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Abstract

Defocus blur detection (DBD) is a fundamental yet chal-

lenging topic, since the homogeneous region is obscure and

the transition from the focused area to the unfocused region

is gradual. Recent DBD methods make progress through ex-

ploring deeper or wider networks with the expense of high

memory and computation. In this paper, we propose a nov-

el learning strategy by breaking DBD problem into multi-

ple smaller defocus blur detectors and thus estimate errors

can cancel out each other. Our focus is the diversity en-

hancement via cross-ensemble network. Specifically, we de-

sign an end-to-end network composed of two logical parts:

feature extractor network (FENet) and defocus blur detec-

tor cross-ensemble network (DBD-CENet). FENet is con-

structed to extract low-level features. Then the features are

fed into DBD-CENet containing two parallel-branches for

learning two groups of defocus blur detectors. For each in-

dividual, we design cross-negative and self-negative corre-

lations and an error function to enhance ensemble diversity

and balance individual accuracy. Finally, the multiple defo-

cus blur detectors are combined with a uniformly weighted

average to obtain the final DBD map. Experimental results

indicate the superiority of our method in terms of accura-

cy and speed when compared with several state-of-the-art

methods.

1. Introduction

Defocus blur detection (DBD) is a fundamental topic in

computer vision. The goal is to highlight the defocus blur or

focus region in an image. DBD is of broad interest for po-

tential applications of autofocus [32], depth detection [19],

image retargeting [10], blur reconstruction [26], etc.

Conventional DBD methods usually utilize hand-crafted

low-level features such as gradient [5, 11, 27], contrast [28]

and frequency [22, 25] to distinguish defocus blur. Howev-

er, it is of great difficulty for these low-level features-based

methods to discriminate defocus blur regions in complex

scenarios, especially in the presence of the homogeneous

regions (e.g., such regions show almost no difference in ap-
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Figure 1. Motivation for our method. The first row expresses a

representative model (e.g., [33]) with wider and deeper network to

achieve progress for DBD. However, one detector lacks diversity.

We adopt the division of labor method by breaking it into multiple

smaller defocus blur detectors (the number of convolutional lay-

er Lc < Lw). Our concern is mainly how to enhance diversity

of these defocus blur detectors (green rectangle box) and how to

implement network with less parameters (red rectangle box).

pearance when they are in-focus or out-of-focus) and the

obscure boundaries between focused and unfocused areas.

Recently, Deep Convolutional Neural Networks (DC-

NNs), which intelligently learn hierarchical representation

of the input directly, have achieved superior performance

in many vision tasks. There have been fairly large ef-

forts to enhance DCNNs with greater capacity, e.g., in-

creased depth [24, 6], enlarged width [29, 2, 7], novel lay-

ers [30, 8, 13], etc. Inspired by this, several DCNNs-based

DBD models have been proposed. [16, 9] measure defocus

blur in a patch-by-patch scanning manner, leading to nu-

merous redundant computations. Despite the progress for

DBD has been achieved later by exploring deeper or wider

networks [33, 31], their single detectors lack diversity and

large number of parameters cause large computation cost.
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In this paper, we contribute from a different view (see

Figure 1), and propose a deep defocus blur detector cross-

ensemble network (CENet). We adopt the division of labor

method, simplifying the DBD problem by breaking it into

multiple smaller defocus blur detectors. Then, these detec-

tors are combined with a uniformly weighted average, hope-

fully reducing the DBD error compared to a single defocus

blur detector. For each individual, we design cross-negative

and self-negative correlations and an error function to en-

hance ensemble diversity and balance individual accuracy.

The core idea of CENet is to enhance diversity of de-

focus blur detectors via cross-ensemble network, and thus

estimate errors may cancel out each other. Our focus is

the diversity enhancement with cross-ensemble strategy and

computation efficiency. Therefore, we consider an end-to-

end DCNN to be composed of two logical parts: feature

extractor network (FENet) and defocus blur detector cross-

ensemble network (DBD-CENet). FENet is designed to ex-

tract low-level features. Then the features are fed into DBD-

CENet consisting of two subnetworks side by side to learn

two groups of defocus blur detectors. Each detector of the

current group is alternately optimized by cross-negative and

self-negative correlation losses and an error function to pe-

nalize the correlation with the other group and the current

group to enhance diversity. We implement multiple shallow

networks to produce defocus blur detectors. In addition,

we adopt convolutional feature-shared strategy to further re-

duce network parameters.

