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Abstract

Human action recognition remains as a challenging task

partially due to the presence of large variations in the ex-

ecution of an action. To address this issue, we propose

a probabilistic model called Hierarchical Dynamic Model

(HDM). Leveraging on Bayesian framework, the model pa-

rameters are allowed to vary across different sequences of

data, which increase the capacity of the model to adapt to

intra-class variations on both spatial and temporal extent

of actions. Meanwhile, the generative learning process al-

lows the model to preserve the distinctive dynamic pattern

for each action class. Through Bayesian inference, we are

able to quantify the uncertainty of the classification, provid-

ing insight during the decision process. Compared to state-

of-the-art methods, our method not only achieves competi-

tive recognition performance within individual dataset but

also shows better generalization capability across different

datasets. Experiments conducted on data with missing val-

ues also show the robustness of the proposed method.

1. Introduction

Being able to recognize human action is crucial for un-

derstanding the intention of human. Over the past decades,

numerous methods have been proposed to recognize hu-

man actions from visual inputs [53]. More recently, ac-

tion recognition from 3D data becomes popular [1] with

the availability of low-cost 3D sensing equipment and real-

time 3D pose estimation technique [41, 30, 13]. Despite the

significant progress made in this area, action recognition

remains as one of the most challenging problems in com-

puter vision partially due to significant variations caused by

subject behavior, view change, occlusion, camera motion,

cluttered background, etc. In particular, the difference of

people’s behavior in performing an action results in spatial

and temporal intra-class variations. Even the same person

may perform the same action differently. Such significant

intra-class variation makes the inter-class difference vague.

In this paper, we address the issue of intra-class spatio-

temporal variations for better action recognition. In addi-

tion, we provide a way of quantizing the uncertainty associ-

ated with classification, leveraging on Bayesian inference.

We focus on the variations mainly caused by behavior dif-

ference rather than camera motion or occlusion and adopt

the definition for such variations similar to [12]. The spatial

variation is defined as body pose and appearance change

when presenting a particular gesture. The temporal varia-

tion involves three factors: speed, duration and transition.

Speed refers to the pace of executing an action. Duration

represents the time spent in completing different phases of

an action. Transition controls the change and order among

different sub-actions. As an example, Figure 1 (left) shows

skeleton joints of different subjects performing bowling ac-

tion, which can be roughly divided into four phases includ-

ing standing still, stepping forward, arm extending back-

ward and leaning forward with arm extending forward. For

spatial variation, different subjects stretch their arms and

legs differently in both extent and orientation. For temporal

variation, different subjects perform action using different

orders of phases and spend different amount of time therein.

Our specific contributions are as follows. First of all, we

propose the Hierarchical Dynamic Model (HDM), which

is constructed to model different aspects of variations in a

principled way. The temporal variation is handled in two as-

pects. First, we incorporate a probabilistic duration mech-

anism to allow flexible speed at each phase of an action.

Second, the transitions among different phases of an action

are modeled by transition probabilities among different hid-

den states. The spatial variation is modeled by probability

distribution on observations at each individual frame. To

further improve the capability of handling intra-class varia-

tion, we extend the model following Bayesian framework

by allowing the parameters to vary across data, yielding

a hierarchical structure. Secondly, we develop a learning

algorithm to estimate the hyperparameters, which are usu-

ally treated as fixed in existing literatures. Furthermore,

leveraging on Bayesian inference techniques, we propose

a measure to quantize the uncertainty of the classification

results. Finally, we conduct experiments on a variety of

benchmark datasets to show the benefit of modeling vari-

ations and quantifying uncertainty for action recognition.
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Figure 1. Left: Skeleton data examples from UTD-MHAD dataset [6] show spatial and temporal variations of different subjects performing

the same action. All sequences have the same time scale. Different colors indicate different pose cluster assignments. Right: Overview

of the recognition process. During training, we learn a set of models by fitting each model to its corresponding type of action (details

in Section 3.2). During testing, the predictive likelihood computed by different models are used to determine class label and uncertainty

(details in Section 3.3). Images are selected from Gaming 3D dataset [3]. (Best view in color)

We demonstrate our method has competitive classification

performance, data efficiency, better generalization, and ro-

bustness to missing data.

