also compare with a vari-

ant trained with multi-scale SSIM, an extensively adopted

structure-aware loss. As the table shows, the proposed ap-
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Table 1. Benchmarking results on the KITTI-Raw (left) and KITTI-Eigen (right) datasets. Arrow ↑ (↓) denotes the larger (smaller) number,

the better results. Bold highlights the top place while underline the second.

Models RMSE ↓ PSNR ↑ Grad. x ↓ Grad. y ↓ SSIM ↑ RMSE ↓ PSNR ↑ Grad. x ↓ Grad. y ↓ SSIM ↑

LRDepth 28.052 19.590 205.124 131.621 0.751 29.868 19.103 203.210 138.895 0.737

Deep3D 19.466 22.854 137.803 81.960 0.829 22.694 21.400 162.112 111.935 0.775

+MS-SSIM 19.520 22.790 135.494 82.256 0.833 23.017 21.295 156.849 110.052 0.782

+MS-ACM 18.062 23.577 120.626 75.248 0.844 22.159 21.624 158.053 110.584 0.787

SepConv 19.556 22.861 141.467 83.520 0.827 23.796 21.010 174.754 119.061 0.764

+MS-SSIM 19.825 22.709 142.557 93.204 0.832 23.801 20.987 171.366 119.858 0.766

+MS-ACM 18.370 23.467 128.214 79.415 0.835 23.519 21.120 170.658 119.543 0.768
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Figure 3. Qualitative results on the KITTI dataset. In each example, red rectangle marks the regions for comparison.

proach improves over baseline approaches consistently on

nearly all the metrics. On the KITTI-raw dataset, a large

improvement is achieved on the gradient-specific measures,

illustrating that the proposed approach makes model train-

ing sensitive to scene boundaries.

Besides result comparisons, Table 1 also suggests sev-

eral observations that worth to discuss. First, although MS-

ACM does not apply SSIM as a training loss, it achieves

better SSIM numbers even than training directly with SSIM.

It seems strange at the first glance, as the model should de-

vote its capacity to optimizing this specific metric and it

indeed gets a lower SSIM loss during training. We attribute

this improvement to the stronger generalization ability of

MS-ACM, which leads to better testing behavior. In the

next subsection, we further demonstrate this point.

Second, although the proposed approach still achieves

the best results on KITTI-Eigen, the gap is closer than that

on KITTI-Raw. We suspect that it is caused by the bias of

dataset sampling. As the distributions of training and testing

data of KITTI-Raw are more different (the sites where the

data are captured do not overlap), it requires the model to

have a better generalization ability. For KITTI-Eigen, on

the contrary, training and testing distributions overlap much

and the improvement is relatively small.

Qualitative results. In Fig. 3, we show representa-

tive results generated by different approaches. With adver-

sarial training, MS-ACM pays attention to any noticeable

structural differences. As one can see, it preserves object

shapes better, recovers over-smoothed details and success-

fully handles deformation caused by occlusions. In con-
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Figure 4. Visual comparisons between MS-ACM and MS-SSIM.

See text for details.

Table 2. Analyzing different window parameters on KITTI-Raw

dataset. Arrow ↑ (↓) denotes the larger (smaller) number, the better

results. Bold highlights the top place while underline the second.

Multi-Scale? Win. Size RMSE ↓ PSNR ↑ SSIM ↑

✗ 3 20.870 22.257 0.813

✗ 7 22.124 21.660 0.773

✗ 11 20.393 22.470 0.802

✓ 3 18.370 23.467 0.835

✓ 7 18.500 23.371 0.829

✓ 11 18.848 23.167 0.826

trary, the baselines either sacrifice the small and thin details

to achieve a better average quality (e.g. Deep3D and Sep-

Conv), or exhibit large distortions due to the errors in dis-

parity estimation (e.g. LRDepth).

Comparisons with SSIM criterion. SSIM is a differ-

entiable structure-aware criterion, thus is widely adopted

for training. Essentially, SSIM optimizes the consistency

of first and second-order moments within multi-scale lo-

cal windows between the predicted and groundtruth images.

Such statistical matching, however, renders it not sensitive

to local deformations and small details [29]. As shown

in Fig. 4, although SSIM fixes coarse structural mistakes

but leaves the fine-grained errors unaddressed. As a result,

blurred boundaries and over-smoothed details still happen.

MS-ACM, on the contrary, does not have such limitation.

Visualization of disparities. The Deep3D or SepConv

architectures estimate for each output pixel the likelihoods

that it equals to the input pixels at several fixed horizontal

offsets. The disparities could be thus produced by aggregat-

ing the offsets weighted by the learned likelihoods, which

we show in Fig. 5. As one can see, the disparities trained

with SSIM are more visually smooth, but not accurate along

object boundaries. In contrary, for MS-ACM disparities are

Figure 5. Comparing the learned disparities. For each example, we

show disparities and the synthesized views trained with MS-SSIM

and MS-ACM, respectively.

Table 3. Parameter study on λn and λr .

λn/λr 0.1/0.1 0.1/1 1/0.1 1/10 10/1 10/10

PSNR 22.96 23.06 22.97 23.59 23.62 23.92

SSIM 0.83 0.83 0.84 0.84 0.84 0.85

adapted to scene edges and exhibits sharp depth boundaries.

