
3D Point Capsule Networks

Yongheng Zhao ✝ ✥ •

Tolga Birdal ✝ * •

Haowen Deng ✝ * Federico Tombari ✝

✝ Technische Universität München, Germany ✥ University of Padova, Italy
* Siemens AG, München, Germany

Abstract

In this paper, we propose 3D point-capsule networks, an

auto-encoder designed to process sparse 3D point clouds

while preserving spatial arrangements of the input data. 3D

capsule networks arise as a direct consequence of our uni-

fied formulation of the common 3D auto-encoders. The dy-

namic routing scheme [30] and the peculiar 2D latent space

deployed by our capsule networks bring in improvements

for several common point cloud-related tasks, such as ob-

ject classification, object reconstruction and part segmen-

tation as substantiated by our extensive evaluations. More-

over, it enables new applications such as part interpolation

and replacement.

1. Introduction

Fueled by recent developments in robotics, autonomous

driving and augmented/mixed reality, 3D sensing has be-

come a major research trend in computer vision. Conversely

to RGB cameras, the sensors used for 3D capture provide

rich geometric structure, rather than high-fidelity appear-

ance information. This is proved advantageous for those

applications where color and texture are insufficient to ac-

complish the given task, such as reconstruction/detection of

texture-less objects. Unlike the RGB camera case, 3D data

come in a variety of forms: range maps, fused RGB-D se-

quences, meshes and point clouds, volumetric data. Thanks

to their capability of representing a sparse 3D structure ac-

curately while being agnostic to the sensing modality, point

clouds have been a widespread choice for 3D processing.

The proliferation of deep learning has recently leaped

into the 3D domain and architectures for consuming 3D

points have been proposed either for volumetric [28] or

sparse [26] 3D representations. These architectures over-

came many challenges brought in by 3D data, such as order-

invariance, complexity due to the added data dimension and

local density variations. Unfortunately they often discard

•First two authors contributed equally to this work.
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Figure 1. Our 3D-PointCapsNet improves numerous 3D tasks

while enabling interesting applications such as latent space part

interpolation or complete part modification, an application where

a simple cut-and-paste results in inconsistent outputs.

spatial arrangements in data, hence falling short of respect-

ing the parts-to-whole relationship, which is critical to ex-

plain and describe 3D shapes; maybe even more severe than

in the 2D domain due to the increased dimensionality [2].

In this work we first present a unified look to some

well known 3D point decoders. Within this view, and

based on the renowned 2D capsule networks (CN) [30], we

propose the unsupervised 3D point-capsule networks (3D-

PointCapsNet), an auto-encoder for generic representation

learning in unstructured 3D data. Powered by the built-in

routing-by-agreement algorithm [30], our network respects

the geometric relationships between the parts, showing bet-

ter learning ability and generalization properties. We design

our 3D-PointCapsNet architecture to take into account the

sparsity of point clouds by employing PointNet-like input

layers [26]. Through an unsupervised dynamic routing, we

organize the outcome of multiple max-pooled feature maps

into a powerful latent representation. This intermediary la-

tent space is parameterized by latent capsules - stacked la-

tent activation vectors specifying the features of the shapes

and their likelihood.

Latent capsules obtained from point clouds alleviate the

restriction of parameterizing the latent space by a single,
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low dimensional vector; instead they give explicit control

on the basis functions that get composed into 3D shapes.

We further propose a novel 3D point-set decoder operating

on these capsules, leading to better reconstructions with in-

creased operational capabilities as shown in Fig. 1. These

new abilities stem from the latent capsules instantiating as

various shape parameters and concentrating not spatially

but semantically across the shape under consideration, even

when trained in an unsupervised fashion. We also propose

to supply a limited amount of task-specific supervision such

that the individual capsules can excel at solving individual

sub-problems, e.g. if the task is part-based segmentation,

they specialize on different meaningful parts of each shape.

