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Abstract

Supervised depth estimation has achieved high accuracy

due to the advanced deep network architectures. Since the

groundtruth depth labels are hard to obtain, recent meth-

ods try to learn depth estimation networks in an unsuper-

vised way by exploring unsupervised cues, which are effec-

tive but less reliable than true labels. An emerging way

to resolve this dilemma is to transfer knowledge from syn-

thetic images with ground truth depth via domain adapta-

tion techniques. However, these approaches overlook spe-

cific geometric structure of the natural images in the tar-

get domain (i.e., real data), which is important for high-

performing depth prediction. Motivated by the observation,

we propose a geometry-aware symmetric domain adapta-

tion framework (GASDA) to explore the labels in the syn-

thetic data and epipolar geometry in the real data joint-

ly. Moreover, by training two image style translators and

depth estimators symmetrically in an end-to-end network,

our model achieves better image style transfer and gen-

erates high-quality depth maps. The experimental results

demonstrate the effectiveness of our proposed method and

comparable performance against the state-of-the-art. Code

will be publicly available at: https://github.com/

sshan-zhao/GASDA.

1. Introduction

Monocular depth estimation [44, 45, 9, 28] has been an

active research area in the field of computer vision. Recent

years have witnessed the great strides in this task, especial-

ly after deep convolutional neural networks (DCNNs) were

exploited to estimate depth from a single image successful-

ly [9]. Until now, there have been lots of follow-up work-

s [35, 30, 8, 31, 54, 51, 10] improving or extending this

work. However, since the proposed deep models are trained
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Figure 1: Estimated Depth by GASDA. Top to bottom: input re-

al image in the target domain (KITTI dataset [38]) and synthetic

image for training (vKITTI dataset [11]), intermediate generated

images in our approach, ground truth depth map and estimated

depth map using proposed GASDA.

in a fully supervised fashion, they require a large amount of

data with ground truth depth, which is expensive to acquire

in practice. To address this issue, unsupervised monocular

depth estimation has been proposed [16, 57, 14, 53], using

geometry-based cues and without the need of image-depth

pairs during training. Unfortunately, this kind of method

tends to be vulnerable to illumination change, occlusion and

blurring and so on. Compared to real-world data, synthet-

ic data is much easier to obtain the depth map. As a re-

sult, some works propose to exploit synthetic data for visual

tasks [29, 37, 7]. However, due to domain shift from syn-

thetic to real, the model trained on synthetic data often fails

to perform well on real data. To deal with this issue, domain

adaptation techniques are utilized to reduce the discrepancy

between datasets/domains 1 [2, 5, 37].

1We will use domain and dataset interchangeably for the same meaning

in most cases.
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Existing works [2, 26, 59] using synthetic data via do-

main adaptation have achieved impressive performance for

monocular depth estimation. These approaches typically

perform domain adaptation either based on synthetic-to-

realistic translation or inversely. However, due to the lack of

paired images, the image translation function usually intro-

duces undesirable distortions in addition to the style change.

The distorted image structures significantly degrade the per-

formance of successive depth prediction. Fortunately, the

unsupervised cues in the real images, for example, stereo

pairs, produces additional constraints on the possible depth

predictions. Therefore, it is essential to simultaneously ex-

plore both synthetic and real images and the corresponding

depth cues for generating higher-quality depth maps.

Motivated by the above analysis, we propose a

Geometry-Aware Symmetric Domain Adaptation Net-

work (GASDA) for unsupervised monocular depth estima-

tion. This framework consists of two main parts, namely

symmetric style translation and monocular depth estima-

tion. Inspired by CycleGAN [61], our GASDA employs

both synthetic-to-realistic and realistic-to-synthetic transla-

tions coupled with a geometry consistency loss based on the

epipolar geomery of the real stereo images. Our network is

learned by groundtruth labels from the synthetic domain as

well as the epipolar geometry of the real domain. Addition-

ally, the learning process in the real and synthetic domains

can be regularized by enforcing consistency on the depth

predictions. By training the style translation and depth pre-

diction networks in an end-to-end fashion, our model is able

to translate images without distorting the geometric and se-

mantic content, and thus achieves better depth prediction

performance. Our contributions can be summarized as fol-

lows:

• We propose an end-to-end domain adaptation frame-

work for monocular depth estimation. The model

can generate high-quality results for both image style

translation and depth estimation.