To sum up, our main contributions are three-fold:

• We present a novel perspective for DBD by enhancing

diversity of defocus blur detectors with cross-ensemble

network. Two groups of defocus blur detectors are al-

ternately optimized through respective cross-negative

and self-negative correlations to enhance diversity.

• Multiple shallow networks are utilized to produce de-

focus blur detectors, and convolutional feature-shared

strategy is adopted to implement CENet. Compared

to the deeper or wider network (e.g., [33]), CENet is

practically feasible with less computation cost.

• Extensive performance evaluation indicates that our

model outperforms the other state-of-the-art methods

in terms of DBD accuracy and calculating speed.

2. Related Work

Traditional methods. DBD is a basic issue of computer

vision where adopted features are critical for the detection

performance. Most of traditional DBD methods are based

on low-level manually designed features [11, 20, 22]. For

example, Golestaneh et al. [5] use high-frequency multi-

scale fusion and sort transform of gradient magnitudes to

compute blur detection maps. Xu et al. [27] present a met-

ric for DBD at edge points through the maximum ranks of

the corresponding local patches with different orientations

in gradient domain. Yi et al. [28] adopt local binary pattern-

s for focus sharpness metric. Without high-level semantic

information, the hand-crafted feature-based methods usual-

ly cause inaccurate detection especially in the presence of

the homogeneous areas.

DCNN methods. Recent works [16, 9, 33, 31] have resort-

ed to the deep convolutional neural networks, which have

set new state-of-the-art on DBD. On the one hand, Huang

et al. [9] design a patch-level CNN to learn discriminative

deep blur features. Park et al. [16] combine deep patch-

level and hand-crafted features to fed into a fully connected

neural network classifier to estimate the degree of defocus.

Patch-level DCNN methods is very time consuming, which

is needed to run thousands of times to process a raw image.

On the other hand, making the network go deeper or wider

has also been proven applicable. Zhao et al. [33] propose

a multi-stream bottom-top-bottom fully convolutional net-

work that handles input images with different scales, and

then design a fusion and recurrent reconstruction strategy

to widen and deepen network to improve the performance

of DBD. Zhang et al. [31] use a dilated fully convolution-

al neural network with pyramid pooling and boundary re-

finement layers to widen network for generating good DBD

map. Despite the improvement for DBD has been achieved,

their large number of parameters lead to high storage and

computation consumption. Different from these previous

works, focusing to enhance diversity, we design a CENet to

obtain multiple defocus blur detectors with less learning pa-

rameters, hopefully reducing the DBD error and increasing

computing speed.

Ensemble methods. Ensemble learning is a widely used

and efficacious technique in machine learning, and its suc-

cess is commonly attributed to the diversity within the en-

semble [14, 18, 1, 17]. Recently, similar ideas have been ap-

plied to DCNN methods and improve performance for vari-

ous visual tasks. For example, Pan et al. [15] propose a D-

ualCNN for low-level vision, which consists of two parallel

branches to respectively obtain structure detector and detail

detector. However, this strategy relies heavily on manual

structure and detail labels, which limits the diversity. Hou

et al. [7] use two parallel neural networks to automatically

learn diversity for image recognition. But it is not clear how

these two networks can alternatively assist each other. [23]

learns a pool of decorrelated regressors for crowd counting.

However, a pool of decorrelated regressors are not enough

to generate adequate diversity for our DBD task. In con-

trast, our CENet learns two groups of defocus blur detec-

tors, which is alternately optimized with cross-negative and

self-negative correlation losses to enhance diversity.
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Figure 2. Different detector ensemble methods. From top

row to bottom row are SENet, MENet and CENet, respectively.

ConvNet stands for a cascade convolutional layers and pooling

layers, and each layer is composed of a convolution and a rectified

linear unit. ConvNets with the same color express for sharing

parameters. Architecture details refer to Subsection 3.2.

3. Deep Cross-Ensemble Network

3.1. Formulation

We assume that we have access to N training sam-

ples, X = {x1, x2, ..., xN}. The samples are M dimen-

sional, M = H × W × C, where H , W and C de-

note the height, width and number of channels of the i-

th sample, respectively. We learn to estimate a DBD map

Y = {y
1
, y

2
, ..., yN}, where each yi in D dimensional s-

pace, D = H×W . The learning problem is to use the set X

to learn a detector or multiple detectors to approximate the

correct mapping from input to output. With different num-

ber of detectors, the network models are divided into three

categories: single detector network (SENet), multi-detector

ensemble network (MENet) and cross-ensemble network

(CENet). Their formulations are explained below.