Our extensive quantitative and qualitative evaluation

demonstrates the superiority of our architecture. First, we

advance the state of the art by a significant margin on mul-

tiple frontiers such as 3D local feature extraction, point

cloud reconstruction and transfer learning. Next, we show

that the distinct attention mechanism of the capsules, driven

by dynamic routing, allows a wider range of 3D applica-

tions compared to the state of the art auto-encoders: a)

part replacement, b) part-by-part animation via interpola-

tion. Note that both of these tasks are non-trivial for stan-

dard architectures that rely on 1D latent vectors. Finally,

we present improved generalization to unseen data, reach-

ing accuracy levels up to 85% even when using 1% of train-

ing data. In a nutshell, our core contributions are:

1. Motivated by a unified perspective of the common point

cloud auto-encoders, we propose capsule networks for

the realm of 3D data processing as a powerful and ef-

fective tool.

2. We show that out point-capsule AE can surpass the cur-

rent art in reconstruction quality, local 3D feature ex-

traction and transfer learning for 3D object recognition.

3. We adapt our latent capsules to different tasks with semi-

supervision and show that the latent capsules can master

on peculiar parts or properties of the shape. In the end,

this paves the way to higher quality predictions and a di-

verse set of applications like part specific interpolation.

Our source code is publicly available under:

https://tinyurl.com/yxq2tmv3.

2. Related Work

Point Clouds in Deep Networks Thanks to their generic

capability of efficiently explaining 3D data without mak-

ing assumptions on the modality, point clouds are the pre-

ferred containers for many 3D applications [48, 25]. Due

to this widespread use, recent works such as PointNet [26],

PointNet++ [27], SO-Net [22], spherical convolutions [20],

Monte Carlo convolutions [12] and dynamic graph net-

works [44] have all devised point cloud-specific architec-

tures that exploited the sparsity and permutation-invariant

properties of 3D point sets. It is also common to process

point sets by using local projections reducing the convolu-

tion operation down to two dimensions [34, 15].

Recently, unsupervised architectures followed up on

their supervised counterparts. PU-Net [43] proposed bet-

ter upsampling schemes to be used in decoding. Fold-

ingNet [41] introduced the idea of deforming a 2D grid to

decode a 3D surface as a point set. PPF-FoldNet [7] im-

proved upon the supervised PPFNet [8] in local feature ex-

traction by benefiting from FoldingNet’s decoder [41]. At-

lasNet [11] can be seen as an extension of FoldingNet to

multiple grid patches and provided extended capabilities

in data representation. PointGrow [32] devised an auto-

regressive model for both unconditional and conditional

point cloud generation leading to effective unsupervised

feature learning. Achlioptas et al. [1] adapted GANs to 3D

point sets, paving the way to enhanced generative learning.

2D Capsule Networks Thanks to their general applica-

bility, capsule networks (CNs) have found tremendous use

in 2D deep learning. LaLonde and Bagci [19] developed a

deconvolutional capsule network, called SegCaps, tackling

object segmentation. Durate et al. [9] extended CNs to ac-

tion segmentation and classification by introducing capsule-

pooling. Jaiswal et al. [16], Saqur et al. [31] and Upad-

hyay et al. [35] proposed Capsule-GANs, i.e. capsule net-

work variants of the standard generative adversarial net-

works (GAN) [10]. These have shown better 2D image

generation performance. Lin et al. [23] showed that capsule

representations learn more meaningful 2D manifold embed-

dings than neurons in a standard CNN do.

There have also been significant improvements upon the

initial CN proposal. Hinton et al. improved the routing by

EM algorithm [13]. Wang and Liu saw the routing as an op-

timization minimizing a combination of clustering-like loss

and a KL regularization term [36]. Chen and Crandall [6]

suggested trainable routing for better clustering of capsules.

Zhang et al. [47] unified the existing routing methods under

one umbrella and proposed weighted kernel density estima-

tion based routing methods. Zhang et al. [46] chose to use

the norm to explain the existence of an entity and proposed

to learn a group of capsule subspaces onto which an input

feature vector is projected. Lenssen et al. [21] introduced

guaranteed equivariance and invariance properties to cap-

sule networks by the use of group convolutions.

