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Abstract

Hyperspectral images can provide rich clues for vari-

ous computer vision tasks. However, the requirements of

professional and expensive hardware for capturing hyper-

spectral images impede its wide applications. In this pa-

per, based on a simple but not widely noticed phenomenon

that the color printer can print color masks with a large

number of independent spectral transmission responses, we

propose a simple and low-budget scheme to capture the

hyperspectral images with a random mask printed by the

consumer-level color printer. Specifically, we notice that the

printed dots with different colors are stacked together, form-

ing multiplicative, instead of additive, spectral transmission

responses. Therefore, new spectral transmission response

uncorrelated with that of the original printer dyes are gen-

erated. With the random printed color mask, hyperspectral

images could be captured in a snapshot way. A convolu-

tional neural network (CNN) based method is developed to

reconstruct the hyperspectral images from the captured im-

age. The effectiveness and accuracy of the proposed system

are verified on both synthetic and real captured images.

1. Introduction

Spectra can provide additional information of scenes be-

yond the ability of human eyes and commercial RGB cam-

eras, having great potential to facilitate computer vision

tasks [3, 9, 29]. However, the high complexity and cost of

spectral imaging systems greatly raise the difficulty of ac-

quiring spectral images, and thus limit the wide application

of spectral imaging.

Traditionally, to capture hyperspectral images, the scan-

ning based methods (either the spatial scanning [18] or the

spectral scanning [15]) are required. These scanning based

systems can capture images with several to hundreds spec-

tral channels, while the ability to handle dynamic scenes are

sacrificed. To take the spectral image in a single snapshot,

the snapshot spectral imaging methods are proposed in the

past few years [6, 10, 16, 25, 31, 32]. However, most of
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Figure 1. Overview of the proposed hyperspectral imaging system:

with a consumer-level printer, a random color printed mask can be

attached to the sensor of the camera to sample the hyperspectal

images. Through randomly overlaying ink droplets, the spectral

transmission responses of different points are rendered highly un-

correlated and facilitate the full spectrum recovery with details.

A convolutional neural network is proposed to recover the hyper-

spectral images from the randomly coded images.

these systems suffer from the system complexity and cal-

ibration difficulty. Customized spectral filter based meth-

ods are proposed to realize compact hyperspectral imag-

ing [5, 20, 23, 28], while these methods suffer from the fab-

rication cost of the filters. RGB cameras are also studied to

be turned into spectrometers [2, 4, 27, 24, 33]. However,

the uncorrelated spectral modulations (i.e. RGB Bayer fil-

ter) are limited and spectral details are hard to be retrieved.

In this paper, we propose a simple and low-cost spectral

imaging scheme with a color mask, which can be printed by

consumer-level printers. The idea of the proposed system is

based on a simple but not widely noticed phenomenon, i.e.

the spectral transmission responses of overlapping printed

color dots are the multiplication of the spectral transmis-

sion response of each overlapped color dots. The multi-

plied spectral transmission response is linearly uncorrelated

with that of the printer inks. Therefore, we can generate

the color mask with a large number of uncorrelated spectral

transmission responses. With the color mask, hyperspec-

tral images can be encoded in high quality. We develop a

CNN-based method to reconstruct the hyperspectral images

from the captured image and built a prototype hyperspec-
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tral imaging system. The proposed hyperspectral imaging

method is validated on both the simulated and real captured

data. The main contributions of the paper are:
• We propose to generate the color mask with a

large number of uncorrelated spectral transmission re-

sponses by using consumer-level color printers and

propose a simple hyperspectral imaging scheme based

on the randomly printed color mask.

• We develop a CNN-based reconstruction network to

recover the hyperspectral images from observations.

• We build a prototype imaging system to verify this ap-

proach and demonstrate the feasibility and effective-

ness on both synthetic and experimental data.