2. Related Work

Modeling spatial and temporal variations: To account

for spatial variation with known dynamic pattern, para-

metric HMM [54] and parametric switching LDS [37] are

proposed by associating the observation probability with a

global parameter. More flexible dynamic model with non-

parametric observation model is also proposed in [12]. De-

spite better flexibility, it is difficult to generalize to poses

that deviate from the training data due to variation. Our ap-

proach instead uses parametric distribution for pose features

and leverages on the hierarchical extension for better gener-

alization. To handle speed variation, Hidden semi-Markov

Model (HSMM) [56] and its variants [11, 34, 33] are pro-

posed to explicitly model the lasting time of hidden states.

HSMM relaxes the Markov assumption of state transition

in HMM and thus allows more flexible modeling of the dy-

namic process. Besides extending HSMM with structure,

Bayesian extension of HSMM has been proposed in [15, 19]

to further increase the modeling capacity. Another line of

work tries to handle temporal variation through constructing

a time-invariant representation of data. For instance, vari-

ants of temporal warping methods are used to handle recog-

nition under speed variation [31, 46, 49]. Aggregate fea-

tures extracted from different temporal scales are explored

in [44, 50, 24], which can achieve certain temporal invariant

representation. But its temporal granularities are manually

decided. Our approach focuses on modeling dynamics of

human action. We further improve the intra-class variation

modeling capacity of HSMM by leveraging on Bayesian

framework. Compared to existing work, we allow all the

parameters to vary as random variables to account for spa-

tial and temporal variations simultaneously. Furthermore,

compared to previous work with fixed hyperparameters, we

develop learning algorithm for hyperparameters estimation.

The benefit of such extension is two-fold. First, the hierar-

chical structure allows the parameters to change across dif-

ferent data, while still sharing the property through prior

distribution learned from all the within-class data. Sec-

ond, the prior can regularize model complexity. Subject

to the prior distribution, the model parameters can adapt to

data variations without increasing model complexity, which

helps avoid overfitting.

Action recognition frameworks: It is popular to adopt a

discriminative framework for action recognition task, such

as conditional random field (CRF) [23] and its extensions

[39, 52, 27, 44]. Discriminative approaches mainly focus

on modeling the conditional distribution of class labels in

order to classify different classes. So it lacks the capability

to model data distribution, which limits the use of discrim-

inative model to classification only. Recently, deep learn-

ing framework becomes more popular as it can learn useful

representation automatically. Typical approaches either use

deep models to extract features to supply classifier learning

[17, 55, 28] or combine variants of CNN and RNN to per-

form end-to-end learning [9, 43, 16, 40, 21, 42, 45]. It has

been shown that modeling spatial and temporal dynamics

is helpful for recognition [25, 10]. However, deep models

rely on increasing model complexity to handle variations.

It is prone to overfitting especially with limited data, thus

proper regularization is essential [29, 59]. Joshi et al. [20]

7734



proposed a Bayesian NN to better handle subject-dependent

variation. We choose to use a generative model primarily

due to its capability of capturing the data distributions sub-

ject to spatial and temporal variations. Furthermore, gener-

ative model can handle data with missing values. Compared

to deep learning approach, HDM requires less training data

and is less likely to overfit due to prior on parameters. It

is also easier to train with very few model parameters to be

tuned. Furthermore, the use of Bayesian inference allows us

to quantify the uncertainty of the prediction to avoid overly

confident but potentially incorrect predictions [22].

3. Methods
In this section, we introduce our methods, starting with

a description of the model. Then we introduce learning and

inference methods. We train one model for each type of ac-

tion as illustrated by Figure 1 (right) and use the predictive

likelihoods of the models for classification and uncertainty

estimation.
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Figure 2. The topology of HDM.

3.1. Model description

Overview: Figure 2 shows the topology of our model.