3D Capsule Networks Up until now, the use of the cap-

sule idea in the 3D domain has been a rather uncharted ter-

ritory. Weiler et al. [38] rigorously formalized the con-

volutional capsules and presented a convolutional neural

network (CNN) equivariant to rigid motions. Jimenez et

al. [17] as well as Mobniy and Nguyen [24] extended cap-

sules to deal with volumetric medical data. VideoCapsu-

leNet [9] also used a volumetric representation to handle
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Figure 2. 3D Point Capsule Networks. Our capsule-encoder accepts an N × 3 point cloud as input and uses an MLP to extract N × 128
features from it. These features are then sent into multiple independent convolutional-layers with different weights, each of which is max-

pooled to a size of 1024. The pooled features are then concatenated to form the primary point capsules (PPC) (1024× 16). A subsequent

dynamic routing clusters the PPC into the final latent capsules. Our decoder, responsible for reconstructing point sets given the latent

features, endows the latent capsules with random 2D grids and applies MLPs (64− 64− 32− 16− 3) to generate multiple point patches.

These point patches target different regions of the shape thanks to the DR [30]. Finally, we collect all the patches into a final point cloud and

measure the Chamfer distance to the input to guide the network to find the optimal reconstruction. In figure, part-colors encode capsules.

temporal frames of the video. Yet, to the best of our knowl-

edge, we are the first to devise a capsule network specif-

ically for 3D point clouds, exploiting their sparse and un-

structured nature for representing 3D surfaces.

3. Method

3.1. Formulation

We first follow the AtlasNet convention [11] and present

a unified view of some of the common 3D auto-encoders.

Then, we explain our 3D-PointCapsNet within this geomet-

ric perspective and justify its superiority compared to its an-

cestors. We will start by recalling the basic concepts:

Definition 1 (Surface and Point Cloud)

A 3D surface (shape) is a differentiable 2-manifold embed-

ded in the ambient 3D Euclidean space: M2 ∈ R
3. We

approximate a point cloud as a sampled discrete subset of

the surface X = {xi ∈ M2 ∩ R
3}.

Definition 2 (Diffeomorphism)

A diffeomorphism is a continuous, invertible, structure-

preserving map between two differentiable surfaces.

Definition 3 (Chart and Parametrization)

We admit an open set U ∈ R
2 and a diffeomorphism C :

M2 7→ U ∈ R
2 mapping an open neighborhood in 3D to

its 2D embedding. C is called a chart. Its inverse, Ψ ≡
C−1 : R2 7→ M2 is called a parameterization.

Definition 4 (Atlas)

A set of charts with images covering the 2-manifold is called

an atlas: A = ∪iCi(xi).

A 3D auto-encoder learns to generate a 3D surface X ∈
M2 ∩R

N×3. By virtue of Dfn. 3 Ψ deforms a 2D point set

to a surface. The goal of the generative models that are of

interest here is to learn Ψ to best reconstruct X̂ ≈ X:

Definition 5 (Problem)

Learning to generate the 2-manifolds is defined as finding

function(s) Ψ(U |θ) : Ψ(U |θ) ≈ X [11]. θ is a lower di-

mensional parameterization of these functions: |θ| < |X|.

Theorem 1

Given that C−1 exists, Ψ, chosen to be a 3-layer MLP, can

reconstruct arbitrary 3D surfaces.

Sketch of the proof. The proof is given in [41] and follows

from the universal approximation theorem (UAT).

Theorem 2

There exists an integer K s.t. an MLP with K hidden units

universally reconstruct X up to a precision ǫ.

Sketch of the proof. The proof follows trivially

from Thm. 1 and UAT [11].

Given these definitions, some of the typical 3D point de-

coders differentiate by making four choices [26, 11, 41]:

1. An open set U or discrete grid U ≡ P = {pi ∈ R
2}.

2. Distance function d(X, X̂) between the reconstruction

X̂ and the input shape X.

3. Parameterization function(s) Ψ.

4. Parameters (θ) of Ψ: Ψ(U |θ).
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Figure 3. Comparison of four different state-of-the-art 3D point decoders. PointNet uses a single latent vector, and no surface assumption.

