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Abstract

The goal of this paper is to detect the spatio-temporal ex-

tent of an action. The two-stream detection network based

on RGB and flow provides state-of-the-art accuracy at the

expense of a large model-size and heavy computation. We

propose to embed RGB and optical-flow into a single two-

in-one stream network with new layers. A motion condi-

tion layer extracts motion information from flow images,

which is leveraged by the motion modulation layer to gener-

ate transformation parameters for modulating the low-level

RGB features. The method is easily embedded in existing

appearance- or two-stream action detection networks, and

trained end-to-end. Experiments demonstrate that lever-

aging the motion condition to modulate RGB features im-

proves detection accuracy. With only half the computation

and parameters of the state-of-the-art two-stream methods,

our two-in-one stream still achieves impressive results on

UCF101-24, UCFSports and J-HMDB.

1. Introduction

This paper strives for the spatio-temporal detection of

human actions in video, which is a crucial ability for self-

driving cars, autonomous care robots, and advanced video

search engines. The leading approach for this challenging

problem relies on fast detectors at the frame level [29, 37],

which are then linked [1, 13, 37] or tracked [48] over time.

Kalogeiton et al. [21] and Singh et al. [36] further showed

it is advantageous to stack the features from subsequent

frames before predicting action class scores and determin-

ing the enclosing tube. Most of the state-of-the-art ac-

tion detectors exploit a two-stream architecture [35], one

for RGB and one for optical-flow, which are individually

trained before fusion. However, the double computation

and parameter demand of two-stream methods does not lead

to double accuracy compared to a single stream. We pro-

pose to embed RGB and optical-flow into a single stream

for action detection.

We are inspired by progress on feature normalization,

especially conditional normalization [8, 10, 18], which has

been successfully employed to visual question answer-

stand up?

sit down?

Flow image

Flow image

Figure 1: Two-in-one stream. We propose to embed RGB

and optical-flow into a single stream for spatio-temporal ac-

tion detection. Besides efficiency gains, it helps recogniz-

ing whether the dancer in the current frame is standing up

or sitting down without considering the future. By utilizing

information from flow images, the dancer is given a moving

direction, up or down, better indicating the action.

ing [5], visual reasoning [30], image style transfer [17]

and super-resolution [47]. Peretz et al. [30] propose a

feature-wise linear modulation layer which enables a recur-

rent neural network over an input question to influence con-

volutional neural network computation over an image. It

demonstrates that features are capable to be modulated via

a simple feature-wise affine transformation based on condi-

tioning information. However, as their modulation layer is

agnostic to spatial location, it is unsuited for action detec-

tion. In [47], Wang et al. developed a spatial feature trans-

form layer, which is conditioned on categorical semantic

probability maps, to modulate a super-resolution network.

Encouraged by these works, we propose a motion condi-

tion layer and a motion modulation layer to adjust an RGB-

stream for spatio-temporal action detection.

We make the following contributions in this paper. We

propose to embed RGB and optical-flow into a single stream

for spatio-temporal action detection. It reduces the com-

putational costs of conventional two-stream detection net-

works by half while maintaining its high accuracy. We in-
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troduce the two-in-one stream with motion condition layer

and motion modulation layer, which learns video repre-

sentations of appearance-stream features conditioned on

optical-flow. As shown in Figure 1, the motion condition

will guide the model to pay more attention on what moves,

rather than the static background. The method is easily em-

bedded in existing appearance- or two-stream action detec-

tion networks, and trained end-to-end, leading to new state-

of-the-art on UCF101-24, UCFSports and J-HMDB.

2. Related Work

The spatio-temporal detection of human actions in video

has a long tradition in computer vision, e.g. [3,4,22]. Early

success came from detection based on exhaustive cuboid

search, efficient feature representations, and SVM-based

learning, [42, 43, 52]. This was later extended with more

flexible sequences of bounding boxes [24,44,51], or spatio-

temporal proposals [19, 45], together with engineered ap-

pearance and motion features, most notably the dense tra-

jectories [28]. The past few years, architectures integrating

detection and deep representation learning have been lead-

ing [7,11,16,25,41,49,50], typically combining appearance

and flow streams [14, 15, 21, 37]. We follow this tradition.