Random variables X = {Xt ∈ R
O}Tt=1 represent a se-

quence of observations, where O is the dimension of each

observation. Z = {Zt ∈ {1, ..., Q}}Tt=1 represent hidden

states associated with observations, where Q is the number

of hidden states. D = {Dt ∈ {1, ..., T}}Tt=1 represent du-

ration of the state e.g. Dt = d means state chain Z remains

at current value for the next d time stamps. Xt is continu-

ous and observed, while Zt and Dt are discrete and hidden.

T can be different for different sequences. The parameters

are θ = {π,A, τ, ψ}, which specify the conditional dis-

tributions of random variables. The hyperparameters are

α = {η0, η, ξ, λ}, which specify the prior distributions of

parameters. The joint distribution of random variables is as

follows.

P (X,Z,D) = P (Z1)P (D1|Z1)

T∏
t=1

P (Xt|Zt) (1)

T∏
t=2

[P (Zt|Dt−1, Zt−1)P (Dt|Dt−1, Zt)]

We use Gaussian mixture for emission distribution, Pois-

son for duration distribution and multinomial for initial state

and transition distribution. The prior distributions of param-

eters are assumed independent of each other and conjugate

prior is used i.e. P (θ|α) = P (π|η0)P (A|η)P (τ |ξ)P (ψ|λ).
The detailed parameterization is provided in the supplemen-

tary materials.

Modeling temporal variation: The temporal varia-

tion is modeled at two levels. First, at the random vari-

able level, the hidden state chain Z models the transi-

tion dynamics among different statuses, specified by ini-

tial state distribution P (Z1) and state transition distribution

P (Zt|Dt−1, Zt−1) in Eq. (1). The duration of each state,

which is mainly determined by the speed of action, is ex-

plicitly specified by D with distribution P (Dt|Dt−1, Zt) in

Eq. (1). Second, to model temporal variation at parame-

ter level, instead of fixing one set of parameters for all the

within-class data, we allow parameters {π,A, τ} to vary as

random variables across different sequences, whose distri-

butions are specified by hyperparameters {η0, η, ξ}. On one

hand, the hierarchy can accommodate large intra-class tem-

poral variations as each sequence has its own temporal pa-

rameters. On the other hand, the parameters share the same

prior, which is learned from all the within-class data. Thus

the overall within-class temporal dynamics is preserved.

Modeling spatial variation: Similar to temporal varia-

tion, spatial variation is also modeled at two levels. First,

at the random variable level, the observation Xt describes

the pose or appearance at a given time t, specified by emis-

sion distribution P (Xt|Zt) in Eq. (1). Second, the spatial

parameters ψ are also treated as random variables whose

distributions are specified by hyperparameters λ. Different

from temporal parameters, we do not vary spatial parame-

ters across different sequences to ensure the consistency of

hidden state value. Such hierarchy allows for large variation

without needing to increase the mixture number, which reg-

ularizes the model complexity and avoids overfitting. Fur-

thermore, since the prior is learned from data and shared by

all spatial parameters, the overall within-class spatial distri-

bution is preserved.

Generalization of existing models: Our model can be

considered as a generalization of several existing models. If

we set all the hyperparameters as fixed, it can be considered

as Bayesian HSMM 1. If we take out all the hyperparame-

ters, it degenerates into explicit duration HMM [14]. If we

further set Dt = 1 for all t, it reduces to HMM.

3.2. Learning

The goal of learning is to estimate hyperparameters α
using training data, which is considered as an empirical

Bayesian method. We fit one model for one action class

1A special case of Bayesian HSMM which has been proposed in [15]

only considered placing prior on duration parameters.

7735



so that each model only captures intra-class variation in the

corresponding class. The following learning process applies

to model for each class. The maximum likelihood estima-

tion is an initial attempt to estimate α, which requires the

integration of both hidden variables and model parameters.