Thus, θpointnet = f . FoldingNet [41] learns a 1D latent vector along with a fixed 2D grid θfolding = {f , P}. The advanced AtlasNet [11]

learns to deform multiple 2D configurations onto local 2-manifolds: θatlas = {f , {Pi}}. Our point-capsule-network is capable of learning

multiple latent representations each of which can fold a distinct 2D grid onto a specific local patch, θours = {{fi}, {Pi}}

One of the first works in this field, PointNet [26] is ex-

tended naturally to an AE by [1] making arguably the sim-

plest choice. We will refer to this variant as PointNet. It

lacks the grid structure U = ∅ and functions Ψ only de-

pend upon a single latent feature: Ψ(U |θ) = Ψ(θ) =
MLP(· | f ∈ R

k). FoldingNet uses a two-stage MLP as Ψ to

warp a fixed grid P onto X. A transition from FoldingNet

to AtlasNet requires having multiple MLP networks operat-

ing on multiple 2D sets {Pi} constructed randomly on the

domain ]0, 1[2: U(0, 1). These explain the better learning

capacity of AtlasNet: different MLPs learn to reconstruct

distinct local surface patches by learning different charts.

Unfortunately, while numerous charts can be defined in

the case of AtlasNet, all of the methods above still rely on

a single latent feature vector, replicated and concatenated

with U to create the input to the decoders. However, point

clouds are found to consist of multiple basis functions [33]

and having a single representation governing them all is not

optimal. We opt to go beyond this restriction and choose to

have a set of latent features {fi} to capture different, mean-

ingful basis functions.

With the aforementioned observations we can now

re-write the well known 3D auto-encoders and introduce a

new decoder formulation:

PointNet [26]

U = P = ∅

Ψ(θ) := MLP(·)

θ := f

d(X, X̂) := dEMD(X, X̂)

AtlasNet [11]

U = {Pi} : Pi ∈ U(0, 1) (1)

Ψ(θ) := {MLPi(·)} (2)

θ := {f , {Pi}} (3)

d(X, X̂) := dCH(X, X̂) (4)

FoldingNet [41]

U = P = GM×M

Ψ(θ) :=MLP(MLP(·))

θ := {f ,P}

d(X, X̂) := dCH(X, X̂)

Ours

U = {Pi} : Pi ∈ U(0, 1) (5)

Ψ(θ) := {MLPi(·)} (6)

θ := {F , {fi}, {Pi}} (7)

d(X, X̂) := dCH(X, X̂) (8)

where dEMD is the Earth Mover [29] and dCH is the Chamfer

distance. GM×M = {(i ⊗ j) : ∀i, j ∈ [0, . . . , M−1

M
]} is a

2D uniform grid. f ∈ R
k represents a k-dimensional latent

vector. U(a, b) depicts an open set defined by a uniform

random distribution in the interval ]a, b[2.

Note that it is possible to easily mix these choices to cre-

ate variations‡. Though, many interesting architectures only

optimize for a single latent feature f . To the best of our

knowledge, one promising direction is taken by the capsule

networks [14], where multitudes of convolutional filters en-

able the learning of a collection of capsules {fi} thanks to

the dynamic routing [30]. Hence, we learn our parameters

{θi} by devising a new point cloud capsule decoder that we

coin 3D-PointCapsNet. We illustrate the choices made by

four AEs under this unifying umbrella in Fig. 3.

3.2. 3D­PointCapsNet Architecture

We now describe the architecture of the proposed 3D-

PointCapsNet as a deep 3D point cloud auto-encoder,

whose structure is depicted in Fig. 2.

Encoder The Input to our network is an N × d point

cloud, where we fix N = 2048 and for typical point sets

d = 3. Similarly to PointNet [26], we use a point-wise

Multi-Layer Perceptron (MLP) (3−64−128−1024) to ex-

tract individual local feature maps. In order to diversify the

learning as suggested by capsule networks, we feed these

feature maps into multiple independent convolutional lay-

ers with different weights, each with a distinct summary of

the input shape with diversified attention. We then max-

pool their responses to obtain a global latent representation.

These descriptors are then concatenated into a set of vec-

tors named primary point capsules, F. Size of F depends

upon the size Sc := 1024 and the number K := 16 of in-

dependent kernels at the last layer of MLP. We then use the

dynamic routing [30] to embed the primary point capsules

into higher level latent capsules. Each capsule is indepen-

dent and can be considered as a cluster centroid (codeword)

of the primary point capsules. The total size of the latent

capsules is fixed to 64× 64 (i.e., 64 vectors each sized 64).

‡FoldingNet presents evaluations with random grids in their appendix.
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Table 1. Descriptor matching results (recall) on the standard 3DMatch benchmark [45, 7].