The two-stream network was first introduced by Si-

monyan and Zisserman in [35]. Their convolutional archi-

tecture included a separate RGB-stream and a flow-stream,

which were combined by late fusion, for SVM-based ac-

tion classification. In [9], Feichtenhofer et al. investigated

a number of ways to fuse the RGB and flow streams in or-

der to best take advantage of their fused representation for

action classification. While we concentrate on action detec-

tion in the paper, we are interested in RGB and flow as well,

but rather than combining the two streams in a late fusion,

we prefer a single stream.

Gkioxari and Malik [13] introduced a two-stream archi-

tecture with R-CNN detectors in action detection. They

fused features from the last layer of an RGB- and a flow-

stream, and then trained action specific SVM classifiers.

A Viterbi algorithm [40] was adopted to link the detection

boxes per frame into a tube. Weinzaepfel et al. [48] also

used a two-stream R-CNN detector but replaced the linking

by a tracking-by-detection method. Both methods are not

end-to-end trainable and restricted to trimmed videos.

End-to-end two-stream detectors based on faster-RCNN

were proposed in [29, 34]. In [29], Peng and Schmid per-

formed region of interest pooling and score fusion to incor-

porate an RGB-stream and a flow-stream. In [16], Hou et

al. extended 2D region of interest pooling to 3D tube-of-

interest pooling with 3D convolutions, which directly gen-

erate tubelets for action detection. Singh et al. adopted a

two-stream single-shot-multibox detector (SSD) [27] for re-

alizing real time detection in [37]. Singh et al. [36] also

introduced a transition matrix to generate a set of action

proposals on pairs of frames. Kalogeiton et al. [21] pro-

posed to exploit temporal continuity by taking as much as

six frames as input for their single-shot multibox detector,

leading to state-of-the-art results. In this paper, we take the

single-shot multibox detector network as our backbone, us-

ing single [37] or multiple [21] frames as input, but rather

than separating the streams for RGB and flow we introduce

a single two-in-one stream.

Li et al. [26] proposed an action detector using an LSTM

architecture with motion-based attention. Our two-in-one

stream not only takes motion as attention, which helps to

locate actions, but also uses motion to modulate RGB fea-

tures which helps to better classify actions. Moreover, our

method is easily embedded in existing appearance- or two-

stream action detection and classification networks.

3. Two-in-One Network

We define the RGB-stream network Drgb
θ trained on sin-

gle frame for spatio-temporal action detection as:

(Lrgb, Srgb) = Drgb
θ (Irgb) (1)

where Irgb ∈ R
H×W×3 is a single RGB frame of height

H and width W which is the input for the network Drgb
θ .

Lrgb ∈ R
Q×4 and Srgb ∈ R

Q×(P+1) are Q box locations

and corresponding box classification scores for P action

classes and a background class. θ represents the parameters

of the learned network. Similarly, we define a flow-stream

network on single frame for spatio-temporal action detec-

tion as:

(Lof , Sof ) = Dof
θ (Iof ) (2)

Iof ∈ R
H×W×2 is a single optical flow image with x

and y components of the velocity respectively in two chan-

nels. The two-stream method includes training the two net-

works Drgb
θ and Dof

θ independently, and fuses the results

(Lrgb, Srgb) and (Lof , Sof ).
Motion condition layer. In our method, Iof is regarded

as a motion map with the same resolution as the correspond-

ing RGB image Irgb. We take Iof as prior information Ψ
when applying an RGB-stream network Drgb

θ to estimate

where and what actions may occur. Then we formulate our

two-in-one network as a condition network:

(L։, S։) = D։

θ (Irgb|Ψ)

= D։

θ (Irgb|MC(Iof ))
(3)

Ψ = MC(Iof ) = MC((Iofx , Iofy )) (4)

։ means two-in-one stream, MC(•) is a mapping func-

tion to generate simple features from the flow images. So

the two-in-one stream D։

θ learns a model conditioned on

motion information by a motion condition layer.