SENet. Single detector-based networks are accustomed for

DBD tasks, e.g., [33, 31]. In order to improve performance,

deepening or widening the network is a common strategy.

However, numerous parameters make the optimization d-

ifficult and computation consumable. Here, we use a pa-

rameterized detector f to find the set of parameters w that

minimise the expected mean squared error

e(f) =
1

N

N∑

i=1

(f(xi;w)− yi)
2, (1)

where e(·) indicates mean squared error. SENet framework

is shown in Figure 2. Due to the lack of diversity, SENet

can hardly achieve optimal results (see Figure 3).

MENet. Instead of a single detector f , MENet contains a

group of them: F = {f1, f2, ..., fK}, where each fk has

its own parameter vector wk, and K is the total number of

detectors. We can train a group of detectors jointly. Once

this is accomplished, the outputs of the individuals are com-

bined to obtain the ensemble f̂ . Here, we take a uniformly

weighted average as the combination mechanism

f̂(X;w1,w2, ...,wK) =
1

K

K∑

k=1

fk(X;wk). (2)

We adopt the ensemble method [14], which has shown

a number of empirical successes for many application-

s [23, 21]. Treating the ensemble f̂ as a single learning

unit, [4], [14], [1] use the bias-variance decomposition as

E{(f̂ − Y)2} = (E{f̂} − Y)2 + E{(f̂ − E{f̂})2}, (3)

where the shorthand expectation operator E{·} is used to

represent the generalization ability. Then, given Equation

(2), it can show

E{(f̂ − Y)2} =
1

K2
(

K∑

k=1

(E{fk} − Y))2

+
1

K2

K∑

k=1

E{(fk − E{fk})
2}

+
1

K2

K∑

k=1

∑

j 6=k

E{(fk − E{fk})(fj − E{fj})}.

(4)

After some arrangements, it has

E{(f̂ − Y)2} =
1

K
(

K∑

k=1

E{(fk − Y)2}

−
1

K

K∑

k=1

E{(fk − f̂)2},

(5)

where the first item is the weighted average error of the in-

dividuals, and the second item measures the amount of cor-

relation between the ensemble and each individual. Based

on this, we train a group of detectors with each objective

loss

e(fk) =
1

2
(fk(X;wk)− Y)2 − λ(fk(X;wk)− f̂)2, (6)
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Figure 3. Comparison of DBD maps generated by our proposed

networks. From top row to bottom row are source images, SENet

results, MENet results, CENet results and ground truthes, respec-

tively. It can be seen from that CENet consistently produces DBD

maps closest to the ground truth.

where non-negative weight λ expresses the trade-off be-

tween these two items. The second term in Eq. 6 penalizes

the correlation of each detector with others to make better

trade-offs among the accuracy and diversity for reducing the

overall loss function. MENet framework is shown in Fig-

ure 2. Figure 3 demonstrates that MENet achieves better

performance than SENet. However, MENet can not gener-

ate adequate diversity for our DBD task.

CENet. Although MENet improves the detection accura-

cy, it has limit when the input image has small-scale fo-

cused area or large-scale homogeneous regions (see Fig-

ure 3). The main reason is that MENet does not ef-

fectively encourage these detectors diversity. Thus, we

further propose a CENet, which is constructed with two

groups of defocus blur detectors, F ′ = {f ′
1
, f ′

2
, ..., f ′

K}
and F ′′ = {f ′′

1
, f ′′

2
, ..., f ′′

K}. Each group of detectors

has their own parameters W′ = {w′
1
,w′

2
, ...,w′

K} and

W′′ = {w′′
1
,w′′

2
, ...,w′′

K}, respectively. Consider Equa-

tion (6) from another perspective, we can divide it into t-

wo items: an error function to balance individual accura-

cy and a negative correlation to achieve ensemble diversity.