α∗ = argmax
α

logP ({Xn}|α) (2)

= argmax
α

log

∫
θ

∏
n

∑
Zn,Dn

P (Xn,Zn,Dn|θ)P (θ|α)dθ

where n is the index of sequence. However, the integra-

tion over transition parameters introduces additional depen-

dencies among hidden variables that are not directly linked

together. Thus the efficient forward-backward type of infer-

ence can no longer be performed. For sequence with more

than moderate length, the summation becomes intractable.

To bypass the integration challenge, we instead estimate α
as follows.

α∗ = argmax
α

log
∏
n

∑
Zn,Dn

P (Xn,Zn,Dn|θ
∗)P (θ∗|α)

(3)

where θ∗ is one particular choice of θ. It leads to an alternat-

ing estimation process between θ and α. First, we compute

MAP estimation of θ given current estimate of α. The ob-

jective of the estimation is the same as Eq. (3), except that

the target variable becomes θ.

θ∗ = argmax
θ

∑
n

log
∑

Zn,Dn

P (Xn,Zn,Dn|θ) + logP (θ|α)

(4)

We solve Eq. (4) using EM [7] based algorithm, which

we call MAP-EM. The details are provided in supplemen-

tary materials. Second, we compute estimate of α using

Eq. (3) given current estimate θ∗. Since the hyperparame-

ters are independent of random variables given θ∗. Eq. (3)

reduces to computing MLE of α as follows.

α∗ = argmax
α

logP (θ∗|α) (5)

Solving Eq. (5) can be done for each individual hyperpa-

rameter separately. The details are provided in supplemen-

tary materials.

Algorithm 1 Learning HDM

Input: Xn: observation sequences

Output: Hyperparameters α
1: Initialization of α, θ
2: repeat

3: Update θ by solving Eq. (4)

4: Update α by solving Eq. (5)

5: until convergence

6: return α

The above alternating process will generate a se-

quence of estimations of θ, α that increase the value of

logP ({Xn}, θ|α). In experiment, it often converges in a

few iterations. To initialize α, we use values that produce

uniform initial, transition, duration distribution and mix-

ture weights. We initialize ψ based on the mean and co-

variance of data. To initialize θ for MAP-EM, we use K-

means to cluster data and use cluster assignment as hidden

state value, from which we can estimate the model param-

eters. For evaluation of convergence, we use the change of

logP ({Xn}, θ|α) between two consecutive iterations. Al-

gorithm 1 summarizes the overall learning process.

3.3. Inference

The goal of inference is to compute the posterior predic-

tive likelihood of unseen data X.

pl(X|α∗) , P (X|D, α∗) (6)

=

∫
θ

∑
Z,D

P (X,Z,D|θ)P (θ|D, α∗)dθ

where D = {Xn} is the set of training data. For the

same reason discussed in Section 3.2, exact computation of

Eq. (6) is intractable and approximate inference is needed.

We use Monte Carlo estimation to approximate the integra-

tion by sampling θ from its posterior distribution.

pl(X|α∗) ≈
1

L

L∑
l=1

∑
Z,D

P (X,Z,D|θ(l)) (7)

where θ(l) ∼ P (θ|D, α∗) and L is the total num-

ber of samples. To generate samples of parameters from

their posterior distributions, we consider two methods.

The first one is structured mean-field variational infer-

ence [2], which finds an optimal variational distribution

q(θ,H|φ) , q(θ|φ)q(H|φ) that maximizes a lower bound

on logP (D|α∗). Here φ is the parameters of q and H =
{Zn,Dn} is the hidden states of all the training data D.