• We show that training the monocular depth estimator

using ground truth depth in the synthetic domain cou-

pled with the epipolar geometry in the real domain can

boost the performance.

• We demonstrate the effectiveness of our method on

KITTI dataset [38] and the generalization performance

on Make3D dataset [45].

2. Related Work

Monocular Depth Estimation has been intensively s-

tudied over the past decade due to its crucial role in 3D

scene understanding. Typical approaches sought the solu-

tion by exploiting probabilistic graphical models (e.g., M-

RFs) [45, 44, 33], and non-parametric techniques [36, 24,

34]. However, these methods showed some limitations in

performance and efficiency because of the employment of

hand-crafted features and the low inference speed.

Recent studies demonstrated that high-performing depth

estimators can be obtained relying on deep convolutional

neural networks (DCNNs) [9, 35, 22, 55, 41, 40, 3, 30, 42,

4]. Eigen et al. [9] developed the first end-to-end deep mod-

el for depth estimation, which consists of a coarse-scale net-

work and a fine-scale network. To exploit the relationships

among image features, Liu et al. [35] proposed to integrate

continuous CRFs with DCNNs at super-pixel level. While

previous works considered depth estimation as a regression

task, Fu et al. [10] solved depth estimation in the discrete

paradigm by proposing an ordinal regression loss to encour-

age the ordinal competition among depth values.

A weakness of supervised depth estimation is the heavy

requirement of annotated training images. To mitigate the

issue, several notable attempts have investigated depth esti-

mation in an unsupervised manner by means of stereo cor-

respondence. Xie et al. [53] proposed the Deep3D net-

work for 2D-to-3D conversion by minimizing the pixel-

wise reconstruction error. This work motivated the develop-

ment of subsequent unsupervised depth estimation network-

s [14, 16, 56, 60]. In specific, Garg et al. [14] showed that

unsupervised depth estimation could be recast as an image

reconstruction problem according to the epipolar geometry.

Following Garg et al. [14], several later works improved the

structure by exploiting left-right consistency [16], learning

depth in a semi-supervised way [27], and introducing tem-

poral photometric constraints [57].

Domain Adaptation [39] aims to address the problem

that the model trained on one dataset fails to generalize to

another due to dataset bias [49]. In this community, previ-

ous works either learn the domain-invariant representation-

s on a feature space [12, 13, 37, 1, 19, 18, 32] or learn

a mapping between the source and target domains at fea-

ture or pixel level [43, 47, 17, 58]. For example, Long et

al. [37] aligned feature distribution across the source and

target domains by minimizing a Maximum Mean Discrep-

ancy (MMD) [21]. Tzeng et al. [50] proposed to minimize

MMD and the classification error jointly in a DCNN frame-

work. Sun et al. [47] proposed to match the mean and co-

variance of the two domain’s deep features using the Corre-

lation Alignment (CORAL) loss [46].

Coming to domain adaptation for depth estimation, At-

apour et al. [2] developed a two-stage framework. In specif-

ic, they first learned a translator to stylize the natural images

so as to make them indistinguishable with the synthetic im-

ages, and then trained a depth estimation network using the

original synthetic images in a supervised manner. Kundu et

al. [26] proposed a content congruent regularization method

to tackle the model collapse issue caused by domain adap-

tation in high dimensional feature space. Recently, Zheng

9789



S

T

DMDE

T2S

AL

Basic

FS

T F

AL

DMDE

AdaDepth [26]

S

T

S2T

AL

F

F

AL

DMDE

T2Net [59]

S

T

S2T

AL

T2S

DMDE

D MDE

AL

GASDA

Figure 2: Different frameworks for monocular depth estimation using domain adaptation. Left to right: approach proposed in [26], [59]

and this work respectively. S, T, F, S2T (T2S) and D represent the synthetic data, real data, extracted feature, generated data, and estimated

depth. AL and MDE mean adversarial loss and monocular depth estimation, respectively. Compared with existing methods, our approach

utilizes real stereo data and takes into account synthetic-to-real as well as real-to-synthetic during translation.

et al. [59] developed an end-to-end adaptation network, i.e.

T2Net, where the translation network and the depth estima-

tion network are optimized jointly so that they can improve

each other. However, these works overlooked the geomet-

ric structure of the natural images from the target domain,

which has been demonstrated significant for depth estima-

tion [16, 14]. Motivated by the observation, we propose

a novel geometry-aware symmetric domain adaptation net-

work, i.e., GASDA, by exploiting the epipolar geometry of

the stereo images. The differences between GASDA and

previous depth adaptation approaches [26, 59] are shown in

Figure 2.