To enhance ensemble diversity, we further propose a cross-

negative correlation loss. Each detector is not only negative-

ly correlated with the other detectors of the current group,

but also with the ones of the other one group. For individual

detector in the first group of detectors, we have

e(f ′
k) =

1

2
(f ′

k(X;w′
k)− Y)2

− λ(f ′
k(X;w′

k)− f̂ ′)2 − γ(f ′
k(X;w′

k)− f̂ ′′)2,

(7)

where f̂ ′′ is the uniformly weighted average of the second

group of detectors. The first item is to assure accuracy; the

second item aims to enhance diversity of the the curren-

t group; the third item focuses on improving diversity with

the other one group. λ and γ stands for non-negative trade-

off weights. The loss of each detector in the second group

is as follows

e(f ′′
k ) =

1

2
(f ′′

k (X;w′′
k)− Y)2

− λ(f ′′
k (X;w′′

k)− f̂ ′′)2 − γ(f ′′
k (X;w′′

k)− f̂ ′)2,

(8)

where f̂ ′ illustrates the uniformly weighted average of the

first group of detectors. The two groups of detectors are al-

ternately optimized to enhance diversity. CENet framework

is shown in Figure 2. In Figure 3, DBD maps generated by

CENet highlight focused area the most uniformly and have

the sharpest boundaries on the transition region. Objective

comparison is shown in Subsection 4.3.

3.2. Architecture Details

In this work, we propose to enhance diversity of defo-

cus blur detectors via cross-ensemble network. Our focus is

the diversity enhancement with cross-ensemble strategy and

computation efficiency. To show the effectiveness of cross-

ensemble strategy, we resort to plain CNN without complex

architectural engineering. We employs VGG16 [24] net-

work and make several modifications as the baseline.

Figure 4 shows the architecture of the proposed CENet,

which includes two networks, FENet and DBD-CENet.

Trivially applying ensemble learning to train multiple con-

volutional networks will significantly increase memory

cost. Instead, we adopt the division of labor method and

convolutional feature-shared strategy to reduce memory

cost. Thus, we design FENet to extract low-level features,

which are shared by the following parallel detector branch-

es. FENet is constructed with the first two convolutional

blocks (CB1 and CB2) of VGG16 acting as a feature ex-

tractor, which takes the original RGB images as input and

produces low-level feature maps of 128 channels. The fea-

ture maps from FENet are then fed into the following DBD-

CENet consisting of parallel defocus blur detector branches.

The networks of each branche for producing defocus blur

detectors share parameters to reduce parameters. There-

fore, each branche consists of last three fully convolutional

blocks of CB 3, CB 4 and CB 5 (or CB′ 3, CB′ 4 and

CB′ 5) of VGG16, and is followed by a convolution layer

48908



... ...

... ...

 e(f′K)

 e(f″K)

 Up-
sampling

 e(f′1)

 e(f″1)

 DEL

 DEL
 FENet

 DBE-CENet

 CB_1
 CB_2

 CB_3
 CB_4

 CB_5

 
CB′_3

 
CB′_4

 
CB′_5  e(f″1)

 e(f′1)

Figure 4. The architecture of our proposed CENet. Each colorful box is considered as a convolutional block (CB). Each convolutional block

followed by a pooling layer except for the last one. We use VGG16 [24] and make several modifications as the baseline. The input RGB

image is processed by FENet, which consists of two convolutional blocks: CB 1 and CB 2, to extract low-level features. Then the features

are fed into DBD-CENet containing two parallel-branches for learning two groups of diversity defocus blur detectors. The networks of

each group for producing defocus blur detectors share parameters. Therefore, each branche is composed of three convolutional blocks:

CB 3, CB 4 and CB 5 (or CB′
3, CB′

4 and CB′
5), and the top is a detector generation layer (DGL) consisting of a convolution

layer with K channels, respectively. Finally, the multiple defocus blur detectors are combined and followed by a up-sampling operation to

obtain the final DBD map.

with K channels to convert 512 channels to K DBD de-

tectors. Hence, we name this convolution block as detector

generation layer (DGL). Finally, the DBD map will be ob-

tained by combining the defocus blur detectors produced by

the two branches.

SENet and MENet include FENet and one branch of

DBD-CENet. To achieve fair comparison with CENet,

SENet and MENet are designed for the same capacity as

CENet. Specifically, the channels of each convolutional lay-

ers in last three fully convolutional blocks of VGG16 are

doubled.

3.3. Training

We adopt iterative training strategy to train CENet. We

first train FENet and one branch of DBD-CENet with pre-

trained parameters of VGG16 network on ImageNet [3].