2. Related Work

Snapshot hyperspectral imaging technologies have been

evolving rapidly in the last few decades. To capture the 3D

hyperspectral images with a 2D imaging sensor in a snap-

shot way, either spatial or spectral coding is introduced. In

terms of the specific coding techniques, existing methods

can be divided into three main categories: dispersion based

spectral imaging methods [6, 16, 25, 31, 32], the scattering

based spectral imaging methods [12, 30], and the spectral

filter based methods [2, 4, 5, 13, 20, 23, 24, 27, 28, 33].

Dispersion based Spectral Imaging Methods. With dis-

persive elements, e.g. prisms or gratings, the spectrum of

each point is spread spatially. Through introducing a spatial

coding, the spectral information is coded indirectly and cap-

tured [6, 10, 16, 25, 31, 32]. While these spectral imaging

methods could realize snapshot and high quality hyperspec-

tral imaging, sophisticated calibration are always required

and the system is bulky. Compared with these methods, our

hyperspectral imaging method only requires to print a color

mask and attach the color mask in front of the camera sen-

sor, which is easy to implement, of low cost and promising

for wider application in practice.

Scattering based Spectral Imaging Methods. Besides

spectral coding through introducing dispersers, scattering

medium is also introduced to encode the spectral informa-

tion with different speckle patterns [12, 30]. While these

methods are promising for compact hyperspectral imaging,

the spectral resolving ability is limited due to the speckle

correlation among different wavelengths. In our method, we

propose to use overlaying of ink drops to generate spectral

modulation which is highly uncorrelated and could enable

high quality encoding of hyperspectral imaging.

Spectral Filter based Spectral Imaging Methods. Other

than those indirect spectral coding methods, spectral imag-

ing could also be realized through direct spectral coding:

designing and attaching the spectral filter in front of the

camera sensor [5, 20, 23, 28]. Deep learning or dictio-

nary learning based methods, which exploit the sophisti-

cated spatial-spectral prior, are proposed for high quality

hyperspectral recovery [8, 13, 14]. These hyperspectral

imaging methods may require high precision manufactur-

ing of spectral filters, while our spectral imaging method

only requires to print a color mask with consumer-level

printers. Recently, turning commercial RGB cameras into

hyperspectral imaging also has emerged as a hot research

topic [2, 4, 24, 27, 33], which is promising for a low-cost

spectrometer. However, the uncorrelated spectral modula-

tions are limited and may not be enough to recover spec-

tral details. Our method could provide various uncorrelated

spectral modulations, making it possible to realize higher

quality encoding and recovery of hyperspectral information.

In all, we propose a novel low-cost and easy-to-

implement hyperspectral imaging technique. The calibra-

tion of our method is easy and most importantly, through ex-

ploiting the new generated spectral transmission responses

of randomly overlaying ink droplets, detailed hyperspec-

tral information could be encoded. We propose a CNN-

based network model to extract the hyperspectral images

and demonstrate the effectiveness of our method through

both synthetic and physical experiments.

3. Transmission Model of Random Printed

Mask

The basis of our work is that the spectral transmission re-

sponses of inks of different colors are various and the spec-

tral information can be encoded with a randomly printed

color mask. We investigate the printed color dot character-

istics, formulate the mask printing model and analyze the

color transmission responses with different printing param-

eters. Based on the analysis, we could choose the optimal

physical parameters to print our spectral coding mask.

3.1. Characteristics of Random Printed Mask

Random Distribution Characteristics. We first observe

the distribution of ink droplets at the micron level using

a microscope with 20X magnification. The CMYK color

mode, commonly used in color printing, contains four stan-

dard colors, i.e. cyan (C), magenta (M), yellow (Y), and

black (K). Since black ink absorbs light of all wavelengths,

we generated a background picture with CMYK mode in

which case C, M and Y channel is set to 10 respectively and

K channel is set to 0. We print a uniform mask with the

CMYK value on a transparent film and observed the printed

picture under the microscope, as shown in Fig. 2(a). It can

be observed that the positions of droplets at the micron level

are not regularly arranged, but relatively random and uncon-

trolled. Each individual drop of ink is approximately round.

