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Abstract

This paper presents PointWeb, a new approach to ex-

tract contextual features from local neighborhood in a point

cloud. Unlike previous work, we densely connect each point

with every other in a local neighborhood, aiming to spec-

ify feature of each point based on the local region charac-

teristics for better representing the region. A novel mod-

ule, namely Adaptive Feature Adjustment (AFA) module, is

presented to find the interaction between points. For each

local region, an impact map carrying element-wise impact

between point pairs is applied to the feature difference map.

Each feature is then pulled or pushed by other features in

the same region according to the adaptively learned impact

indicators. The adjusted features are well encoded with re-

gion information, and thus benefit the point cloud recogni-

tion tasks, such as point cloud segmentation and classifi-

cation. Experimental results show that our model outper-

forms the state-of-the-arts on both semantic segmentation

and shape classification datasets.

1. Introduction

We have witnessed great progress in image recognition

tasks, such as image classification [11, 22, 26, 7, 9, 8]

and semantic segmentation [14, 3, 35], which are mainly

advanced by the development of deep learning techniques

with massive model capacity. Beyond 2D image recog-

nition, there is increasingly growing interest in 3D vi-

sion [18, 36, 6, 34, 4] for applications of autonomous driv-

ing, augmented reality, robotics, etc. Advent of large-scale

high-res 3D datasets [1, 5] also gives rise to the environment

of reasoning 3D data with deep neural networks.

Directly extending 2D image deep learning methods to

3D recognition tasks is not always feasible, since 3D scenes

are usually described by a set of points that are unordered

and scattered in 3D. It is also not reasonable to simply apply

2D feature aggregating operations like convolution to irreg-

ular point clouds, since these operations generally work on
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Figure 1. 3D segmentation illustration. (a) PointNet++ [20]. (b)

DGCNN [32]. (c) Our approach with the Adaptive Feature Ad-

justment (AFA) module. Blue points represent the features that in-

tegrate pair information. Red points are the features that integrate

region information. Compared with aggregating pair features from

a center point to others by concatenation, our approach adaptively

learns the impact indicator between each point pair, and aggregates

features in the whole region.

regular grids. Approaches [16, 23, 21] addressed this prob-

lem by voxelizing point clouds and applying 3D CNN for

feature learning, which is a natural thought. These meth-

ods run slowly and may suffer from information loss dur-

ing the voxelization. Alternatively, PointNet [18] architec-

ture directly processes raw point clouds with shared Multi-

Layer Perception (MLP). The following PointNet++ [20]

further improved the performance by introducing a hierar-

chical structure to extract global and local features. Unlike

2D convolutions that integrate features for a pixel with its

local neighborhood, feature aggregation of a local region in

PointNet++ is implemented by max pooling as in Fig. 1 (a).

For the Dynamic Graph CNN (DGCNN) [32], it aggre-

gates information in each local region by concatenating fea-

tures of a center point with the feature difference between
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the center point and its k nearest neighbors, followed by an

MLP and max pooling (Fig. 1 (b)). Here, the pair relation-

ship is only considered for the center point and the consoli-

dation of region information is still limited, since the actual

operation for region aggregation is also achieved by a sim-

ple max pooling. PointCNN [13] addressed this problem by

sorting the points into a potentially canonical order and ap-

plying convolution on the points. Whether points permuted

and weighted by the X -transformation [13] are in a canoni-

cal order or not yet requires further investigation.

Different from the above methods, we exhaust the con-

textual information in a local region by connecting and ex-

ploring all pairs of points in the region. To this end, we for-

mulate a novel module, namely the Adaptive Feature Ad-

justment (AFA), to interconnect all pairs of points in the

local region and eventually form a locally fully-linked web.

We then learn the adjustment on the point feature from the

point-pair difference as shown in Fig. 1 (c). This strategy

enriches point feature in local region, and forms aggregated

feature to better describe local region for 3D recognition.

Our network learns the impact indicators from the point-

pair difference to determine feature adjustment, thus allow-

ing an appropriate adaptation for better generality. Fig. 2

illustrates the process of feature adjustment. Further, we

propose the PointWeb framework with our novel AFA mod-

ule for 3D scene recognition, as shown in Fig. 4, which

achieves state-of-the-art results on point cloud scene under-

standing tasks, including point cloud semantic segmenta-

tion and shape classification. The top ranking experimental

results are achieved on the three most competitive datasets,

i.e., Stanford Large-Scale 3D Indoor Space (S3DIS) [1] for

semantic segmentation, ScanNet [5] for semantic voxel la-

beling, and ModelNet40 [33] for shape classification. We

believe this effective adaptive feature adjustment module

can benefit other point cloud understanding tasks. We

give all the implementation details, and make our code and

trained models publicly available1. Our main contribution

is twofold.