Motion modulation layer. We introduce a motion mod-

ulation (M2) layer to modify the features learned from RGB

9936



...

conv1 conv2 conv3 conv4 extra layers

     layer1        layer2          layer3           layer4

conv

MC layer

Motion Condition (MC) Layer Motion Modulation (      ) Layer

. +

RGB image

optical flow
motion condition

conv conv

Two-in-one Stream

regression loss

confidence loss

     

     MC layer

Ice Dancing

Figure 2: Two-in-one network architecture. The motion condition layer (pink cube) maps flow images to prior condition

information. The condition inputs to the motion modulation layer (purple cube) to generate transformation parameters which

are used to modulate RGB features (F rgb). The network has half the computation and parameters of a two-stream equivalent,

while obtaining better action detection accuracy.

images. An M2 layer is able to influence the appearance

network by incorporating motion and weighting the action

area. We first learn a pair of affine transformation param-

eters (β, γ) from the prior flow condition Ψ by a function

F : Ψ 7−→ (β, γ). Concretely, the two-in-one network is

further expressed as:

(β, γ) = F(Ψ),

(L։, S։) = D։

θ (Irgb|β, γ)
(5)

In order to modulate the appearance network, we apply a

transform function M2(•) with the learned transformation

parameters (β, γ) to the RGB features F rgb.

M2(F rgb) = β ⊙ F rgb + γ (6)

⊙ is an element-wise multiplication operation. The RGB

feature maps F rgb has the same dimensions with param-

eters β and γ. The flow information represented by (β, γ)

influences the appearance network by both feature-wise and

spatial-wise manipulations. The complete network with the

motion condition layer and the motion modulation layer is

shown in Figure 2.

Network architecture. Due to sparsity of flow images,

we adopt simple convolutional layers to extract low-level

motion condition information. 1 × 1 convolutional layers

attempt to keep the spatial pixel-wise motion vectors. The

motion condition then inputs to a motion modulation (M2)

layer in which it is separately mapped to a pair of trans-

formation parameters β and γ. Two groups of 1 × 1 con-

volutional layers are independently adopted for generating

each of the parameters β and γ. The low-level RGB fea-

tures from the appearance network are adjusted by β and γ.

The motion modulation layer is capable to be added to any

bottom layer of the appearance network, including conv1,

conv2, conv3 and conv4. All of them share the motion con-

dition layer. The whole network is end-to-end trainable.

Feature visualization. In order to intuitively understand

the method, we show the generated feature maps from the

appearance network before and after modulation by motion

condition in Figure 3. We randomly select some feature

maps from the motion condition layer in the first row. The

features are low-level and sparse, which are taken as prior

conditions. From the second row to the last row, we show

the corresponding scale (β) and shift (γ) maps generated

from conditions, RGB features without modulation and fea-

tures modulated by β and γ. It is interesting to see the dif-

ference between the features without and with modulation

in Figure 3. For example the modified features of the ac-

tor areas in feature maps 0 and 43, after modulation, espe-

cially for the female ice skater, which is blended into the

background on the regular RGB stream. On the 28-th fea-

ture map, a feature response is even hard to see on both

actors before modulation. Feature maps 10 and 127 show

the change in x-direction features and y-direction features.

The flow condition pushes the model to focus on moving

actors.

Training loss. In order to demonstrate the generalization

and flexibility of the proposed method, we embed the mo-

tion condition layer and the motion modulation layer in a
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Figure 3: Feature maps. Visualization of the motion con-

dition maps, scale maps, shift maps, RGB features without

modulation and features with modulation. The modulated

features focus more on moving actors.

single-frame appearance stream and a multi-frame appear-

ance stream. The basic loss function is derived from the

one for object detection [27, 31]. Defining xp
ij = {1, 0}

as an indicator for matching the i-th default box to the j-th

ground truth box of action category p. The overall loss func-

tion contains the localization (loc) loss and the confidence

(conf ) loss:

L(x, c, l, g) =
1

N
(Lloc(x, l, g) + Lconf (x, c)) (7)

with N representing the number of matched default boxes.

c represents multiple classes confidences. l and g are the

predicted box and the ground truth box.

The confidence loss applies the softmax loss as below:

Lconf (x, c) = −

N∑

i∈Pos

xp
ij log(ĉ

p
i )−

∑

i∈Neg

log(ĉ0i )

ĉpi =
exp(cpi )∑
p exp(c

p
i )

(8)

The localization loss applies a smooth L1 loss [12] between

the predicted box and the ground truth box. The network re-

gresses to offsets for the center (cx, cy) of the default box(d)

and for its width (w) and height (h).

Lloc(x, l, g) =

N∑

i∈Pos

∑

m∈{cx,cy,w,h}

xk
ijsmoothL1(l

m
i − ĝmj )

ĝcxj = (gcxj − dcxi )/dwi ĝcyj = (gcyj − dcyi )/dhi

ĝwj = log(
gwj
dwi

) ĝhj = log(
ghj
dhi

)

(9)

For the multi-frame appearance stream, we follow Kalo-

geiton et al. [21] to train the network.