New colors such as purple, green and orange are produced

due to the overlapping of the CMY ink droplets.

Multiplicative Stacking Characteristics. Observing the

random distribution of ink drops, we further explore how
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Figure 2. (a) Image of ink droplets distribution at micron level. (b)

Spectral transmission response of CMY color printed film.

would the spectral transmission response change if different

ink droplets are stacked. We assume that the transmission

response would be the multiplication of the transmission re-

sponses of overlapped ink droplets as,

cp =
∏

i

ci, (1)

where cp means the transmission response of overlapped

layers and ci is the transmission response of the ith layer.

We conduct an experiment to verify the assumed stack-

ing model. A single point spectrometer (ASD TerraSpec

4 Standard-Res Mineral Analyzer) is used to measure the

transmission responses. After removing the influences of

light source and camera spectral sensitivity response, the

transmission responses of CMY inks are shown in Fig. 2(b).

We calculate the transmission response of the overlapped

ink droplets of magenta-magenta and cyan-magenta and

measure that with the single spectrometer. As shown in

Fig. 3, the measured transmission responses match well

with the estimated one by the multiplication model ( Eq. 1).
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Figure 3. (a) Transmission response with the same ink stacking.

(b) Transmission response with different ink stacking. The esti-

mated spectral transmission responses are calculated by Eq. (1).

3.2. Modeling the Transmission of Random Printed
Mask

With the multiplicative stacking model, we proceed to

model the multilayer monochromatic mask to simulate the

transmission response matrix of printed mask. The main

factors to be considered in modeling are ink density p, num-

ber of layers l, diameter of single droplet d and number of

Figure 4. The RGB images of the color masks with different print-

ing parameters.

ink colors. For one monochromatic layer, the printed mask

can be formulated as

Mi = I(p) ∗K(d, ci), (2)

where I(p) denotes the random 0-1 printing pattern of di-

mension H×W . Mi means the mask transmission response

matrix, K denotes the circle kernel whose diameter is d (the

shape of printed drop is approximately circular in practice).

ci is the spectral transmission response of the ith layer. ∗
means the spatial convolutional operation.

For a mask of mixed colors, it is equivalent to print multi-

ple layers of various colors. According to the multiplicative

stacking characteristics, multilayer monochromatic mask

M can be modeled as

M =
L∏

i=1

Mi, (3)

where
∏

means element-wise product and L denotes the

layer number.

According to the model, we simulate the mask printed

with different parameters and discuss the effects of these pa-

rameters on spectral retrieval fidelity to select the best print

settings in the next section.

3.3. Characteristic Analysis

In this chapter, we analyze the spectral reconstruction

performance of different physical parameters for printing

the color mask and choose the optimal one for our imaging

technique. Fig. 4 shows pseudo-color images of the sim-

ulated masks under different parameters according to the

calibrated spectral response of a commercial camera (point

grey Grasshopper3).

We build the imaging model first and gives a very simple

reconstruction method, so that the quality of random printed

mask can be assessed by using the accuracy of the recon-

struction results. The imaging model of encoding the spec-

tral information from the scene with the printed mask can

be expressed as

y = Cs, (4)

where y = [y1, y2, · · · , yn]
T denotes the signal encoded by

printed mask, C = [c1, c2, · · · , cn]
T refers to transmission
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matrix of printed mask. s means the spectra of scene which

could be estimated through the least square problem with

Tikhonov regularization [17]

ŝ = argmin
s

(‖y −Cs‖22 + α‖s‖22), (5)

where α is the regularization coefficient and setted as 0.01.
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Figure 5. Statistical analysis of the relation between the maximum

rank of transmission matrix and printing parameters p, i.

As for printing the color mask, there are four physical

parameters: the diameter of each ink droplet d, the print

density p, the number of inks i and the overlapping layer

number l. In terms of the diameter, it is physically deter-

mined by the printer nozzle and fixed to 4 pixels in simula-

tion, which is consistent with the size in real experiments.