After we obtain optimal φ∗, parameter θ(l) is then sampled

from q(θ|φ∗). The second one is blocked Gibbs sampling

[19], which alternates the sampling between hidden state

chain {Zn,Dn} and parameters θ. This process simulates

a Markov chain whose stationary distribution converges to

the true posterior distribution. Samples are collected after

the burn-in period, which we determine by the change of

log-likelihood of parameters. The inference algorithms are

implemented using Pyhsmm [18] and BNT [32]. Given θ(l),
each term of summation in Eq. (7) can be computed using

forward-recursion [57]. The same inference process is per-

formed for each class model with hyperparameters learned

in Section 3.2. The classification criterion is as follows.

y∗ = argmax
i
pl(X|α∗

i ) (8)
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where the subscript i is the class index. The overall com-

plexity is O(KLQ2T 2). In our experiments Q is usu-

ally between 10-20, whose value is determined by cross-

validation. T is usually less than 200. K varies from 11 to

27. L is set to 100, which we found sufficient.

3.4. Uncertainty of classification

The use of Bayesian inference allows us to quantize

the uncertainty of classification results. Specifically, we

treat the class label y as a random variable that follows

categorical distribution i.e. y ∼ Cat(p), where p =
[p1, ..., pK ] is a stochastic vector specifying the probabil-

ity of the y being one of the K classes. For a sequence

X, we obtain p by normalizing the likelihood of differ-

ent classes’ model parameters evaluated on X i.e. p
(l)
i =

P (X|θ
(l)
i )/

∑K

j=1 P (X|θ
(l)
j ). To generate uncertainty mea-

sure, we first compute total covariance of y. Given the sam-

ples of parameters, the total covariance can be computed by

Eq. (9). The proof is provided in supplementary materials.

V [y|X] = Eθ[V [y|X, θ]] + Vθ[E[y|X, θ]] (9)

≈
1

L
ΣL

l=1Cl +
1

L− 1
ΣL

l=1(pk − p̄)(pk − p̄)T

where Cl is the covariance matrix of the categorical distri-

bution corresponding to the lth set of parameters. The entry

of covariance can be computed by C(i, j) = δ(i, j)pi −
pipj . A similar decomposition of total variance is proposed

in [22]. To obtain the uncertainty, we compute the trace of

total covariance matrix i.e. U(y) ,
∑

i V [y|X](i, i). The

trace attains its minimum value 0 if and only if exactly one

of the pk equals to 1 and 0 otherwise. In such case, the

prediction is absolutely certain. Our uncertainty measure

indicates how confident the prediction is.

(1)
(2)
(3)

Figure 3. Left: Example histograms of right hand in high arm

wave. Zero-count bin is pruned for compactness. Right: Actual

waving action sequences from different datasets. (1) MSRA; (2)

UTD; (3) G3D. (Best view in color)

4. Experiments

First, we perform a quantitative analysis of spatio-

temporal variation on selected benchmark datasets. Second,

we evaluate the performance of action recognition on indi-

vidual dataset and compare with both baseline and state-of-

the-art methods, followed by an uncertainty analysis. Third,

we evaluate the generalization capability of our method

across different datasets. Finally, we perform action recog-

nition with missing observations2.

4.1. Action datasets and feature extraction

Our experiments involve four benchmark action recog-

nition datasets, where all datasets involve multiple subjects

and action types ranging from hand movement to whole

body movement. Specifically, MSR Action3D (MSRA)

[26] includes 567 sequences from 20 types of action. UTD-

MHAD (UTD) [6] includes 861 sequences from 27 types of

actions. Gaming 3D (G3D) [3] consists of 600 sequences

of 20 action types. UPenn Action (Penn) [58] contains

2326 RGB videos of 15 types of sports. We select a subset

of 1650 videos from 11 actions, excluding 4 actions with

large portion of missing body annotations due to occlusion.

In all datasets, only skeleton is used for action recognition.

The location and size of skeletons are normalized to ensure

translation and scale invariance. Besides position, the mo-

tion is also extracted by computing the difference between

consecutive frames for every pair of joints. Similar repre-

sentation is adopted in [1, 3, 51]. The raw feature dimension

is 266 per frame for 3D data and 117 per frame for 2D data.

We further perform PCA for position and motion feature

separately and retain 95% energy for each type of features

at each frame. Finally, the two features are concatenated.