Two-in-one two-stream. Our method emphasizes to uti-

lize RGB and optical flow information in one stream. Fur-

thermore, it is possible to follow the standard practice of

two-stream action detection. We train a two-in-one detec-

tor conditioned on flow images, and a separate flow de-

tector which only takes as input the flow images. For a

single-frame two-in-one two-stream, we use average fu-

sion method to merge the results from each stream follow-

ing [37]. And for multi-frame two-stream, the late fusion

[9] is a better choice [21].

Linking. Once the frame-level detections or tubelet de-

tections are achieved, we link them to build action tubes.

We adopt the linking method described in [37] for frame-

level detections and the method in [21] for tubelet detec-

tions.

Code is available at https://github.com/jiaozizhao/Two-

in-One-ActionDetection.

4. Experiments

4.1. Datasets, Metrics & Implementation

Datasets. We perform experiments on three action de-

tection datasets. UCF101-24 [39] is a subset of UCF101. It

contains 24 sport classes in 3207 untrimmed videos. Each

video contains a single action category. Multiple action in-

stances with the same class, but different spatial and tempo-

ral boundaries may occur. We use the revised annotations

for UCF101-24 from [37]. UCF-Sports [32] contains 10

sport classes in 150 trimmed videos. We follow [24] to

divide the training and test splits. J-HMDB [20] contains

21 action categories in 928 trimmed videos. We report the

average results on three splits.

Metrics. Following [34, 38, 48], we utilize video mean

Average Precision (mAP ) to evaluate action detection ac-

curacy. We calculate an average of per-frame Intersection-

over-Union (IoU) across time between tubes. A detection is

correct if it’s IoU with the ground truth tube is greater than

a threshold and its action label is correctly assigned. We

compute the average precision for each class and report the

average over all classes.

Implementation. We adopt a real-time single shot

multibox detector (SSD) network [27] as the backbone. We
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Action Detection Action Classification

Method mAP Efficiency Top1 Accuracy Efficiency

% sec/frame # param. (M) % sec/frame # param. (M)

flow-stream 11.60 0.04 26.82 81.65 1.10 58.35

RGB-stream 18.49 0.04 26.82 84.99 1.10 58.35

two-stream 19.79 0.09 53.64 91.14 2.10 116.70

two-in-one stream 20.15 0.04 26.93 86.94 1.15 58.48

two-in-one two stream 22.02 0.09 53.75 92.00 2.13 116.83

Table 1: Two-in-one vs. baselines for action detection on UCF101-24 and action classification on UCF101. Two-in-one

with motion modulation works well for both action detection and action classification.

insert the developed motion layers into two state-of-the-art

appearance SSD networks, one based on single frame [37]

and the other based on multiple frames [21]. We use VGG-

16 pre-trained weights on ImageNet as model initialization.

The input size is 300x300 for both of them. We follow [21]

to use 6 continuous frames as input to the multi-frame SSD.

The initial learning rate is set to 0.001 for the single-frame

network and 0.0001 for the multi-frame network on all the

three datasets and changed by applying step decay strategy.

We trained a flow-stream, an RGB-stream and our two-in-

one stream for 13.2, 13.2 and 15.5 hours, respectively.

Alternatively, we considered to use appearance informa-

tion to modulate flow stream. However, it does not work

well. It appears difficult to modulate features from flow im-

ages which are sparse, using RGB images which are more

dense.

4.2. Ablation Study

All the ablation studies are performed on UCF101-24.

We only report mAP at the most challenging high IoU
thresholds 0.5:0.95 (with step 0.05). Initially, in order to

maintain the spatial pixel-wise motion vectors, we apply

1x1 convolution kernels to all layers in the motion condi-

tion layer and the motion modulation layer. We use layer

parameter stride to control the size of β and γ. Then the

motion modulation layer is applied to conv1 of SSD. Flow

images are generated using the method in [2], which we re-

fer to as BroxFlow.

Two-in-one vs. baselines. We compare the two-in-one

stream to its corresponding RGB-stream, flow-stream and

two-stream in Table 1. Runtime and # param. are also

reported for comparing the efficiency. Our single two-in-

one stream exceeds a single RGB-stream by 1.5%. Notably,

two-in-one even outperforms the corresponding two-stream

with only half the computation cost and # param..