3. Method

3.1. Method Overview

Given a set of N synthetic image-depth pairs

{(xi
s, y

i
s)}

N
i=1

(i.e., source domain Xs), our goal here is to

learn a monocular depth estimation model which can ac-

curately predict depth for natural images contained in Xt

(i.e., target domain). It is difficult to guarantee the mod-

el generalize well to the real data [2, 59] due to the do-

main shift. We thus provide a remedy by exploiting the

epipolar geometry between stereo images and developing

a geometry-aware symmetric domain adaptation network

(GASDA). Our GASDA consists of two main parts like ex-

isting works, including the style transfer network and the

monocular depth estimation network.

Specifically, unlike [2, 59, 26], we consider both

synthetic-to-real [59] and real-to-synthetic translations [2,

26]. As a result, we can train two depth estimators Fs and

Ft on the original synthetic data (Xs) and the generated re-

alistic data (Gs2t(Xs)) using the generator Gs2t in super-

vised manners, respectively. These two models are comple-

mentary, since Fs has clean training set Xs but dirty test set

Gt2s(Xt) generated by the generator Gt2s with noises, such

as distortion and blurs, caused by unsatisfied translation,

and vise verse for Ft. Nevertheless, because the depth infor-

mation is rather relevant to specific scene geometry which

might be different between source and target domains, the

models trained on Xs or Gs2t(Xs) still could fail to perform

well on Gt2s(Xt) or Xt. To provide a solution, we exploit

the epipolar geometry of real stereo pairs {(xi
tl
, xi

tr
)}Mi=1

(xi
tl

and xi
tr

represent the left and right image respectively2)

during training to encourage Ft and Fs to capture the rele-

vant geometric structure of target/real data. In addition, we

introduce an additional depth consistency loss to enforce the

predictions from Ft and Fs are consistent in local regions.

The overall framework of GASDA is illustrated in Figure 3.

For simplicity, we will omit the superscript i in most cases.

3.2. GASDA

Bidirectional Style Transfer Loss Our goal here is to learn

the bidirectional translators Gs2t and Gt2s to bridge the gap

between the source domain (synthetic) Xs and the target

domain (real) Xt. Specifically, taking Gs2t as an exam-

ple, we expect the Gs2t(xs) to be indistinguishable from

real images in Xt. We thus employ a discriminator Dt, and

train Gs2t and Dt in an adversarial fashion by performing

a minimax game following [20]. The adversarial losses are

expressed as:

Lgan(Gs2t, Dt, Xt, Xs) =Ext∼Xt
[Dt(xt)− 1]+

Exs∼Xs
[Dt(Gs2t(xs))],

Lgan(Gt2s, Ds, Xt, Xs) =Exs∼Xs
[Ds(xs)− 1]+

Ext∼Xt
[Ds(Gt2s(xt))].

(1)

Unluckily, the vanilla GANs suffer from mode collapse.

To provide a remedy and ensure the input images and the

output images paired up in a meaningful way, we utilize

the cycle-consistency loss [61]. Specifically, when feed-

ing an image xs to Gs2t and Gt2s orderly, the output

should be a reconstruction of xs, and vice versa for xt, i.e.

Gt2s(Gs2t(xs)) ≈ xs and Gs2t(Gt2s(xt)) ≈ xt. The cycle

consistency loss has the form as:

Lcyc(Gt2s, Gs2t) = Exs∼Xs
[||Gt2s(Gs2t(xs))− xs||1]

+ Ext∼Xt
[||Gs2t(Gt2s(xt))− xt||1].

(2)

Apart from the adversarial loss and cycle consistency

loss, we also employ an identity mapping loss [48] to en-

courage the generators to preserve geometric content. The

2We will omit the subscript l of tl for the left image in most cases.
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Figure 3: The proposed framework in this paper. It consists of two main parts: image style translation and monocular depth estimation.

i) Style translation network, incorporating two generators (i.e., Gs2t and Gt2s) and two discriminators (i.e., Dt and Ds), is based on

CycleGAN [61]. ii) Monocular depth estimation network contains two complementary sub-networks (i.e., Fs and Ft). We omit the side

outputs, for brevity. More details can be found in Section 3, Section 4.1.

identity mapping loss is given by:

Lidt(Gt2s, Gs2t, Xs, Xt) = Exs∼Xs
[||Gt2s(xs)− xs||1]

+ Ext∼Xt
[||Gs2t(xt)− xt||1].