• We enable information interchange between each

paired 3D points through adaptive feature adjustment

(AFA). This module largely enhances the representa-

tion ability of the learned point-wise features.

• We propose the PointWeb framework with the key

module AFA. It achieves top performance on various

competitive point cloud datasets, thus demonstrating

its effectiveness and generality.

2. Related Work

3D Data Representation Real scanned data has a collec-

tion of 3D point coordinates. To adapt the data for con-

1https://github.com/hszhao/PointWeb

volution, one straightforward approach is to voxelize it in

a 3D grid structure [16, 23]. However, the representation

is clearly inefficient, since most voxels are usually unoccu-

pied. Later, OctNet [21] explored the sparsity of voxel data

and alleviated this problem. However, the memory occu-

pancy is still high when it comes to deeper neural networks.

Moreover, since voxels are discrete representation of space,

this method still requires high resolution grids with large

memory consumption as a trade-off to keep a level of rep-

resentation quality.

Another common 3D representation is in multi-view [19,

24, 25], where the point data is projected to various specific

image planes in the 3D space to form 2D images. By this

means, point data can be processed using conventional con-

volution on 2D images. This approach, however, ignores the

intrinsic geometric relationship of 3D points, and the choice

of image planes could heavily affect results. Occluded parts

in the 3D data due to projection are not handled.

Deep Learning on Point Cloud PointNet [18] first dis-

cusses the irregular format and permutation invariance of

point sets, and presents a network that directly consumes

point clouds. PointNet++ [20] extends PointNet by fur-

ther considering not only the global information but also

the local details with a farthest sampling layer and a group-

ing layer. Although the local context is exploited in Point-

Net++, information in local regions may not be well aggre-

gated using only max pooling. Hence, DGCNN [32] aggre-

gates the local context information by linking each center

point with its k nearest neighbors. The paired features are

then independently encoded by an MLP. The aggregation

operation on the local regions is still a simple max pooling.

Recent methods improve context integration by extend-

ing the convolution operator to regular grid structure to han-

dle unordered points. PCCN [31] has parametric continuous

convolution operations that define a kernel function over

the continuous support domain. PointCNN [13] exploits

the canonical order of points by permuting and weighting

input points and features with a X -Conv operator, the re-

organized points are then processed by a conventional con-

volution. Besides, Superpoint Graph (SPG) [12], on the

other hand, focuses on dealing with large point clouds. The

points are adaptively partitioned into geometrically homo-

geneous elements to build a superpoint graph, which is then

fed into a graph neural network for producing the semantic

labels.

Our work also centers on the aggregation of local fea-

tures. Unlike previous methods that adapt convolution in

point clouds, we put our attention onto the interaction be-

tween points in each local neighborhood region. By ex-

hausting the context information between all point pairs,

our network module refines the features to make them more

descriptive regarding the local neighborhood region.
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Figure 2. Our Adaptive Feature Adjustment (AFA) module.

3. Our Method

Exploring the relationship among points in a local re-

gion is the focus of this paper. Particularly, after we extract

pointwise features (or point features, for short) using a neu-

ral network, further aggregating these local features helps

improve the point cloud recognition quality for the tasks of

semantic segmentation and classification.

Given a 3D point cloud, PointNet++ [20] uses the far-

thest point sampling to choose points as centroids, and then

applies kNN to find the neighboring points around each

centroid, which well defines the local patches in the point

cloud. For a local patch (or local neighborhood) R of M

points, we denote by F the set of point features in R, such

that F = {F1, F2, ..., FM}, where Fi ∈ R
C . C denotes the

number of channels in each point feature.

Here, the ultimate goal is to obtain a representative fea-

ture Fout ∈ R
Cout of region R, where Cout is the number

of channels in the output feature. PointNet++ obtains the

representative feature using MLP followed by max pooling.

However, the procedure does not involve regional informa-

tion exchange among the points in local neighborhood.