We also consider action classification, on UCF101. We

follow [46], with ResNet152 as backbone. The Top 1 accu-

racy and efficiency shown in Table 1 illustrate our strategy

also works for action classification and generalizes beyond

SSD with VGG16. For training, our two-in-one stream

converges at the 100-th epoch, but the RGB- and flow-
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Figure 4: Where to add the modulation layer? Accuracy

on UCF101-24 and # param. with varying: (a) single mod-

ulated layer, and (b) multiple modulated layers. A single

modulation layer at conv1 gets the best result.
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Figure 5: How to design the condition layer? Comparing

accuracy on UCF101-24 when applying 1x1 conv or 3x3

conv to the last layer of the motion condition layer. The 3x3

conv performs better.

stream converge at 200-th and 300-th epoch, respectively.

Our motion modulation strategy works better for the de-

tection task, which needs localization representations that

are translation-variant, compared to the classification task

which favors translation invariance.

Where to add the modulation layer? The motion con-

dition layer is leveraged to generate low-level motion fea-

tures as flow images are more sparse. We add the motion
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RGB image BroxFlow FlowNet RealTimeFlow

Figure 6: What flow? Examples of flow images generated

by different flow methods.

BroxFlow FlowNet RealTimeFlow

flow-stream 11.60 7.13 3.58

RGB-stream 18.49 18.49 18.49

two-stream 19.79 19.75 18.53

two-in-one stream 21.51 19.97 19.16

Table 2: What flow? No matter what flow images are ap-

plied on UCF101-24, our two-in-one stream outperforms

the corresponding flow-, RGB- and two-stream. We obtain

the best result with BroxFlow.

modulation layer to the bottom convolutional layers with

low-level RGB features. We conduct two experiments on

which layer to add the modulation. We compare the ac-

curacy and # param. after applying a modulation layer to

conv1, conv2, conv3 and conv4 in Figure 4 (a). Accuracy

decreases and # param. increases slightly for deeper lay-

ers. Next we add the modulation layers to multiple convolu-

tional layers simultaneously in Figure 4 (b). Applying mul-

tiple modulation layers does not change the results much.

Thus, we prefer to use a single modulation layer. Note that

accuracy drops for deeper layers as we use 1x1 convolution

kernels to process flow images, leading to smaller receptive

field for deeper layers.

How to design the condition layer? To further improve

the method, we consider whether the 1x1 convolution ker-

nel for the motion condition layer is the best choice. Besides

keeping the spatial pixel-wise motion, it may need to con-

sider some context of motion to better fit the RGB features.

We adopt the 3x3 convolution kernels to the last layer of

the condition network. Figure 5 demonstrates that consid-

ering motion context boosts the accuracy for all layers. As a

bigger receptive field is used, the conv2 model achieves the

best results, about 1.5% improvement compared to 1x1 con-

volution kernels. The run time hardly increases for deeper

layers, and is still 0.04 sec per frame. The # param. are

26.85, 26.92, 27.01 and 27.19 M respectively of conv1,

conv2, conv3 and conv4. Considering the trade-off between

the results and parameters, we believe conv2 provides the

best accuracy/efficiency trade-off.

What flow? As we leverage flow information as prior

conditions, we wonder how the model is influenced by

flow images. Here we adopt flow images generated by

three different methods (seen in Figure 6) and evaluate how

0 5 10 15 20

two-in-one two streamtwo-in-one streamtwo-streamRGB-streamflow-stream

22.02

21.51

19.79

18.49

11.42

(a) UCF101-24

0 20 40
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51.69
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48.22

33.27

(b) UCFSports
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43.2

38.72

41.78

35.82

28.44

(c) J-HMDB

mAP@IoU=0.5:0.95 (%)

Figure 7: Generalization ability. Accuracy comparison

on: (a) UCF101-24, (b) UCFSports, (c) J-HMDB, with dif-

ferent methods. Two-in-one stream even outperforms two-

stream on UCF101-24 and UCFSports. Two-in-one stream

fused with a flow-stream obtains the best accuracy on all

three datasets.

our strategies work. We use BroxFlow [2] (accurate flow

method), Flownet [6] (deep network method) and a real-

time but less accurate optical flow method [23] (RealTime-

Flow). From Table 2, it is concluded that no matter which

kind of flow images are applied, our two-in-one stream out-

performs RGB-streams and corresponding two-streams. We

also note that the more accurate the flow images, the more

improvement the two-in-one stream obtains. Even when us-

ing the somewhat noisy RealTimeFlow images, the two-

in-one stream still improves the RGB-stream. However,

a two-stream based on RealTimeFlow obtains almost the

same accuracy as the RGB-stream, which illustrates that

two-stream depends on the the quality of flow images. Our

two-in-one stream is more robust to the quality of flow im-

ages. Moreover, we report the flow computation in sec-

onds/frame for the three kinds of flow methods: BroxFlow

(0.098), FlowNet (0.183) and RealTimeFlow (0.014). Re-

alTimeFlow only needs 0.014 seconds to generate one flow

image, at the expense of a slightly lower mAP.