4.2. Spatial and temporal variation analysis

We first introduce a quantitative measure of intra-class

variation based on a histogram representation of action se-

quence. We divide the 3D space into 5 × 5 × 5 grids with

equal volume. Then for each joint in each sequence, we

construct a histogram whose number of bins is equal to the

number of spatial grids. The bin value equals to the number

of times when the joint position occupies the grid. We keep

the bin value unnormalized so that it depends on both the

spatial pose and the temporal pace. Figure 3 shows an ex-

ample of obtained histogram for different sequences of the

same action and the same joint. All three histograms show

a bi-modal distribution. However, the specific bin counts

are very different due to position and speed variation of the

hand joint. After computing histograms, we compute the

standard deviation of each bin value over all the sequences

and sum over all the bins, yielding total variation. Finally,

the total variation is averaged over all the joints as the final

variation score. Such metric satisfies the following prop-

erties. First, if all the sequences are identical, the metric

attains its minimum value 0. Second, the metric increases

as the intra-class variation increases.

Figure 4 shows the measured variation scores for differ-

ent actions in different datasets. In addition, we evaluate

the variation score on combined dataset, where the same

2Code available at http://bit.ly/BayesianHDM
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Figure 4. Variation score and the corresponding classification accuracy, which are obtained by training and testing on combined dataset.

The details are referred to Section 4.5. Left: UTD and MSRA. Middle: MSRA and G3D. Right: G3D and UTD. (Best view in color)

pre-processing is applied on combined dataset for scale and

translation invariance. From the figure we observe that ac-

tion involves larger extent of whole body movement tends to

have larger variations e.g. golf swing and bowling. Action

with ambiguous explanation also has large variations e.g.

high wave. For each action, the combined dataset has larger

variation score than each individual dataset. We also draw

class-wise classification accuracy obtained on the combined

dataset. The classification details are discussed in Section

4.5. In general, our method performs better than the base-

line methods especially on actions with larger intra-class

variation score. This shows the benefit of explicit modeling

of intra-class variations.

Table 1. Compare recognition accuracy (%) on different datasets

with different baseline models.
Model MSRA UTD G3D Penn Avg.

HMM 67.8 82.8 68.1 82.3 75.3

HSMM 66.3 82.3 77.5 78.9 76.3

LSTM 74.7 77.0 82.2 90.3 81.1

HCRF 70.7 74.2 79.0 86.3 77.6

HDM-PI 70.3 84.4 79.4 89.8 81.0

HDM-PL 80.6 90.2 87.7 91.6 87.5

HDM-BV 82.1 91.4 87.7 90.8 88.0

HDM-BG 86.1 92.8 92.0 93.4 91.1

4.3. Individual dataset experiments

For individual dataset experiments, training-testing split

follows convention suggested by dataset authors. We con-

duct an ablation study by comparing our models with dif-

ferent simplified models. For our model, we consider four

variants depending on how the inference is performed. The

first two are based on point estimate of parameters. The

MAP estimation of the parameters is obtained during learn-

ing and the predictive likelihood is simply computed as the

likelihood of the MAP parameters. For PI, the initial values

of hyperparameters are used. For PL, the learned hyper-

parameters are used. The last two variants use Bayesian

inference, where the predictive likelihood is computed fol-

lowing Section 3.3 using either variational inference (BV)

or Gibbs sampling (BG). Based on the results in Table 1,

we have following observations. First, compared with non-

hierarchical baseline HMM and HSMM, HDM achieves

consistent improvement. Furthermore, HDM is superior to

both HCRF and LSTM, which do not explicitly consider

data variations. These results demonstrate the benefit of

modeling spatial and temporal variations. Second, compar-

ing the two point estimate approaches, using learned hyper-

parameters improves accuracy by 6.5%. This demonstrates

the benefit of learning hyperparameters. Third, compared to

point estimate, Bayesian inference improves performance

by 0.5% (BV) and 3.3% (BG). This shows that by aver-

aging out the model uncertainty in inference, we can im-

prove the prediction. While variational inference is easier

to determine the convergence of approximation, the quality

of the approximation may not be optimal. Gibbs sampling

on the other hand can converge to true posterior provided

with enough sampling iterations and proper determination

of mixing condition. In our experiment, we observe the log-

likelihood of correct model obtained by Gibbs sampling is

usually higher than variational inference, which is also con-

sistent with its performance in classification. For the re-

maining experiments, we report the results of HDM-BG.