In our approach, we densely connect points in R as a

local web of points, and formulate an Adaptive Feature Ad-

justment (AFA) module to learn the impact of each point on

other points for adjusting their features. By this means, we

take the neighborhood context into the point features and

enhance the capability of the features to describe the local

neighborhood. Fig. 2 gives an overview of the AFA module.

We call our overall network PointWeb, since our approach

effectively extracts local neighborhood context through a

web of densely-connected points.

3.1. Adaptive Feature Adjustment (AFA) Module

Given region R and its feature set F = {F1, F2, ..., FM},

we first formulate the adaptive feature adjustment (AFA)

module to enhance the point features in F by learning the

contextual information in local neighborhood as

F ′
i = Fi +∆Fi and ∆Fi = fmod(Fi,F), ∀ Fi ∈ F, (1)

where F ′
i is the enhanced Fi, and ∆Fi is learned from F

through the feature modulator denoted as fmod.

The next challenge is to formulate the feature modulator

to efficiently exchange and further aggregate information in

F. Intuitively, different features in the local region impose

varied impact to enhance every Fi. Our feature modulator

addresses this problem by adaptively learning the amount of

impact given by each feature in F on each Fi. It is expressed

as

fmod(Fi,F) =
∑M

j=1
fimp(Fi, Fj) · frel(Fi, Fj), (2)

where fimp is a function that is learned for calculating the

amount of impact of Fj on Fi, while frel represents how

Fj relates to Fi. It is worth noting that we also include the

self-impact of Fi in the modulator.

3.1.1 Impact Function fimp

The Multi-Layer Perception (MLP) network was presented

in [18, 20] that approximates a general function over a point

set. We use MLP to calculate the impact function fimp, as

illustrated in Fig. 3. It is formulated as

wij = fimp(Fi, Fj) = MLP(g(Fi, Fj)), (3)

where g is a function to combine features Fi and Fj , and

wij is the resulting impact indicator of Fj on Fi.

One simple approach to model g is to just concatenate

the two features. This solution has an obvious limitation

that g completely contains Fi and Fj , where half of the

feature channels remain unchanged even if Fj varies. This

makes Fi dominate when calculating the impact. Another

choice is to take the feature sum (Fi + Fj) as g. We note

this strategy is also problematic since the impact of Fj on

Fi becomes the same as that of Fi on Fj . This type of sym-

metric impact yields an undesirable property, which will be

demonstrated experimentally later.

With these considerations, we thus model g(Fi, Fj) =
Fi −Fj , making the impact calculated as the difference be-

tween the two feature vectors. We will show later in Table 3
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Figure 3. Illustration of the impact function fimp for Fj on Fi.

the statistics from experiments of using the three different

forms of g. Note here i = j is a special case, for which we

set g(Fi, Fi) as Fi. Therefore, the impact of Fi on itself is

estimated by its own feature Fi.

3.1.2 Relation Function frel

On the other hand, the relation function frel aims to decide

how the impact indicator wij acts on Fi. A naive method is

to directly multiply wij with Fj as

frel(Fi, Fj) = Fj . (4)

Then, the overall fmod in Eq. (2) becomes

fmod(Fi,F) =

M
∑

j=1

fimp(Fi, Fj) · Fj . (5)

Though the result quality of point cloud recognition tasks

using this naive relation function already improves com-

pared to the baseline, the performance of our framework

can be further boosted using a different vector form for frel.

Mathematically, we model the relation function as

frel(Fi, Fj) =

{

Fi − Fj if i 6= j

Fi if i = j
. (6)

Please refer to the ablation study in Section 4 to compare

the performance using different forms of relation functions.

Now, for each feature Fi in local region R, the overall

output of the feature adjustment is

F
′

i = α
(i)
i · Fi +

M
∑

j=1,j 6=i

α
(i)
j · (Fj − Fi), (7)

where

α
(i)
j =

{

−fimp(Fi, Fj) if i 6= j

1 + fimp(Fi, Fi) if i = j
. (8)

In other words, the formulation works like a force field in

the local region R (see Fig. 2 (c)), where every other feature

in R acts on Fi with a force (in the feature space), trying to

push Fi towards or away from itself. The intensity and di-

rection of the force are determined by the coefficient α
(i)
j ,

which is adaptively learned according to the difference be-

tween the two feature vectors. Hence, the output F
′

i incor-

porates the context information of the whole region, thus

better describing the characteristics of the region.