Then we fix FENet and initialize the other branch with the

trained parameters of the first branch. Finally, we finetune

the two branches of DBD-CENet in an iterative way with

every epoch. The gradients for two defocus blur detector

branches can be respectively obtained by

∂e(f ′
k)

∂f ′
k

= (f ′
k(X;w′

k)− Y)

− 2λ(f ′
k(X;w′

k)− f̂ ′)− 2γ(f ′
k(X;w′

k)− f̂ ′′),
(9)

Algorithm 1: Training algorithm for CENet.

Input: Training data X = {x1, x2, ..., xN} and Y =
{y

1
, y

2
, ..., yN}.

Initialize:

1. Train FENet and F ′.

2. Fix FENet and initialize F ′′ with parameters of F ′.

3. while training is not convergent do

4. Calculate f̂ ′′ = 1

K

∑K

k=1
f ′′
k .

5. Update defocus blur detectors {f ′
1
, f ′

2
, ..., f ′

K} us-

ing Equation (9).

6. Calculate f̂ ′ = 1

K

∑K

k=1
f ′
k.

7. Update defocus blur detectors {f ′′
1
, f ′′

2
, ..., f ′′

K} us-

ing Equation (10).

8. end while

Output: F ′ and F ′′.

∂e(f ′′
k )

∂f ′′
k

= (f ′′
k (X;w′′

k)− Y)

− 2λ(f ′′
k (X;w′′

k)− f̂ ′′)− 2γ(f ′′
k (X;w′′

k)− f̂ ′).
(10)

Algorithm 1 illustrates the training procedure of the pro-

posed CENet.

In the test stage, we compute the final DBD map using
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Table 2. Comparing CENet with SENet and MENet using F-

measure and MAE values on both DUT and CUHK datasets.

Method
DUT CUHK

F-measure MAE F-measure MAE

SENet 0.750 0.152 0.884 0.066

MENet 0.758 0.149 0.896 0.062

CENet 0.789 0.135 0.906 0.059

the two groups of detectors according to the formation

Y =
1

K

K∑

k=1

f ′
k(X;w′

k) +
1

K

K∑

k=1

f ′′
k (X;w′′

k), (11)

where Y stands for the final DBD map and X illustrates the

input image.

4. Experiments

4.1. Experimental Setup

Benchmark datasets. Two publicly available benchmark

datasets with pixel-wise annotations are used in this work.

The first one is the CUHK blur dataset [22], which consist-

s of 704 partially defocus blurred images. It includes, but

not limited to, various scenes with cluttered background-

s. The second benchmark dataset is the DUT defocus blur

dataset [33]. It includes 500 test images, and numerous im-

ages contain multi-scale focused areas. We adopt the strat-

egy of [33] to train our model where 604 images of CUHK

blur dataset for training and the remaining 100 images and

DUT dataset for testing. Also, data augmentation (e.g., flip-

ping) is performed.

Implementation details. We implement the proposed

network and training procedures in TensorFlow with a

GTX 1080TI GPU. Adam [12] is used to optimize

our network with the momentum value of 0.9, and a

weight decay of 5e-3. We use a fixed learning rate

1e-4 with mini-batch of 2. The code is available at

https://github.com/wdzhao123/CENet-code.

Evaluation metrics. We use three evaluation metrics, in-

cluding the mean absolute error (MAE), F-measure, and the

Precision-Recall (PR) curve. MAE can provide a good mea-

sure of the dissimilarity between the ground truth and DB-

D map. It is the average per-pixel difference between the

ground truth and the DBD map, which is defined as:

MAE =
1

W ×H

W∑

x=1

H∑

y=1

|Y (x, y)−G(x, y)| , (12)

where x, y stands for pixel coordinates. W and H denotes

the width and height of the DBD map Y , respectively, and

G is the ground truth.

The F-measure, which is an overall performance mea-

surement, is defined as:

Fβ =
(1 + β2) · Precision ·Recall

β2 · Precision+Recall
, (13)

where β2 = 0.3 is employed to emphasize the precision.

Precision stands for the percentage of focused pixels be-

ing correctly detected, and Recall is the fraction of detected

focused pixels in relation to the ground truth number of fo-

cused pixels. Each map is binarized with an adaptive thresh-

old, which is 1.5 times the mean value of the DBD map.

4.2. Comparison with the State of the Art

Our method is compared with six state-of-the-art DB-

D methods, including discriminative blur detection features

(DBDF) [22], spectral and spatial approach (SS) [25], deep

and hand-crafted features (DHCF) [16], high-frequency

multi-scale fusion and sort transform of gradient magni-

tudes (HiFST) [5], local binary patterns (LBP) [28] and

multi-stream bottom-top-bottom fully convolutional net-

work (BTBNet) [33]. For fair comparison, we utilize the

recommended parameter settings to implement these meth-

ods or adopt the DBD maps provided by authors.