(3)

The full objective for the bidirectional style transfer is as

follow:

Ltrans(Gt2s, Gs2t, Dt, Ds) = Lgan(Gs2t, Dt, Xt, Xs)

+ Lgan(Gt2s, Ds, Xt, Xs)

+ λ1Lcyc(Gt2s, Gs2t)

+ λ2Lidt(Gt2s, Gs2t, Xt, Xs)
(4)

where λ1 and λ2 are the trade-off parameters.

Depth Estimation Loss We can now render the synthet-

ic images to the “style” of the target domain (KITTI), and

then capture a new dataset Xs2t = Gs2t(Xs). We train a

depth estimation network Ft on Xs2t in a supervised man-

ner using the provided ground truth depth in the synthetic

domain Xs. Here, we minimize the ℓ1 distance between the

predicted depth ỹts and ground truth depth ys:

Ltde(Ft, Gs2t) = ||ys − ỹts||. (5)

In addition to Ft, we also train a complementary depth

estimator Fs on Xs directly with the ℓ1 loss:

Lsde(Fs) = ||ys − ỹss|| (6)

where ỹss = Fs(xs) is the output of Fs. Both the Fs and

Ft are important backbones to alleviate the issue of geome-

try and semantic inconsistency coupled with the subsequent

losses. The full depth estimation loss is expressed as:

Lde(Ft, Fs, Gs2t) = Lsde(Fs) + Ltde(Ft, Gs2t). (7)

Geometry Consistency Loss Combining the components

above, we have already formulated a naive depth adver-

sarial adaptation framework. However, the Gs2t and Gt2s

are usually imperfect, which would make the predictions

ỹst = Fs(Gt2s(xt)) and ỹtt = Ft(xt) unsatisfied. Be-

sides, previous depth adaptation approaches overlook the

specific physical geometric structure which may vary from

scenes/datasets. Our main objective is to accurately esti-

mate depth for real scenes, so we consider the geometric

structure of the target data in the training phase. To this end,

we present a geometric constraint on Ft and Fs by exploit-

ing the epipolar geometry of real stereo images and unsu-

pervised cues. Specifically, we generate an inverse warped

image from the right image using the predicted depth, to re-

construct the left. We thus combine an ℓ1 with single scale

SSIM [52] term as the geometry consistency loss to align

the stereo images:

Ltgc(Ft) = η
1− SSIM(xt, x

′

tt)

2
+ µ||xt − x

′

tt||,

Lsgc(Fs, Gt2s) = η
1− SSIM(xt, x

′

st)

2
+ µ||xt − x

′

st||,

Lgc(Ft, Fs, Gt2s) = Ltgc(Ft) + Lsgc(Fs, Gt2s)
(8)

where Lgc represents the full geometry consistency loss,

Ltgc and Lsgc denote the geometry consistency loss of Ft
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Figure 4: Inference Phase (Section 3.3).

and Fs respectively. x
′

tt (x
′

st) is the inverse warp of xtr us-

ing bilinear sampling [23] based on the estimated depth map

ytt (yst), the baseline distance between the cameras and the

camera focal length [16]. In our experiments, η is set to be

0.85, and µ is 0.15.

Depth Smoothness Loss To encourage depths to be con-

sistent in local homogeneous regions, we exploit an edge-

aware depth smoothness loss:

Lds(Ft, Fs, Gt2s) = e−∇xt ||∇ỹtt||+ e−∇xt ||∇ỹst|| (9)

where ∇ is the first derivative along spatial directions. We

only apply the smoothness loss to Xt and Xt2s (real data),

since Xs and Xs2t (synthetic data) have full supervision.