Generalization ability. To stress the generalization abil-

ity of our proposal, we compare the results on three different

datasets. Following the conclusions of our ablation so far,

we use the BroxFlow image for generating condition and

apply a 3x3 kernel to the last layer of the motion condition

layer. The motion modulation layer is only leveraged for

the conv2 layer of the appearance stream. We report results

in Figure 7.

Obviously, the proposed two-in-one stream performs

better than other one-stream networks. It is noteworthy that

our two-in-one stream even outperforms traditional two-

stream networks on UCF101-24 and UCFSport by 2% with

only half the parameters of a two-stream network. On J-

HMDB, two-in-one is 3% higher than RGB-stream but 3%

lower than two-stream. We look into J-HMDB and find

that most videos in the dataset have neighbouring repeated

frames. For fair comparison, we just download the Brox-

Flow images used in [21,37]. However, the provided Brox-

Flow image between the two repeated RGB frames is not 0,

as it should be, but similar to the last flow frame. The issue

affects our two-in-one stream due to the fact that we need
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(a) RGB-stream  Results: no detections (confidence scores < 0.5)

 

(b) RGB-stream  Heatmaps: low activation on actor

(c) Two-in-one   Results: correct detections (cliff diving scores > 0.5)

         

(d) Two-in-one   Heatmaps: high activation on actor

Figure 8: Visualization of detection and heatmaps on

conv4 layers from RGB-stream network in (a) (b) and two-

in-one stream network in (c) (d). We add the green dashed

boxes to indicate the action. The two-in-one stream has

higher activation on actions, resulting in correct detection.

correct flow image as the condition of the corresponding

RGB frame. We expect that two-in-one will present better

results on J-HMDB after correcting the flow images. As

expected, adding a separate flow-stream to our two-in-one

stream gives the best accuracy on all datasets.

4.3. Qualitative Analysis

The motion condition layer and the motion modulation

layer are beneficial to generate better video representations

for spatio-temporal action detection. But how do the lay-

ers make a difference to the appearance network? To un-

derstand this behavior, we visualize in Figure 8, the detec-

tion results of an RGB-stream network and a two-in-one

network. Also, we visualize the gradient-weighted class

activation heatmaps [53] for better understanding how the

motion conditions influence the behavior of the appearance

network. We choose a challenging case of cliff diving here.

The image resolution is low and the actor is quite tiny. The

cluttered background obviously increases the difficulty to
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Figure 9: Efficiency comparison to the state-of-the-art.

Accuracy vs. (a) inference time (second per frame) and (b)

# param. (M) on UCF101-24. Our two-in-one stream best

balances accuracy and efficiency.

detect actions. We manually overlay green dashed boxes

to indicate the locations of the actor and zoom in to high-

light where the action is happening. The second row shows

that the RGB-stream fails to detect any actions. From the

corresponding heatmaps, it is apparent that the appearance

network pays more attention to the background than to the

actions. There are only weak responses on the action po-

sitions. We manually overlay red dashed boxes to high-

light the position of the actor on the heatmaps. From the

heatmaps for the two-in-one network in the last row, we

clearly see it is capable to balance the activation on ac-

tions and background. The responses on action positions are

strengthened. As expected, the two-in-one stream performs

better than the RGB-stream. It outputs correct detections

for cliff diving on all the frames (forth row ).