We provide visual comparison results in Figure 5, which

show various challenging cases, e.g., a wide variety of

scenes with cluttered backgrounds and multi-scale focused

areas from small scale to big scale. It can be seen that our

CENet highlights focused area the most uniformly and pro-

duces the sharpest boundaries on the transition region. Our

method has the best results for different scale focused area

detection (e.g., the small scale and large scale ones in the

second and third rows of Figure 5). In the fifth row of Fig-

ure 5, almost all methods produce noise because of the clut-

tered background and homogeneous region except for our

method.

Table 1 reports the comparison results, where we can see

that our method outperforms the others in terms of both F-

measur and MAE for both benchmark datasets. Comparing

F-measur scores, our CENet outperforms the second best

method by 2.9% and 5.2% over DUT and CUHK respec-

tively. Moreover, our method lowers the MAE scores sig-

nificantly on both datasets. Meanwhile, our CENet is also

highly efficient with the speed of 15.63 FPS, which is 6.2

times faster than the second fastest method SS [25]. PR

curves and F-measure scores are displayed in Figure 6 and

Figure 7, respectively. We can see that our proposed method

performs favorably against other methods on both datasets.

4.3. Ablation Analysis

Comparison with SENet and MENet. To verify the va-
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(a) Source (b) DBDF [22] (c) SS [25] (d) DHCF [16] (e) HiFST [5] (f) LBP [28] (g) BTBNet [33] (h) CENet (i) GT

Figure 5. Visual comparison of DBD maps generated by the proposed method and other state-of-the-art ones. The ground truth is shown

in the last column. The first four sources are selected from the DUT dataset. The last four sources are chosen from CUHK dataset. It can

be seen from that our model consistently produces DBD maps closest to the ground truth.

Table 1. Quantitative comparison of F-measure and MAE scores. The speeds of all methods tested on a workstation with an Intel 3.4GHz

CPU with 32G memory for 320×320 images are listed in the last row. The best two results are shown in red and green colors, respectively.

Metric DBDF [22] SS [25] DHCF [16] HiFST [5] LBP [28] BTBNet [33] CENet

DUT
F-measure 0.565 0.699 0.470 0.693 0.726 0.767 0.789

MAE 0.379 0.289 0.408 0.246 0.191 0.192 0.135

CUHK
F-measure 0.674 0.734 0.477 0.770 0.786 0.861 0.906

MAE 0.289 0.229 0.372 0.220 0.136 0.111 0.059

DUT & CUHK FPS 0.022 2.530 0.085 0.021 0.111 0.040 15.63
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(a) DUT dataset (b) CUHK dataset

Figure 6. Comparison of precision-recall curves of the proposed

method with other state-of-the-art methods using (a) DUT dataset

and (b) CUHK dataset.
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Figure 7. Comparison of the average precision, recall, and F-

measure scores across (a) DUT dataset and (b) CUHK dataset. The

proposed method achieves the highest F-measure on both datasets.

lidity of enhancing diversity of defocus blur detectors, we

compare our model with SENet and MENet which are con-

ducted for the same capacity as CENet (see Subsection 3.2).

Table 2 reports the comparison results, showing that our

cross-ensemble network enhances diversity of defocus blur

detectors thus achieve better performance.

Effectiveness of parameters γ and λ. As described in Sub-

section 3.1, γ and λ in Equation (7) and Equation (8) stand

for the trade-off between the cross-negative correlation and

self-negative correlation. A larger γ will encourage cross

diversity and a larger λ will encourage self diversity. But

too large γ and λ will reduce individual accuracy. We first

study the effect of γ and set λ to 0. It can be seen from Ta-

ble 3 that γ = 0.01 can produce the better results. Then, we

set γ to 0.01, and adjust the parameter λ. In Table 3, we can

see that λ = 0.1 achieves the best results on both datasets.

Selection of parameter K. Parameter K expresses for the

number of defocus blur detectors in the cross-ensemble net-

work. In Table 4, we report the comparison results of CENet

with different values of K. As can be seen that more de-

tectors can achieve better performance. Considering model

complexity and computational efficiency, we take K to 64,

which has achieved the state of the art.

Table 3. Effect of parameters γ and λ using F-measure and MAE

values on both DUT and CUHK datasets.