It is well known that the higher the rank of C in Eq.(4),

the more linearly uncorrelated spectral measurements we

can get, facilitating higher fidelity spectral recovery. Thus,

we are committed to seeking parameters to make the rank

of printed mask as high as possible. Considering the im-

plementation practicality, we limit the number of layers to

150 layers. To choose the best parameter values, we first

randomly simulate masks 100 times under different param-

eter settings, and statistically analyze the relation between

the maximum rank of transmission matrix and parameters p
and i, as shown in Fig. 5. It is obvious that the larger the ink

number, the higher rank can be achieved when the density

p is fixed. Nevertheless, the rank of transmission matrix de-

creases whether the print is too thick or too sparse. Thus,

p = 0.01 is chosen as the printing density in our experi-

ments. It is worth noting that when i reaches 10, the rank

growth slowly for p = 0.01. Hence i = 10 is chosen as the

final printing ink number in our experiments.

In order to more intuitively establish the relationship

between rank of mask under different parameters and re-

construction performance, we conduct three sets of experi-

ments, as shown in Fig. 6. We firstly synthesize the color

×

×

×

×

× ×

×
××

(a) setting p = 0.01 (b) without noise (c)  

(d) setting i = 10 (e) without noise (f)  

(g) setting p = 0.01 and i=10 (h) without noise (i)  

Figure 6. Setting print density p to 0.01: (a) rank analysis for dif-

ferent number of inks used when setting print density as 0.01, (b)-

(c) reconstructed spectrums with parameters marked in (a), white

Gaussian noise (σ = 20) is added in (c). Setting the number of

inks i to 10: (d) rank analysis for different layers and print den-

sity. (e)-(f) reconstructed spectrums with parameters marked in

(d), white Gaussian noise (σ = 20) is added in (f). Setting i to 10

and p to 0.01: (g) rank analysis for different layers when p is 0.01

and i is 10, (h)-(i) reconstructed spectrums at parameters marked

in (g), white Gaussian noise (σ = 20) is added in (i).

mask with different i and l when p = 0.01, as shown in

Fig. 6(a). It can be observed that with fixed i, the rank

increases first and then decreases as l increases. Printing

too many layers on the same sheet would decrease the light

throughput and deteriorate the spectral coding ability of the

color mask. We visualize the corresponding reconstruction

results under different noise conditions with different pa-

rameters in Fig. 6(a) marked with red cross. As we can see

from Figs. 6(b)-(c), with p = 0.01 and l = 38, the more

inks, the rank of the transmission response is higher and the

spectrum is reconstructed with higher fidelity.

We then synthesize the color mask with different printed

density and layer number, fixing the other parameters. The

changing trend of rank under different print density and lay-

ers is shown in Fig. 6(d). We further compare the corre-

sponding reconstruction results under different noise con-

ditions with different parameters in Fig. 6(d) marked with

red cross to choose the best parameters to print, as shown in

Figs. 6(e)-(f). The standard deviation σ of the added noise

is 20 in Fig. 6(f). It can be observed that printing 38 layers

when p = 0.01 or printing 300 layers when p = 0.001 can

reconstruct the spectrum with high-fidelity and high toler-

ance to noise. However, print too many layers is inpractical

for implementation, so we choose the p = 0.01. To fur-

ther determine the optimal number of print layers, we ana-

lyze different layers to print when setting p and i fixed, as
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shown in Fig. 6(g) marked in red cross. The number of lay-

ers respectively is 30, 38 and 50. The reconstruction results

are shown in Figs. 6(h)-(i). It can be seen that printing too

many layers may result in a decrease in randomness, and

on the contrary, printing too few causes insufficient infor-

mation collection capability. In summary, printing 35-45
layers corresponds to the reasonably good performance.

Based on the above analysis, we choose the print density

to be 0.01, diameter 4, color number 10 and the layers num-

ber 35-41 as our final printing parameters of the color mask

(see Sec. 5.2 for implementation details). In the follow-

ing, we will develop a CNN-based method for reconstruct-

ing hyperspectral images with our imaging technique.