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

3DMatch [45] 0.5751 0.7372 0.7067 0.5708 0.4423 0.6296 0.5616 0.5455 0.5961

CGF [18] 0.4605 0.6154 0.5625 0.4469 0.3846 0.5926 0.4075 0.3506 0.4776

PPFNet [8] 0.8972 0.5577 0.5913 0.5796 0.5769 0.6111 0.5342 0.6364 0.6231

FoldNet [41] 0.5949 0.7179 0.6058 0.6549 0.4231 0.6111 0.7123 0.5844 0.6130

PPF-FoldNet-2K [7] 0.7352 0.7564 0.625 0.6593 0.6058 0.8889 0.5753 0.5974 0.6804

PPF-FoldNet-5K [7] 0.7866 0.7628 0.6154 0.6814 0.7115 0.9444 0.6199 0.6234 0.7182

Ours-2K 0.8518 0.8333 0.7740 0.7699 0.7308 0.9444 0.7397 0.6494 0.7867

Decoder Our decoder treats the latent capsules as a fea-

ture map and uses MLP(64 − 64 − 32 − 16 − 3) to recon-

struct a patch of points X̂i, where |X̂i| = 64. At this point,

instead of replicating a single vector as done in [41, 11],

we replicate the entire capsule m times and to each replica

we append a unique randomly synthesized grid Pi special-

izing it to a local area. This further stimulates the diversity.

We arrive at the final shape X̂i by propagating the repli-

cas through a final MLP for each patch and gluing the out-

put patches together. We choose m = 32 to reconstruct

|X̂| = 32 × 64 = 2048 points, the same amount as the

input. Similar to other AEs, we approximate the loss over

2-manifolds by the discrete Chamfer metric:

dCH(X, X̂) = (9)

1

|X|

∑

x∈X

min
x̂∈X̂

‖x− x̂‖2 +
1

|X̂|

∑

x̂∈X̂

min
x∈X

‖x− x̂‖2

However, this time X̂ follows from the capsules: X̂ =
∪iΨi(Pi|{fi}).

Incorporating Optional Supervision Motivated by the

regularity of capsule distribution over the 2-manifold, we

created a capsule-part network that spatially segments the

object by associating capsules to parts. The goal here is to

assign each capsule to a single part of the object. Hence, we

treat this part-segmentation task as a per-capsule classifica-

tion problem, rather than a per-point one as done in various

preceding algorithms [26, 27]. This is only possible due to

the spatial attention of the capsule networks.

The input of capsule-part network is the latent-capsules

obtained from the pre-trained encoder. The output is the

part label for each capsule. The ground truth (GT) capsule

labeling is obtained from the ShapeNet-Part dataset [42] in

three steps: 1) reconstructing the local part given the cap-

sule and a pre-trained decoder, 2) retrieving the label of

the nearest neighbor (NN) GT point for each reconstructed

point, 3) computing the most frequent one (mode) among

the retrieved labels.

To associate a part to a capsule, we use a shared MLP

with a cross entropy loss to classify the latent capsules into

parts. This network is trained independently from the 3D-

PointCapsNet AE for part supervision. We provide addi-

tional architectural details in the supplementary material.

4. Experiments

We evaluate our method first quantitatively and then

qualitatively on numerous challenging 3D tasks such as

local feature extraction, point cloud classification, recon-

struction, part segmentation and shape interpolation. We

also include a more specific application of latent space

part-interpolation that is made possible by the use of cap-

sules. For evaluation regarding these tasks, we use mul-

tiple benchmark datasets: ShapeNet-Core [5], Shapenet-

Part [42], ModelNet40 [40] and 3DMatch benchmark [45].

Implementation Details Prior to training, the input point

clouds are aligned to a common reference frame and size

normalized. To train our network we use an ADAM op-

timizer with an initial learning rate of 0.0001 and a batch

size of 8. We also employ batch normalization (BN) and

RELU activation units at the point of feature extraction to

generate primary capsules. Similarly, the multi-stage MLP

of the decoder also uses a BN and RELU units except for

the last layer, where the activations are scaled by a tanh(·).
During dynamic routing operation, we use the squash acti-

vation function mentioned in [30, 14].