Method
DUT CUHK

F-measure MAE F-measure MAE

Our CENet with different values of γ (λ = 0)

CENet with γ = 0.1 0.740 0.160 0.899 0.063

CENet with γ = 0.05 0.746 0.157 0.898 0.061

CENet with γ = 0.01 0.766 0.144 0.904 0.059

CENet with γ = 0.005 0.770 0.146 0.905 0.062

CENet with γ = 0.001 0.762 0.146 0.901 0.062

Our CENet with different values of λ (γ = 0.01)

CENet with λ = 0.1 0.789 0.135 0.906 0.059

CENet with λ = 0.05 0.781 0.137 0.906 0.063

CENet with λ = 0.01 0.783 0.139 0.903 0.061

CENet with λ = 0.005 0.781 0.138 0.904 0.062

CENet with λ = 0.001 0.778 0.140 0.905 0.060

Table 4. Comparison of CENet with different values of K using

F-measure and MAE scores on both DUT and CUHK datasets.

Method
DUT CUHK

F-measure MAE F-measure MAE

CENet with K = 16 0.786 0.136 0.897 0.069

CENet with K = 32 0.793 0.135 0.899 0.069

CENet with K = 64 0.789 0.135 0.906 0.059

5. Conclusions

In this paper, we present an effective cross-ensemble net-

work to enhance diversity of defocus blur detectors. We

pose DBD as an ensemble learning problem and learn t-

wo groups of defocus blur detectors. Each detector of the

current group is alternately optimized by the cross-negative

correlation and self-negative correlation losses to penalize

the correlation with the other group and the current group

to enhance diversity. Besides, we add an error function for

each detector to balance individual accuracy. The core of

our method is the introduction of cross-ensemble strategy,

which aims to achieve the diversity enhancement of defocus

blur detectors. In addition, we adopt feature-shared strate-

gy to implement CENet, which is practically feasible with

less number of parameters and computation consumption.

Extensive experimental results on existing datasets verify

that our method outperforms the state-of-the-art methods in

terms of DBD accuracy and calculating speed.

Acknowledgments

This work was supported by National Natural Science Foundation of

China under Grant Nos. 61801077, 61872056, 61829102, 61871067,

61771088, 61725202, 61751212, the China Postdoctoral Science Foun-

dation under Grant No. 2017M611221, and the Fundamental Research

Funds for the Central Universities under Grant Nos. DUT16RC(3)077.

88912



References

[1] G. Brown, J. L. Wyatt, and P. Tino. Managing diversity in regression

ensembles. Journal of Machine Learning Research, 6:1621–1650,

2005. 2, 3

[2] C. Cheng, Y. Fu, W. Lu, Y. . G. Jiang, J. Feng, and X. Xue. Left-

right skip-densenets for coarse-to-fine object categorization. arX-

iv:1710.10386, pages 1–9, 2017. 1

[3] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F.-F. Li. Imagenet:

A large-scale hierarchical image database. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 248–255, 2009. 5

[4] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the

bias/variance dilemma. Neural Computation, 4(1):1–58, 1992. 3

[5] S. A. Golestaneh and L. J. Karam. Spatially-varying blur detection

based on multiscale fused and sorted transform coefficients of gradi-

ent magnitudes. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 596–605, 2017. 1, 2, 6, 7

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for

image recognition. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 770–778, 2016. 1

[7] S. Hou, X. Liu, and Z. Wang. Dualnet: Learn complementary fea-

tures for image recognition. In IEEE International Conference on

Computer Vision, pages 502–510, 2018. 1, 2

[8] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. arX-

iv:1709.01507, pages 1–11, 2017. 1

[9] R. Huang, W. Feng, M. Fan, L. Wan, and J. Sun. Multiscale blur

detection by learning discriminative deep features. Neurocomputing,

285:154–166, 2018. 1, 2

[10] A. Karaali and C. R. Jung. Image retargeting based on spatially vary-

ing defocus blur map. In IEEE International Conference on Image

Processing, pages 2693–2697, 2016. 1

[11] A. Karaali and C. R. Jung. Edge-based defocus blur estimation with

adaptive scale selection. IEEE Transactions on Image Processing,

27(3):1126–1137, 2018. 1, 2

[12] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimiza-

tion. arXiv:1412.6980, pages 1–14, 2014. 6

[13] P. Li, J. Xie, Q. Wang, and Z. Gao. Towards faster training of global

covariance pooling networks by iterative matrix square root normal-

ization. arXiv:1712.01034, pages 1–9, 2017. 1

[14] Y. Liu and X.Yao. Ensemble learning via negative correlation. Neu-

ral Networks, 12(10):1399–1404, 1999. 2, 3

[15] J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. S. J. Ren, Z. Li, J. Tang,

H. Lu, Y. Tai, and M. Yang. Learning dual convolutional neural

networks for low-level vision. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 3070–3079, 2018. 2

[16] J. Park, Y. Tai, D. Cho, and I. S. Kweon. A unified approach of

multi-scale deep and hand-crafted features for defocus estimation.