Depth Consistency Loss We find that the predictions for

xt, i.e., Ft(xt) and Fs(Gt2s(xt)), show inconsistency in

many regions, which is in contrast to our intuition. One

of the possible reason is that Gt2s might fail to translate xt

with details. To enforce such coherence, we introduce an ℓ1
depth consistency loss with respect to ỹtt and ỹst as follows:

Ldc(Ft, Fs, Gt2s) = ||ỹtt − ỹst||. (10)

Full Objective Our final loss function has the form as:

L(Gs2t, Gt2s, Dt, Ds, Ft, Fs)

= Ltrans(Gs2t, Gt2s, Dt, Ds) + γ1Lde(Ft, Fs, Gs2t)

+ γ2Lgc(Ft, Fs, Gt2s) + γ3Ldc(Ft, Fs, Gt2s)

+ γ4Lds(Ft, Fs, Gt2s)
(11)

where γn(n ∈ {1, 2, 3, 4}) are trade-off factors. We opti-

mize this objective function in an end-to-end deep network.

3.3. Inference

In the inference phase, we aim to predict the depth map

for a given image in real domain (e.g. KITTI dataset [38])

using the resultant models. In fact, there are two paths ac-

quiring predicted depth maps: xt → Ft(xt) → ỹtt and

xt → Gt2s(xt) → xt2s → Fs(xt2s) → ỹst, as shown in

Figure 4, and the final prediction is the average of ỹtt and

ỹst:

ỹt =
1

2
(ỹtt + ỹst). (12)

backward

ℒ𝑑𝑒ℒ𝑔𝑐ℒ𝑑𝑠ℒ𝑑𝑐
𝐹𝑡
𝐹𝑠

𝐺𝑠2𝑡
ℒ𝑡𝑟𝑎𝑛𝑠

𝐹𝑡
𝐹𝑠𝐺𝑡2𝑠

𝐺𝑠2𝑡 ℒ𝑑𝑒ℒ𝑔𝑐ℒ𝑑𝑠ℒ𝑑𝑐𝐺𝑡2𝑠
Updating Gs2t and Gt2s

ℒ𝑑𝑒ℒ𝑔𝑐ℒ𝑑𝑠ℒ𝑑𝑐
backward

𝐹𝑡
𝐹𝑠

𝐺𝑠2𝑡
ℒ𝑡𝑟𝑎𝑛𝑠

𝐹𝑡
𝐹𝑠𝐺𝑡2𝑠

𝐺𝑠2𝑡 ℒ𝑑𝑒ℒ𝑔𝑐ℒ𝑑𝑠ℒ𝑑𝑐𝐺𝑡2𝑠
Updating Ft and Fs

Figure 6: Iteratively updating stage. We learn our model by iter-

atively updating image style translators and depth estimators, i.e.,

freezing the module with dashed box while updating the one with

solidline box. See main text for details. We omit Dt and Ds for

brevity.

Input Image Ground Truth GASDA

Figure 8: Qualitative results on Make3D dataset [45]. Left to right:

input image, ground truth depth, and our result.

4. Experiments

In this section, we first present the details about our net-

work architecture and the learning strategy. Then, we per-

form GASDA on one of the largest dataset in the context

of autonomous driving, i.e., KITTI dataset [38]. We also

demonstrate the generalization capabilities of our model to

other real-world scenes contained in Make3D [45]. Finally,

we conduct various ablations to analyze GASDA.

4.1. Implementation Details

Network Architecture Our proposed framework consists

of six sub-networks, which can be divided into three group-

s: Gs2t and Gt2s for image style translation, Dt and Ds for

discrimination, Ft and Fs for monocular depth estimation.

The networks in each group share the identical network ar-

chitecture but are with different parameters. Specifically,

we employ generators (Gs2t and Gt2s) and discriminators

(Ds and Dt) provided by CycleGAN [61]. For monocular

depth estimators Ft and Fs, we utilize the standard encoder-

decoder structures with skip-connections and side outputs

as [59].

Datasets The target domain is KITTI [38], which is a real-

world computer vision benchmark consisting of 42, 382 rec-

tified stereo pairs in the resolution about 375 × 1242. In

our experiments, the ground truth depth maps provided by

KITTI are only for evaluation purpose. The source domain

is Virtual KITTI (vKITTI) [11], which contains 50 photo-

realistic synthetic videos with 21, 260 image-depth pairs of
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Method Supervised Dataset Cap
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [9] Yes K 80m 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [35] Yes K 80m 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Zhou et al. [60] No K 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [60] No K+CS 80m 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Kuznietsov et al. [27] Semi K 80m 0.113 0.741 4.621 0.189 0.862 0.960 0.986