4.1. Quantitative Evaluations

3D Local Feature Extraction We first evaluate 3D Point-

Capsule Networks on the challenging task of local feature

extraction from point cloud data. In this domain, learn-

ing methods have already outperformed their handcrafted

counterparts by a large margin and hence, we compare only

against those, namely 3DMatch [45], PPFNet [8], CGF [18]

and PPF-FoldNet [7]. PPF-FoldNet is completely unsuper-

vised and yet is still the top performer, thanks to the Fold-

ingNet [41] encoder-decoder. It is thus intriguing to see how

its performance is affected if one simply replaces its Fold-

ingNet auto-encoder with 3D-PointCapsNet. In an identi-

cal setting as [7], we learn to reconstruct the 4 dimensional

point pair features [3, 4] of a local patch, instead of the 3D
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Table 2. Descriptor matching results (recall) on the rotated 3DMatch benchmark [45, 7].

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

3DMatch [45] 0.0040 0.0128 0.0337 0.0044 0.0000 0.0096 0.0000 0.0260 0.0113

CGF [18] 0.4466 0.6667 0.5288 0.4425 0.4423 0.6296 0.4178 0.4156 0.4987

PPFNet [8] 0.0020 0.0000 0.0144 0.0044 0.0000 0.0000 0.0000 0.0000 0.0026

FoldNet [41] 0.0178 0.0321 0.0337 0.0133 0.0096 0.0370 0.0171 0.0260 0.0233

PPF-FoldNet-2K [7] 0.7352 0.7692 0.6202 0.6637 0.6058 0.9259 0.5616 0.6104 0.6865

PPF-FoldNet-5K [7] 0.7885 0.7821 0.6442 0.6770 0.6923 0.9630 0.6267 0.6753 0.7311

Ours-2K 0.8498 0.8525 0.7692 0.8141 0.7596 0.9259 0.7602 0.7272 0.8074

Table 3. Evaluating reconstruction quality. Oracle refers to a ran-

dom sampling of the input 3D shape and constitutes an lower

bound on what is achievable. The Chamfer Distance is multiplied

by 103 for better viewing. CD denotes Chamfer distance and PB

refers to Point Baseline.

Oracle PB AtlasNet-25 AtlasNet-125 Ours

CD 0.85 1.91 1.56 1.51 1.46

space of points, and use the latent capsule (codeword) as a

3D descriptor. To restrict the feature vector to a reasonable

size of 512, we limit ourselves only to 16×32 capsules. We

then run the matching evaluation on the 3DMatch Bench-

mark dataset [45] as detailed in [7], and report the recall of

correctly founded matches after 21 epochs in Tab. 1.

We note that our point-capsule networks exhibit an ad-

vanced capacity for learning local features, surpassing the

state of the art by 10% on the average, even when using 2K
points unlike the 5K of PPF-FoldNet. It is also noteworthy

that, except for the Kitchen sequence where PPFNet shows

remarkable performance, the recall attained by our network

consistently remains above all others. We believe that such

dramatic improvement is related to the robustness of cap-

sules towards slight deformations in the input data, as well

as to our effective decoder.

Do Our Features Also Perform Well Under Rotation?

PPF local encoding of PPF-FoldNet is rotation-invariant.

Being based on the same representation, our local feature

network should enjoy similar properties. It is of inter-

est to see whether the good performance attained on the

standard 3DMatch benchmark transfers to more challeng-

ing scenes demanding rotation invariance. To this aim,

we repeat the previous assessment on the Rotated-3DMatch

benchmark [7], a dataset that introduces arbitrary rotations

to the scenes of [45]. Since this dataset contains 6DoF scene

transformations, many methods that lack theoretical invari-

ance, e.g. 3DMatch, PPFNet and FoldingNet simply fail.

Our unsupervised capsule AE, however, is once again the

top performer, surpassing the state of the art by ∼ 12% on

2K-point case as shown in Tab. 2. This significant gain jus-

tifies that our encoder manages to operate also on the space

of 4D PPFs, holding on the theoretical invariances.

Table 4. Accuracy of classification by transfer learning on the

ModelNet40 dataset. Networks are trained out ShapeNet55, ex-

cept Ours-Parts that is trained on smaller ShapeNet-Parts dataset.

Latent-GAN[1] FoldingNet[41] Ours-Parts Ours

Acc. 85.7 88.4 88.9 89.3

3D Reconstruction In a further experiment, we evaluate

the quality of our architecture in point generation. We as-

sess the reconstruction performance by the standard Cham-

fer metric and base our comparisons on the state of the art

auto-encoder AtlasNet and its baselines (point-MLP) [11].