In IEEE Conference on Computer Vision and Pattern Recognition,

pages 2760–2769, 2017. 1, 2, 6, 7

[17] Y. Ren, L. Zhang, and P. N. Suganthan. Ensemble classification and

regression-recent developments, applications and future directions.

IEEE Computational Intelligence Magazine, 11:41–53, 2016. 2

[18] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest:

A new classifier ensemble method. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(10):1619–1630, 2006. 2

[19] P. Sakurikar and P. J. Narayanan. Composite focus measure for high

quality depth maps. In IEEE International Conference on Computer

Vision, pages 1623–1631, 2017. 1

[20] P. Sakurikar and P. J. Narayanan. Composite focus measure for high

quality depth maps. In IEEE International Conference on Computer

Vision, pages 1623–1631, 2017. 2

[21] W. Sheng, P. Shan, S. Chen, Y. Liu, and F. E. Alsaadi. A niching

evolutionary algorithm with adaptive negative correlation learning

for neural network ensemble. Neurocomputing, 247:173–182, 2017.

3

[22] J. Shi, L. Xu, and J. Jia. Discriminative blur detection features.

In IEEE Conference on Computer Vision and Pattern Recognition,

pages 2965–2972, 2014. 1, 2, 6, 7

[23] Z. Shi, L. Zhang, Y. Liu, X. Cao, Y. Ye, M.-M. Cheng, and G. Zheng.

Crowd counting with deep negative correlation learning. In IEEE

Conference on Computer Vision and Pattern Recognition, pages

5382–5390, 2018. 2, 3

[24] K. Simonyan and A. Zisserman. Very deep convolutional network-

s for large-scale image recognition. arXiv:1409.1556, pages 1–14,

2014. 1, 4, 5

[25] C. Tang, J. Wu, Y. Hou, P. Wang, and W. Li. A spectral and spa-

tial approach of coarse-to-fine blurred image region detection. IEEE

Signal Processing Letters, 23(11):1652–1656, 2016. 1, 6, 7

[26] Y. Wang, Z. Wang, D. Tao, S. Zhuo, X. Xu, S. Pu, and

M. Song. Allfocus: Patch-based video out-of-focus blur reconstruc-

tion. IEEE Transactions on Circuits and Systems for Video Technol-

ogy, 27(9):1895–1908, 2017. 1

[27] G. Xu, Y. Quan, and H. Ji. Estimating defocus blur via rank of lo-

cal patches. In IEEE International Conference on Computer Vision,

pages 5381–5389, 2017. 1, 2

[28] X. Yi and M. Eramian. LBP-based segmentation of defocus blur.

IEEE Transactions on Image Processing, 25(4):1626–1638, 2016. 1,

2, 6, 7

[29] S. Zagoruyko and N. Komodakis. Wide residual networks. arX-

iv:1605.07146, pages 1–15, 2016. 1

[30] H. Zhang, K. J. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and A. A-

grawal. Context encoding for semantic segmentation. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 7151–

7160, 2018. 1

[31] S. Zhang, X. Shen, Z. Lin, R. Mech, J. P. Costeira, and J. M. F.

Moura. Learning to understand image blur. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 6586–6595, 2018.

1, 2, 3

[32] Z. Zhang, Y. Liu, Z. Xiong, J. Li, and M. Zhang. Focus and blur-

riness measure using reorganized dct coefficients for an autofocus

application. IEEE Transactions on Circuits and Systems for Video

Technology, 28(1):15–30, 2018. 1

[33] W. Zhao, F. Zhao, D. Wang, and H. Lu. Defocus blur detection

via multi-stream bottom-top-bottom fully convolutional network.

In IEEE Conference on Computer Vision and Pattern Recognition,

pages 3080–3088, 2018. 1, 2, 3, 6, 7

98913