4. Image Formation Model and Inverse

Method

By placing the color mask in front of the sensor, the spec-

tral images are encoded, integrated along wavelength and

captured by a 2D sensor. The image formation model is

I(x, y) =
∑

λ

Φ(x, y, λ)S(x, y, λ), (6)

where Φ denotes the spectral transmission matrix of the

color mask, S denotes the 3D hyperspectral images, and

I is the captured image. Reconstructing the 3D hyper-

spectral images S from the captured 2D coded image is

highly underdetermined, where sophisticated sparsity prior

of hyperspectral images is required. Dictionary based meth-

ods have been pioneeringly applied to introduce the statis-

tical prior of hyperspectral images into the inverse prob-

lem and successfully recover high quality hyperspectral im-

ages [1, 14, 25]. Beyond that, CNN which is expert in learn-

ing statistical priors from data, has also been applied and

achieve remarkable performance in hyperspectral image re-

construction [8, 13, 24].

In this paper, we propose a CNN-based method for spec-

tral reconstruction. In order to increase the receptive field

(RF) [21] of the model and enable it to integrate the coded

information of mask of different size level, a multiscale net-

work model is employed. As shown in Fig. 7, the proposed

method learns an end-to-end mapping from a large num-

ber of coded images and ground truth hyperspectral image

pairs. The input of network is a two-dimensional image

encoded by a printing mask, and the output is the recon-

structed spectral image. The CNN-based model we used is

represented as F . The input and output pairs fed to F is

represented as {Ii|Si}
N
1 . I is obtained by Eq.(6) in syn-

thetic experiment with ground truth hyperspectral images

S, where Φ means the transmission response matrix of the

color mask, Φ ∈ RH×W×Λ and S ∈ RH×W×Λ, Λ denotes

the spectral resolution. The output of the network is

Network Structure. Our model (Fig.7) is based on the

multiscale structure, which is downsampled four times with

maximum poolings. The size of feature maps is shrunk to

half of previous layer after each downsampling. Bilinear

upsampling instead of deconvolution operation is used to

prevent the checkboard effect. Bottleneck in Resnet [19]

is added following upsampling to smooth the feature map.

Skipping connections are introduced in our network struc-

ture to improve the disappearance of gradients during back-

propagation and merge shallow and deep information. The

multiscale scheme is proposed basically on the purpose to

extract the correlation information from pixels in different

scales of receptive fields for better spectral reconstruction.

Ŝ = F(I). (7)

Loss Function. Parameters of each layer in F are defined

as θ = {Wl,bl}
d+1
1 , and d is the number of hidden lay-

ers. These parameters are trained with the loss function

in Eq. 8. The first term is the mean squared error (MSE)

of the groundtruth hyperspectral image S and the predicted

hyperspectral image Ŝ from the network. In order to re-

cover the detailed characteristic information in spectral di-

mension, we add the spectrum constancy loss as the second

term in Eq. 8, which constraints the first-order derivative of

S and Ŝ in the wavelength dimension to be similar. In addi-

tion, decay term of weights is included to avoid overfitting.

L =β1‖F(I)− S‖22
︸ ︷︷ ︸

data term

+ β2‖ ▽λ Ŝ−▽λS‖
2

︸ ︷︷ ︸

spectrum constancy loss

+
τw
2

d+1∑

1

‖Wl‖
2

︸ ︷︷ ︸

decay term

(8)