We rely on the ShapeNet Core v2 dataset [5], using the same

training and test splits as well as the same evaluation metric

as those in AtlasNet’s [11]. We show in Tab. 3 the Cham-

fer distances averaged over all categories and for N > 2K
points. It is observed that our capsule AE results in lower

reconstruction error even when a large number of patches

(125) is used in favor of AtlasNet. This justifies that the

proposed network has a better summarization capability and

can result in higher fidelity reconstructions.

Transfer Learning for 3D Object Classification In this

section, we demonstrate the efficiency of learned represen-

tation by evaluating the classification accuracy obtained by

performing transfer learning. Identical to [39, 1, 41], we

train a linear SVM classifier so as to regress the shape class

given the latent features. To do that, we reshape our la-

tent capsules into a one dimensional feature and train the

classifier on Modelnet40 [40]. We use the same train/test

split sets as [41] and obtain the latent capsules by train-

ing 3D-PointCapsNet on a different dataset, the ShapeNet-

Parts [42]. The training data has 14,000 models subdivided

into 16 classes. The evaluation result is shown in Tab. 4,

where our AE, trained on a smaller dataset compared to the

ShapeNet55 of [1, 41] is capable of performing at least on

par or better. This shows that learned latent capsules can

handle smaller datasets and generalize better to new tasks.

We also evaluated our classification performance when the

training data is scarce and obtained similar result as the

FoldingNet, ∼ 85% on ∼ 20% of training data.
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(a) Unprocessed part segmentation on same class (b) Part segmentation of multiple objects of different class

Figure 4. Part segmentation by capsule association. Having pre-trained the auto-encoder, we append a final part-supervision layer and use a

limited amount of data to specialize the capsules on object parts. (a) across the shapes of the same class capsules capture semantic regions.

(b) inter-class part segmentation. Colors indicate different capsule groups and (b) uses only a simple median filter to smooth the results.

Table 5. Part segmentation on ShapeNet-Part by learning only on

the x% of the training data.

Metric SONet-1% Ours-1% SONet-5% Ours-5%

Accuracy 0.78 0.85 0.84 0.86

IoU 0.64 0.67 0.69 0.70

Conv-Layer Dynamic-Routing Conv-Layer Dynamic-Routing

Figure 5. Distribution of 10 randomly selected capsules on the re-

constructed shape after unsupervised autoencoder training a) with

dynamic routing, b) with a simple convolutional layer.

4.2. Qualitative results

3D Object Part Segmentation with Limited Data We

now demonstrate the regional attention of our latent capsule

and their capacity to learn with limited data. To this end, we

trained 3D-PointCapsNet on the ShapeNet-Part dataset [5]

for part segmentation as explained in § 3, with a supervision

of only 1 − 5% part labeled training data. We tested our

network on all of the available test data. To specialize the

capsules to distinct parts, we select as many capsules as the

part labels and let the per-capsule classification coincide to

part predictions. Predicted capsule labels are propagated

to the related points. For the sake of space, we compared

our results only with the state of the art on this dataset, the

SO-Net [23]. We use identical evaluation metrics as SO-

Net [23]: Accuracy and IoU (Intersection over Union), and

report our findings in Tab. 5. Note that, when trained on 1%
of input data, we perform 7% better than SO-Net. When the

amount of training data is increased to 5%, the gap closes

but we still surpass SO-Net by 2%, albeit training a smaller

network to classify latent-capsules rather than 3D points.

Does unsupervised training lead to specialized capsules?

It is of interest to see whether the original argument of the

capsule networks [30, 14] claiming to better capture the in-

trinsic geometric properties of the object still holds in the

case of our unsupervised 3D-AE. To this aim, we first show

in Fig. 5 that even with lack of supervision the capsules spe-

cialize on local parts of the model. While these parts may

sometimes not correspond to the human annotated part seg-

mentation of the model, we still expect them to concentrate

on semantically similar regions of the 2-manifold. Fig. 5

visualizes the distribution of 10 capsules by coloring them

individually and validates our argument.