Godard et al. [16] No K 80m 0.148 1.344 5.927 0.247 0.803 0.922 0.964

All synthetic(baseline1) No S 80m 0.253 2.303 6.953 0.328 0.635 0.856 0.937

All real(baseline2) No K 80m 0.158 1.151 5.285 0.238 0.811 0.934 0.970

Kundu et al. [26] No K+S(DA) 80m 0.214 1.932 7.157 0.295 0.665 0.882 0.950

Kundu et al. [26] Semi K+S(DA) 80m 0.167 1.257 5.578 0.237 0.771 0.922 0.971

GASDA No K+S(DA) 80m 0.149 1.003 4.995 0.227 0.824 0.941 0.973

Kuznietsov et al. [27] Yes K 50m 0.117 0.597 3.531 0.183 0.861 0.964 0.989

Garg et al. [14] No K 50m 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al. [16] No K 50m 0.140 0.976 4.471 0.232 0.818 0.931 0.969

All synthetic(baseline1) No S 50m 0.244 1.771 5.354 0.313 0.647 0.866 0.943

All real(baseline2) No K 50m 0.151 0.856 4.043 0.227 0.824 0.940 0.973

Kundu et al. [26] No K+S(DA) 50m 0.203 1.734 6.251 0.284 0.687 0.899 0.958

Kundu et al. [26] Semi K+S(DA) 50m 0.162 1.041 4.344 0.225 0.784 0.930 0.974

Zheng et al. [59] No K+S(DA) 50m 0.168 1.199 4.674 0.243 0.772 0.912 0.966

GASDA No K+S(DA) 50m 0.143 0.756 3.846 0.217 0.836 0.946 0.976

Table 1: Results on KITTI dataset using the test split suggested in [9]. For the training data, K represents KITTI dataset, CS is CityScapes

dataset [6], and S is vKITTI dataset. Methods, which apply domain adaptation techniques, are marked by the gray.

Input Image Ground Truth Eigen et.al. [9] Zheng et.al. [59] GASDA

Figure 5: Qualitative comparison of our results against methods proposed by Eigen et al. [9] and Zheng et al. [59] on KITTI. Ground truth

has been interpolated for visualization. To facilitate comparison, we mask out the top regions, where ground truth depth is not available.

Our approach preserves more details and yields high-quality depth maps.

size 375 × 1242. Additionally, in order to study the gen-

eralization performance of our approach, we also apply the

trained model to Make3D dataset [45]. Since Make3D does

not offer stereo images, we directly evaluate our model on

the test split without training or further fine-tuning.

Training Details We implement GASDA in PyTorch. We

train our model in a two-stage manner, i.e., a warming

up stage and end-to-end iteratively updating stage. In the

warming up stage, we first optimize the style transfer net-

works for 10 epochs with the momentum of β1 = 0.5, β2 =
0.999, and the initial learning rate of α = 0.0002 using the

ADAM solver [25]. Then we train Ft on {Xt, Gs2t(Xs)},

and Fs on {Xs, Gt2s(Xt)} for around 20 epochs by setting

β1 = 0.9, β2 = 0.999, and α = 0.0001. To make style

translators generate high-quality images, so as to improve

the subsequent depth estimators, we fine-tune the network

in an end-to-end iteratively updating fashion as shown in

Figure 6. In specific, we optimize Gs2t and Gt2s with the

supervision of Ft and Fs for m epochs, and then train Fs

and Ft for n epochs. We set m = 3 and n = 7 in our exper-

iments, and repeat this process until the network converges

(around 40 epochs). In this stage, we employ the same mo-

mentum and solver as the first stage with the learning rates

of 2e− 6 and 1e− 5 for the two respectively. The trade-off

factors are set to λ1 = 10, λ2 = 30, γ1 = 50, γ2 = 50
and γ3 = 50 and γ4 = 0.5. In the training phase, we down-

sample all the images to 192×640, and increase the training

set size using some common data augmentation strategies,

including random horizontal flipping, rotation with the de-

grees of [−5◦, 5◦], and brightness adjustment.

4.2. KITTI Dataset

We test our models on the 697 images extracted from 29
scenes, and use all the 23, 488 images contained in other 32

scenes for training (22, 600) and validation (888) [9, 16].

To make a comparison with previous works, we evaluate

our results in the regions with the ground truth depth less

than 80m or 50m using standard error and accuracy metric-

s [16, 59]. Note that, the maximum depth value in vKITTI

is 655.35m instead of 80m in KITTI, but unlike [59], we do

not clip the depth maps of vKITTI to 80m during training.