Implementation Details. The databases used for

training are publicly available, including Harvard [7],

Columbia [34], KAIST [8], and Manchester [26, 11] spec-

tral image database. Data augmentation method is used to

preprocess datasets by means of cutting, scaling, rotation,

etc. 40000 enhanced data pairs of size (256 × 256 × 31,

256×256) are sampled. The augmented dataset is divided

into training and validation set by 4 : 1. Pytorch framework

is employed to train our model. ADAM [22] is adopted

for optimization. The leaning rate is set to 10−4 initially,

and scaled to 1/3 of previous one starting from the 6th

epoch. β2 is gradually increased from the 6th epoch, scaled

by 1.1 each epoch. The weight τw for the decay term is

set to 10−8. The network training process lasted about 24
hours. The hardware platform we used is configured with

an Intel(R) CPU E5-2609 with 64GB memory and NVIDIA

Tesla P100 with 16GB of memory. Zero mean simulated

Gaussian noise with a standard deviation of 5 is added dur-

ing training and testing.
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Figure 7. Neural network structure. The input is the spectrally encoded images, and the output is the recovered hyperspectral images of 31

channels. The multiscale network is composed of convolution layers, bilinear upsampling, maxpooling and Resbottle modules, exploiting

the correlation among pixels over receptive fields of different scales.

Table 1. Quantitative comparisons with state-of-the-art methods

Methods PSNR(dB) SSIM MSE

Sparse Coding [25] 25.97 0.86 0.0008

Deep CASSI [8] 34.47 0.91 0.01

Our CNN+RGB 21.5 0.57 0.03

Our Method 34.74 0.93 0.0004

5. Experiment

In this section, we demonstrate the effectiveness of our

method through both simulation and physical experiments.

5.1. Experiments on Synthetic Spectral Data

We compare our method against the other three state-of-

the-art methods: sparse coding based method (Sparse Cod-

ing) [25], CNN-based reconstruction with coded aperture

snapshot spectral imaging system (Deep CASSI) [8] (net-

work model of [8] provided by the authors), and our CNN

network with RGB image as input (Our CNN+RGB). For

fair comparison, parameters of the three methods are tra-

versed and set to the ones with the best performance.

Quantitative Comparisons of Reconstruction. As shown

in Tab. 5.1, we verify our method on four validation

datasets (Harvard [7], Columbia [34], KAIST [8], Manch-

ester [11, 26] datasets). The average peak signal to noise ra-

tio (PSNR), structure similarity index metrics (SSIM), mean

squared error (MSE). As shown, the performance of our

method is comparable to the other state-of-the-art methods

in PSNR, SSIM and MSE. As a whole, we demonstrate the

effectiveness of our method through extensive comparisons.

Qualitative Comparisons of Reconstruction. To visual-

ize the comparison, we show the reconstruction result of

our method and the other three methods on four images,

each from a different database. We first calculate the cor-

responding RGB images with the reconstructed hyperspec-

tral images and RGB spectral response of a commercial

RGB camera (point grey Grasshopper3), as shown in 1-4th

rows in Fig. 8. Through comparing with the other methods,

the color images calculated from the recovered hyperspec-

tral images with our method are the most similar with the

ground truth. This could be demonstrated through compar-

ing the error maps of RGB images of different methods, as

shown in the 5-8th rows in Fig. 8. Furthermore, we ran-

domly pick four points from these four scene respectively

and compare the recovered spectrum directly in the first

column, 5-8th rows. As shown, our methods could recover

most spectral details, demonstrating the effectiveness of our

method.

5.2. Experiments on Real Captured Data

To prove the validity of our method with real captured

data, we build a prototype system with the printed mask.

To make the mask more qualified and random, we inves-

tigate the transmission curves of 13 inks (C13T761280,

C13T761380, C13T761480, C13T761580, C13T761680,

LAMY T52-Cyan, T52-Magenta, T52-Yellow, and five Pi-

lot INK-30 series) in the market, and compare the correla-

tion coefficients among them. Since the RGB Bayer pattern

of the camera already introduces 3 color filter with differ-

ent transmission curves, we further choose 7 inks which are

least correlated with each other. We randomly printed the

inks on the transparent film by ink-jet printers (two XP-245

printer, one loaded 3 inks and the other 4 inks.). For each

printer, the number of colorful inks on one layer each time

depends on the loaded ink number, i.e. 3 or 4. In our exper-

iment, we print 6 layers with the 3-inks printer and 5 layers

with the 4-inks printer.