To validate our second hypothesis, stating that such clus-

tering arises thanks to the dynamic routing, we replace the

DR part of the AE with standard PointNet-like layers pro-

jecting the 1024×64 PPC to 642 capsules and repeat the ex-

periment. Fig. 5 depicts the spread of the latent vectors over

the point set when such layer is employed as opposed to DR.

Note that using this simple layer instead of DR both harms

the reconstruction quality and yields an undesired spread of

the capsules across the shape. We leave it as a future work

to study the DR energy theoretically and provide more de-

tails on this experiment in the supplement.

Semi-supervision guides the capsules to meaningful

parts. We now consider the effect of training in steering

the capsules towards the optimal solution in the task of su-

pervised part segmentation. First, we show in Fig. 4 the re-

sults obtained by the proposed part segmentation: (a) shows

part segmentation across multiple shapes of the same class.

These results are also unfiltered and the raw outcome of our

network. (b) depicts part segmentation across a set of object

classes from Shapenet-Part. It also shows that some minor

confusions present in (a) can be corrected with a simple me-

dian filter. This is contrary and computationally preferable

to costly CRFs smoothing the results [37].

Next, we observe that, as training iterations progress, the

randomly initialized capsules specialize to parts, achieving
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Source Shapes Latent Interpolation of a Single Part Target Shapes

Figure 6. Part interpolation on the Shapenet-Part [42] dataset. (left) The source point cloud. (right) Target shape. (middle) Part interpo-

lation. Fixed part is marked in light blue and the interpolated part is highlighted. Capsules are capable of performing part interpolation

purely via latent space arithmetic.

Figure 7. Visualizing the iterations of unsupervised AE training

on the airplane object. For clear visualization, we fetch the col-

ors belonging to the ∼20 capsules of the wing-part from our part

predictions trained with part supervision.

a good part segmentation at the point of convergence. We

visualize this phenomenon in Fig. 7, where the capsules

that have captured the wings of the airplane are monitored

throughout the optimization procedure. Even though the

initial random distribution is spatially spread out, the re-

sulting configuration is still part specific. This is a natural

consequence of our capsule-wise part semi-supervision.

Part Interpolation / Replacement Finally, we explore

the rather uncommon but particularly interesting applica-

tion of interpolating, exchanging or switching object parts

via latent-space manipulation. Thanks to the fact that 3D-

PointCapsNet discovers multiple latent vectors specific to

object attributes/shape parts, our network is capable of per-

forming per-part processing in the latent space. To do

that, we first spot a set of latent capsule pairs belonging to

the same parts of two 3D point shapes and intersect them.

Because these capsules explain the same part in multiple

shapes, we assume that they are specific to the part under

consideration and nothing else. We then interpolate linearly

in the latent space between the selected capsules. As shown

in Fig. 6 the reconstruction of intermediate shapes vary

only at a single part, the one being interpolated. When the

interpolator reaches the target shape it replaces the source

part with the target one, enabling part-replacement. Fig. 8

further shows this in action. Given two shapes and latent

capsules of the related parts, we perform a part exchange

by simply switching some of the latent capsules and recon-

Input Shapes Cut-Paste Our Replacement Input Shapes Cut-Paste Our Rep.

Figure 8. Part replacement. Performing replacement in the latent

space rather than Euclidean space of 3D points yields geometri-

cally consistent outcome.

structing. Conducting a part exchange directly on the input

space by a cut-and-place would yield inconsistent shapes as

the replaced parts would have no global coherence.

5. Conclusion

We have presented 3D Point-Capsule Network, a flexible

and effective tool for 3D shape processing and understand-

ing. We first presented a broad look to the common point

cloud AEs. With the observation that a one dimensional

latent embedding, the choice of the most preceding auto-

encoders, is potentially sub-optimal, we opted to summarize

the point clouds as a union of disjoint latent basis functions.

We have shown that such choice can be implemented by

learning the embedded latent capsules via dynamic routing.

Our algorithm proved successful on an extensive evaluation

on many 3D shape processing tasks such as 3D reconstruc-

tion, local feature extraction and part segmentation. Having

a latent capsule set rather than a single vector also enabled

us to address new applications such as part interpolation and

replacement. In the future, we plan to deploy our network

for pose estimation and object detection from 3D data, cur-

rently two of the key challenges in 3D computer vision.
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