In Table 1, we report the benchmark scores on the Eigen s-
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Method Supervised Dataset
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Godard et al. [16] No K 0.124 1.388 6.125 0.217 0.841 0.936 0.975

Godard et al. [16] No K+CS 0.104 1.070 5.417 0.188 0.875 0.956 0.983

Atapour et al. [2] No K+S∗(DA) 0.101 1.048 5.308 0.184 0.903 0.988 0.992

GASDA No K+S(DA) 0.106 0.987 5.215 0.176 0.885 0.963 0.986

Table 2: Results on 200 training images of KITTI stereo 2015 benchmark [15]. S∗ is captured from GTA5, and more similar to real data

than vKITTI. Our approach yields lower errors than state-of-the-art approaches, and achieve competitive accuracy compared with [2].

Real Image CycleGAN [61] GASDA Synthetic Image CycleGAN [61] GASDA

Figure 7: Qualitative image style translation results of our approach and CycleGAN [61]. Left: real-to-synthetic translation; Right:

synthetic-to-real translation. Our method can preserve geometric and semantic content better for both synthetic-to-real translation and the

inverse one. Note that, the translation result is a by-product of GASDA. The improvement is marked by the yellow box.

Method Trained∗
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE

Karsch et al. [24] Yes 0.398 4.723 7.801

Laina et al. [30] Yes 0.198 1.665 5.461

Kundu et al. [26] Yes 0.452 5.71 9.559

Godard et al. [16] No 0.505 10.172 10.936

Kundu et al. [26] No 0.647 12.341 11.567

Atapour et al. [2] No 0.423 9.343 9.002

GASDA No 0.403 6.709 10.424

Table 4: Results on 134 test images of Make3D [45]. Trained∗ in-

dicates whether the model is trained on Make3D or not. Errors are

computed for depths less than 70m in a central image crop [16]. It

can be observed that our approach is comparable with those trained

on Make3D.

plit [9] where the training sets are only KITTI and vKITTI.

GASDA obtains a convincible improvement over previous

state-of-the-art methods. Specifically, we make the com-

parisons with two baselines, i.e., All synthetic (baseline1,

trained on labeled synthetic data) and All real (baseline2,

trained on real stereo pairs), and the latest domain adapta-

tion methods [59, 26] and (semi-)supervised/unsupervised

methods [9, 35, 27, 14, 16, 60]. The significant improve-

ments in all the metrics demonstrate the superiority of our

method. Note that, GASDA yields higher scores than [26]

which employs additional ground truth depth maps for nat-

ural images contained in KITTI. GASDA cannot outper-

form [2] in the Eigen split. The main reason is that the

synthetic images employed in [2] are captured from GTA5
3, and the domain shift between GTA5 and KITTI is not

that significant than the one between vKITTI and KITTI.

3https://github.com/aitorzip/DeepGTAV.

In addition, the training set size in [2] is about three times

than ours. However, GASDA performs competitively on the

official KITTI stereo 2015 dataset and Make3D compared

with [2], as reported in Table 2 and Table 4. Apart from

quantitative results, we also show some example outputs in

Figure 5. Our approach preserves more details, and is able

to recover depth information of small objects, such as the

distant cars and rails, and generate clear boundaries.

4.3. Make3D Dataset

To discuss the generalization capabilities of GASDA, we

evaluate our approach on Make3D dataset [45] quantitative-

ly and qualitatively. We do not train or further fine-tune our

model using the images provide by Make3D. As shown in

Table 4 and Figure 8, although the domain shift between

Make3D and KITTI is large, our model still performs well.

Compared with state-of-the-art models [26, 24, 30] trained

on Make3D in a supervised manner and others using do-

main adaptation [26, 2], GASDA obtains impressive per-

formance.

4.4. Ablation Study

Here, we conduct a series of ablations to analyze our ap-

proach. Quantitative results are shown in Table 3, and some

sampled results for style transfer are shown in Figure 7.

Domain Adaptation We first demonstrate the effectiveness

of domain adaptation by comparing two simple models, i.e.