Since removing the protective glass in front of the sensor

and stick the printed color mask to the sensor may require

sophisticated manufacturing technique to avoid potential ar-

tifacts, here we leave this part for future work and build a

relay system to simply demonstrate our method.

As shown in Fig. 10, the acquisition system we pro-

pose includes objective lens, printed mask, relay lens and
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Figure 8. Simulation results on four images, each from a hyperspectral database (Manchester, Columbia, Harvard, KAIST). We compare

the synthetic RGB images, the recovered spectrums and error maps with the other three methods.

the imaging sensor. Objective lens is used to focus the

light from the scene on the printed mask, spectral infor-

mation is modulated by the printed mask. The modulated

light is finally imaged by the sensor through the relay lens.

The spectral transmission response of the printed mask is

calibrated using a high resolution spectrophotometer (with

spectral resolution: 0.1nm). We change the emission wave-

length of the spectrophotometer and direct the monochro-

matic light into the integrating sphere to produce a spatially

uniform light. The transmitted images are captured every
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Encoded Image
Synthetic 

RGB Image 490nm 580nm 590nm 610nm 630nm500nm 670nm 700nm

Figure 9. Experimental results of different scenes, the first column are the captured spectral-encoded images, the second column are the

synthetic RGB images with the recovered spectrums, the 3-10th columns are the recovered hyperspectral channels, and the last column

show the comparisons between the recovered spectrums with the ground truth spectrums captured by the ASD spectrometer.

10 nm from 400 nm to 700 nm. Here we show 8 of the 31

different spectral transmission response image in Fig. 10.

With the calibrated transmission spectral response and

the hyperspectral image database, we synthesize 40000

pairs of training data. It took approximately 24 hours to

train the network. With the trained network, in physical

experiments, we capture the spectrally coded image with

the prototype system and recover the hyperspectral image

with the trained network. The calibration of the acquisition

system is required only once to get the spectral transmis-

sion response Φ. Under the irradiation condition of iodine

tungsten lamp light source, we collect several coded im-

ages as shown in the first column in Fig. 9. The results are

shown in Fig. 9. The first column are the captured spectral-

encoded images of different scenes. The second column are

the synthetic RGB images with the recovered hyperspectral

images. The 3-10th columns are the single band spectral

images of 490 nm, 500 nm, 580 nm, 590 nm, 610 nm, 630
nm, 670 nm and 700 nm.

To verify the effectiveness of our method, we further

Relay 

Lens Printed 

Mask
Objective 

Lens

Image 

Sensor

440nm 480nm

520nm 560nm

600nm 640nm

680nm 720nm

Figure 10. Prototype hyperspectral imaging system and the cap-

tured transmission images at different wavelengths for calibration.

capture the groundtruth spectrum with an ASD spectrom-

eter and compare the reconstructed spectrum with the spec-

trum captured with the ASD. As shown in the last column

(marked with blue points in the 2nd column), our method

could recover most of the spectral details. In all, we demon-

strate that through combing the random color spectral en-

coding and CNN-based hyperspectral reconstruction, our

method could realize high quality hyperspectral imaging.

6. Conclusion

In this paper, we propose a simple and low-budget hyper-

spectral imaging method. We observe that the transmission

spectrum of overlapping printed color mask is the multipli-

cation of the spectral transmission response of each layer,

which could introduce a large number of uncorrelated spec-

tral transmission responses. Through printing multilayer

random color pattern, we could get an efficient spectral-

coding color mask. Combined with the novel spectral cod-

ing color mask, we develop a CNN-based network model to

recover the hyperspectral information from the coded image

with our color mask. As demonstrated in simulated and real

captured data, our hyperspectral imaging is of the state-of-

the art spectral retrieving quality.

Future work would be to develop a compact spectrom-

eter based on our method. Although our prototype system

is not compact in its current relay-system implementation,

our method is indeed promising for a compact hyperspectral

imager by attaching the spectral mask on the sensor.
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