However, in textureless regions (e.g. road), they are not that

accurate and smooth. Adding smoothness constraint solves

this problem, but is not desired for view synthesis as it may

smooth out object boundaries and cause distortions.

4.3. Performance Analysis

In this section, we conduct extensive experiments to see

how the proposed approach works under various situations.

All the experiments are based on the SepConv baseline.

Parameter analysis. At first, we study how different

window sizes impact the proposed approach. We also con-

sider a single-scale variant, where only the deepest scale is

involved for structure matching. From the results in Table 2,

we conclude that multi-scale matching is consistently bene-

ficial, as learning different feature scales enables both local

and global structural mistakes to be fixed. However, larger

window sizes do not necessarily help improve the results.

We suspect that as deep representations already capture suf-

ficient local context, a small window would suffice.

In Table 3, we evaluate different combinations of param-

eters λn and λr in Eqn. (6). We find that they both improve

they both improve results as a stable behaviour: as long as

they are large enough (i.e. λr, λn ≥ 1), the final results are

not very sensitive to them.

Ablation study of design choices. In the second exper-

iment, we show empirically the necessity of several impor-
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Table 4. Ablation study of design choices on the KITTI 2015 split. Arrow ↑ (↓) denotes the larger (smaller) number, the better results. Bold

highlights the top place while underline the second.

Loss Noise? Feat. Reg.? Self Recon.? RMSE ↓ PSNR ↑ Grad. x ↓ Grad. y ↓ SSIM ↑

Corr-ℓ1 ✗ ✗ ✗ 44.662 15.272 386.909 338.504 0.491

Corr-ℓ1 ✓ ✗ ✗ 19.558 22.841 141.227 87.518 0.819

Corr-ℓ1 ✓ ✓ ✗ 19.280 22.961 137.666 86.353 0.825

Corr-ℓ1 ✓ ✓ ✓ 18.370 23.461 128.214 79.415 0.835

ℓ1 ✓ ✓ ✓ 18.921 23.111 132.578 85.043 0.819
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Figure 6. Studying different components of the proposed approach

by visual comparisons. See text for details.

tant design choices. The numbers are reported in Table 4,

and a visual comparison is provided in Fig. 6. Without en-

forcing noise resistance (w/o noise), the model simply does

not learn much. The structure critic network notices the

inherent distribution differences between the synthesized

and real input, thus the view synthesis network tends to

copy the input to make them look real. After adding noise

(w/o feat. reg.), trainings succeeds, but details are missing.

Feature regularization (w/o self recon.) improves the de-

tails, but does not address overall distortion. Incorporating

self-reconstruction (corr-ℓ1) helps a lot by learning features

tightly correlated with the spatial context of the scene.

We also replace the corr-ℓ1 loss with the standard fea-

ture ℓ1 loss for adversarial training, and it gets worse per-

formance. We believe that explicit modeling of structures in

MS-ACM eases the difficulty of encoding them with feature

learning. As shown in Fig. 6, ℓ1 loss does not learn the thin

structure although equipped with the same other strategies.

Generalizability to unseen dataset. As mentioned pre-

viously, we believe that an advantage of MS-ACM is its bet-

ter generalizability over classic metrics. The intuition is that

adversarial training provides easy-to-hard dynamic training

signals, which may prevent the model from continuously

optimizing a fixed objective and getting overfitting. To illus-

trate this point, we evaluate the model trained on KITTI-raw

dataset to the test set of Cityscapes benchmark [4], without

further finetuning. The input image is resized to resolution

192×384, which matches the scale of the trained model. In

Table 5, it shows that while MS-SSIM does not apparently

improves over the baseline, MS-ACM significantly boosts

Figure 7. The features learned by the structure critic network, vi-

sualized by PCA projection.

Table 5. Model generalizability on the Cityscapes test set. Arrow

↑ (↓) denotes the larger (smaller) number, the better results. Bold

highlights the top place while underline the second.

Models SepConv +MS-SSIM +MS-ACM

RMSE ↓ 19.547 19.586 17.731

PSNR ↑ 22.620 22.603 23.465

SSIM ↑ 0.650 0.661 0.693

the performance in nearly all metrics.

Visualization of learned features. Finally, we visual-

ize the learned features in the structure critic network by

PCA projection, and show them in Fig. 7. As expected, the

first scale learns local edges to represent fine-level informa-

tion. From the second scale, the model seems to filter out

low-level colors and emphasize more on region shapes (see

the marked regions). The third scale, as it shows, captures

more complex structural patterns that the model finds best

to represent the global layout of the scene.

5. Conclusion

This paper proposes Multi-Scale Adversarial Correlation

Matching for stereoscopic view synthesis. MS-ACM trans-

forms the synthesized results and groundtruths into multi-

scale feature spaces, in which feature correlations are com-

puted as structural representation. By adversarial training

on the distances of such representations, errors of differ-

ent scales are discovered and reduced, enabling structure

preservation at various granularities.

In the future work, we are interested in introducing high-

level cues ( e.g. semantics, object contours) to incorporate

scene-level knowledge for better structure learning.
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