SYN (Fs trained on Xs) and SYN2REAL (Ft trained on

Gs2t(Xs)). As shown in Table 3, SYN cannot capture sat-

isfied scores on KITTI due to the domain shift. After the

translation, the domain shift is reduced which means that

the synthetic data distribution is relative closer to real data
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Method
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Domain Adaptation

SYN 0.253 2.303 6.953 0.328 0.635 0.856 0.937

SYN2REAL 0.229 2.094 6.530 0.294 0.691 0.886 0.951

SYN2REAL-E2E 0.220 1.969 6.377 0.284 0.703 0.895 0.956

Geometry Consistency

REAL 0.158 1.151 5.285 0.238 0.811 0.934 0.970

SYN-GC 0.156 1.123 5.255 0.235 0.814 0.937 0.971

SYN2REAL-GC 0.153 1.112 5.213 0.233 0.819 0.938 0.972

SYN2REAL-GC-E2E 0.152 1.130 5.227 0.231 0.821 0.939 0.972

Symmetric Domain Adaptation

REAL2SYN-SYN-GC-E2E 0.160 1.226 5.412 0.240 0.806 0.933 0.969

GASDA-w/oDC 0.151 1.098 5.136 0.230 0.822 0.940 0.972

GASDA-Ft 0.150 1.014 5.041 0.228 0.824 0.941 0.973

GASDA-Fs 0.156 1.087 5.157 0.235 0.813 0.936 0.971

GASDA 0.149 1.003 4.995 0.227 0.824 0.941 0.973

Table 3: Quantitative results for ablation study on KITTI dataset using the test split suggested in [9]. SYN, REAL, REAL2SYN, and

SYN2REAL represent the model trained on Xs, Xt, Gt2s(Xt), and Gs2t(Xs); E2E represents the end-to-end training; GC and DC denote

the geometry consistency and depth consistency, respectively; GASDA-Ft (Fs) represents the output of Ft (Fs) in GASDA.

distribution. Thus, SYN2REAL is able to generalize bet-

ter to real images. Further, we train the style translators

(Gs2t and Gt2s) and the depth estimation network (Ft) in

an end-to-end fashion (SYN2REAL-E2E), which guides to

a further improvement as compared to SYN2REAL. As a

conclusion, the depth estimation network can improve the

style transfer by providing a pixel-wise semantic constraint

to the translation networks. Moreover, we can also observe

the improvement in Figure 7 by comparing the translation

results of original CycleGAN [61] with ours.

Geometry Consistency We then study the significance

of the geometric constraint coming from stereo images

based on the epipolar geometry. In specific, we employ

the stereo images provided by KITTI when optimizing Ft

in SYN2REAL-E2E. We enforce the geometry consisten-

cy between the stereo images as a constraint as stated

in Eq. 8. The model SYN2REAL-GC-E2E outperforms

SYN2REAL-E2E by a large margin, which demonstrates

that the geometry consistency constraint can significant-

ly improve standard domain adaptation frameworks. On

the other hand, the comparisons among SYN2REAL-GC,

SYN-GC (trained on real data and synthetic data without

domain adaptation) and REAL (Ft trained on real stereo

images without extra data) can show the significance of syn-

thetic data with ground truth depth and domain adaptation.

Symmetric Domain Adaptation In contrast to previous

works, we expect to fully take advantage of the bidirec-

tional style translators Gs2t and Gt2s. Thus, we learn

REAL2SYN-SYN-GC-E2E whose network architecture is

symmetrical to the aforementioned SYN2REAL-GC-E2E.

We jointly optimized the two coupled with a depth con-

sistency loss. As shown in Table 3, GASDA is superior

than GASDA-w/oDC which demonstrates the effectiveness

of the depth consistency loss. In addition, the comparison-

s (GASDA-Ft v.s. SYN2ERAL-GC-E2E and GASDA-Fs

v.s. REAL2SYN-GC-E2E) show that the two can benefit

each other in the jointly training.

5. Conclusion

In this paper, we present an unsupervised monocu-

lar depth estimation framework GASDA, which trains the

monocular depth estimation model using the labelled syn-

thetic data coupled with the epipolar geometry of real stereo

data in a unified and symmetric deep learning network. Our

main motivation is learning a depth estimation model from

synthetic image-depth pairs in a supervised fashion, and at

the same time taking into account the specific scene geome-

try information of the target data. Moreover, to alleviate the

issues caused by domain shift, we reduce the domain dis-

crepancy using the bidirectional image style transfer. Final-

ly, we implement image translation and depth estimation in

an end-to-end network so that then can improve each other.

Experiments on KITTI and Make3D datasets show GAS-

DA is able to generate desirable results quantitatively and

qualitatively, and generalize well to unseen datasets.
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