Table 2. Compare recognition accuracy (%) with state-of-the-art.

MSRA UTD

Method Acc. Method Acc.

AS[38] 83.5 Fusion[6] 79.1

AL[48] 88.2 DMM[4] 84.2

MT[8] 92.0 CNN[51] 87.9

HDM 86.1 HDM 92.8

G3D Penn

Method Acc. Method Acc.

LRBM[35] 90.5 Actemes[58] 86.5

R3DG[47] 91.1 AOG[36] 84.8

CNN[51] 96.0 JDD[5] 93.2

HDM 92.0 HDM 93.4

Then we compare the performance of our method with

state-of-the-art methods. The average recognition accuracy

is shown in Table 2. Compared to feature based meth-

ods, we achieve 4.9% improvement on UTD. For G3D, our

model is better than both model based approach [35] and

skeleton feature based approach [47]. Another approach

[51] requires dataset-dependent encoding of features, while

we use the same data processing for all datasets. In Penn

dataset, we outperform methods based on pose features

[58, 36] and we are slightly better than appearance feature
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Figure 5. Class-wise uncertainty in different datasets, where standard deviation is indicated by the error bar. The curve corresponds to

class-wise accuracy. The Pearson correlation coefficients between the two are MSRA:-0.5811, UTD:-0.5723, G3D:-0.8999, Penn:-0.6215.

based method [5], which used more information than ours.

On MSRA, the performance gap between ours and [8] is

mainly due to use of a sophisticated encoding of skeleton

features, which we plan to explore as future work. We use

the same kinematic features for all datasets without heavily

engineering the features. Overall, these results demonstrate

that by capturing intra-class variations, our model achieves

competitive recognition performance on various datasets.

4.4. Uncertainty analysis

First, we verify the validity of the proposed uncertainty

measure as defined in Section 3.4. We compute the error

rate of different portions of data ranging from the most cer-

tain to the least certain. The curve in Figure 6 shows that the

uncertainty correlates well with the error rate. For example,

in MSRA, when we select the 30% of data with lowest un-

certainty, the error rate is 0. When we expand the portion

to 50%, the error rate increases to 8%. We also visualize

data and corresponding class probability with different un-

certainty values in Figure 6. For low uncertainty data we

see the probability value is almost peak at the correct class.

While for data with high uncertainty at the upper right cor-

ner, we see a diffused and low probability value.

Then we analyze the class-wise uncertainty by comput-

ing the mean and standard deviation of uncertainty within

each class. Figure 5 plots the class-wise uncertainty and

accuracy. We observe in general that the higher the uncer-

tainty, the lower the accuracy. Actions only involving small

extent of motion tend to have higher uncertainty. For in-

stance, the top 5 uncertain actions in MSRA and UTD are

all single-hand actions. Some actions have subtle difference

such as ‘high throw’ and ‘catch an object’ in UTD. Some

actions involve similar motion like ‘hammer’ and ‘forward

Figure 6. Classification error rate versus different portions of un-

certainty values. (See Section 4.4 for details)

punch’ in MSRA. More results are provided in supplemen-

tary materials. These results suggest that we should take un-

certainty into consideration for classification decision. One

future direction of this work is to incorporate the uncertainty

during testing to automatically refine the model.

4.5. Multidataset experiments

To further demonstrate the capability of our model in

generalizing across different subjects and trials. We per-

form two experiments involving multiple datasets includ-

ing: A. MSRA; B. UTD; C. G3D. They share multiple ac-

tion types in common.

In the first experiment, we train our model on combined

dataset and test on each individual dataset with subjects that

are not included in combined dataset. For the combined

dataset, we expect significant intra-class variation. The re-

sults are shown in column 2-8 of Table 3. From the re-

sults, we observe that 1) HDM consistently outperforms
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