4.4. Comparison to the Stateoftheart

Accuracy. For fair comparisons, we just use the original

images as in all the state-of-the-arts, without camera motion

removal. We compare the mAP at variable IoU thresholds

in Table 3. Considering the most challenging high IoU
thresholds 0.5:0.95, we observe that for the single-frame

setting, our two-in-one stream achieves even better results

than existing two-stream methods on UCF101-24 and UCF-
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UCF101-24 UCFSports J-HMDB

0.20 0.50 0.75 0.50:0.95 0.50 0.75 0.50:0.95 0.50 0.75 0.50:0.95

Single-frame

Peng & Schmid [29] 71.80 35.90 1.60 8.80 94.80 47.30 51.00 70.60 48.20 42.20

Saha et al. [34] 66.70 35.90 7.90 14.40 – – – 71.50 43.30 40.00

Behl et al. [1] 71.53 40.07 13.91 17.90 – – – – – –

Singh et al. [37] 73.50 46.30 15.00 20.40 – – – 72.00 44.50 41.60

This paper: Two-in-one 75.13 47.47 17.21 21.51 87.46 57.81 51.69 60.99 47.23 38.72

This paper: Two-in-one two stream 77.49 49.54 17.62 22.02 87.81 62.67 52.32 70.00 52.00 43.20

Multi-frame

Saha et al. [33] 63.06 33.06 0.52 10.72 – – – 57.31 – –

Kalogeiton et al. [21] 76.50 49.20 19.70 23.40 92.70 78.40 58.80 73.70 52.10 44.80

Singh et al. [36] 79.00 50.90 20.10 23.90 – – – – – –

This paper: Two-in-one 75.48 48.31 22.12 23.90 92.74 83.64 59.60 57.96 42.78 34.56

This paper: Two-in-one two stream 78.48 50.30 22.18 24.47 96.52 90.41 63.59 74.74 53.28 45.01

Table 3: Accuracy comparison to the state-of-the-art. Bold means top accuracy and italic means second top accuracy.

For the high overlap setting of mAP@IoU=0.5:0.95, our two-in-one stream works well in both a single-frame and multiple-

frame network for all three datasets. When we add an additional flow-stream to obtain a two-in-one two stream we further

improve accuracy.

Sports. For instance, two-in-one stream outperforms Singh

et al. [37] with the same SSD detector by more than 1%
and Peng and Schmid [29] with a Faster-RCNN detector by

an absolute 12% on UCF101-24. As analyzed previously,

two-in-one stream performs modest on J-HMDB because

of the data issue of the provided BroxFlow images. When

we combine two-in-one into a regular two-stream network

by fusing with a flow-stream, it produces good results on all

three datasets. Compared to two-in-one stream, it gets about

5% improvement on J-HMDB. Moreover, when feeding our

two-in-one network variants with multiple frames, as sug-

gested by Kalogeiton et al. [21], our two-in-one stream out-

performs the two-stream [21] a little on UCF101-24 and

UCFSports with only half computation and the number of

parameters. Our two-in-one stream fused with a flow stream

further boosts the results, outperforming the very recent

work of Singh et al. [36].

Efficiency. Besides good detection accuracy, our method

has the advantage of a reduced inference time and less #

param.. Here we compare our methods from the efficiency

aspect to the state-of-the-art on UCF101-24. We test our

models on one NVIDIA GTX 1080 GPU. The trade-off be-

tween accuracy and inference time, as well as parameters

are visualized in Figure 9. Among the single-frame meth-

ods, our two-in-one stream has the fastest run time with

0.04s per frame, two times faster than [1] and [37] and much

faster than [34] and [29] (about 0.5s per frame). Moreover,

the # param. of our two-in-one stream is smallest, about

26.93 M. While our two-in-one accuracy is even better than

the two-stream methods by [1, 29, 34, 37]. Combining our

two-in-one stream with a standard flow-stream gains an ac-

curacy improvement at the expense of more computation

and parameters. Our two-in-one alternative even outper-

forms [21] a little in accuracy with only half the parame-

ters. The two-in-one two stream further improves the re-

sult with almost similar inference time, but slightly more

parameters. We conclude that two-in-one stream networks

provide a good accuracy/efficiency trade-off.

5. Conclusion

We propose an effective and efficient two-in-one stream

network for spatio-temporal action detection. It takes flow

images as prior motion condition when training an RGB-

stream network. The network’s motion condition layer and

motion modulation layer address two issues in action de-

tection: frame-level RGB images lack motion information

and (static) background-context may dominant the learned

representation. Our two-in-one stream achieves state-of-

the-art accuracy at high IoU thresholds, using only half of

the parameters and computation of two-stream alternatives.

Besides motion, we believe that other information such as

depth-maps or infrared images may help locate the actors,

and can be exploited as additional prior conditions for train-

ing two-in-one streams.
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