3.1.3 Element-wise Impact Map

Besides the two key functions fimp and frel, it is noted that

the impact factors wij = fimp(Fi, Fj) (j = 1, ..,M) oper-

ate on the feature difference map in an element-wise fash-

ion. The length of each factor equals the number of chan-

nels in the feature. Considering that the interaction between

two point features may differ throughout the channels, in-

stead of computing point-wise impact factors, an element-

wise impact map covering the whole region and all channels

are obtained for each feature in the local region. The impact

map for Fi is formulated as

Wi = [wi1,wi2, ...,wiM ]. (9)

Denote the number of channels as C and the size of the

impact map as C ×M . The feature modulator is then rep-

resented in matrix form as

fmod(Fi,F) = (Wi ⊙ F
(i)
diff )e, (10)

where ⊙ denotes element-wise multiplication, e is an all-

one vector, and F
(i)
diff is the feature difference map of size

C ×M . Specifically,

F
(i)
diff = [F1 − Fi, ..., Fi, ..., FM − Fi]. (11)

3.2. PointWeb with Local Feature Modulation

Our framework is built upon the PointNet++ architec-

ture, which is a hierarchical network composed of several

set-abstraction levels. Inside each local region in the ab-

straction module, both the global and local features are in-

corporated for point set recognition. However, in Point-

Net++, the only operation to aggregate information in each

local region is max pooling, while our PointWeb framework

builds a fully-linked web of points among the point features

in each local region and then integrates the information of

the region by learning to determine their mutual influence.

The overall framework of PointWeb for semantic segmenta-

tion is shown in Fig. 4. The major ingredient for improving

the performance is the Adaptive Feature Adjustment (AFA)

module, which is the highlighted box in the figure.

In detail, each grouping layer is followed by an AFA

module introduced in Section 3.1. Please refer to Fig. 2

for the illustration of the AFA module for a local region.

Specifically, every two features in the same local region are

linked to form a web (Fig. 2 (b)). Then, the features are

updated by considering the interactions among them (Fig. 2

(c)). This framework makes the same feature grouped in

different local regions specified on the basis of the region

characteristics.

Without changing the number and size of features, our

AFA module can be seen as a feature transformation mod-

ule, which exchanges and aggregates context information
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Figure 4. Architecture of our PointWeb for point cloud semantic segmentation. Adaptive Feature Adjustment (AFA) module follows the

kNN grouping layer for constructing a fully-connected web in each local region and transferring information among points.

throughout the space and channel in each local region. The

adjusted features are then given to MLP and max pooling

for further information integration in different channels.

4. Experimental Evaluation

Our proposed PointWeb framework is effective for point

cloud scene understanding. To demonstrate the effective-

ness, we conduct experiments on both point cloud seman-

tic segmentation and classification tasks. Two large-scale

3D point cloud segmentation datasets, including Stanford

Large-Scale 3D Indoor Space (S3DIS) [1] and ScanNet [5],

are adopted. Another shape classification dataset Model-

Net [33] is used for classification evaluation.

4.1. Implementation Details

We conduct our experiments based on the PyTorch [17]

platform. During the training, we use the SGD solver with

base learning rate of 0.05 and a mini-batch size of 16. Mo-

mentum and weight decay are set to 0.9 and 0.0001, respec-

tively. For the S3DIS dataset, we train for 100 epochs and

decay the learning rate by 0.1 for every 25 epochs. For the

ScanNet and ModelNet40 datasets, we train for 200 epochs

and decay the learning rate by 0.1 for every 50 epochs.

4.2. S3DIS Semantic Segmentation

Data and Metric The S3DIS [1] dataset contains 3D

scans in six areas including 271 rooms. Each point in the

scan is annotated with one of the semantic labels from 13

categories (chair, table, ceiling, floor, clutter etc.). To pre-

pare the training data, we follow [20], where the points are

uniformly sampled into blocks of area size 1m×1m. Each

point is represented with a 9D vector (XY Z, RGB and a

normalized location in the room).

During the training, we randomly sample 4,096 points

from each block on-the-fly. During the testing, we adopt

all the points for evaluation. Following [20, 28, 12, 13],

we report the results on two settings, i.e., testing on Area

5 (rooms are not present in other folds) and 6-fold cross

validation (calculating the metrics with results from dif-

ferent folds merged). For the evaluation metrics, we use

mean of class-wise intersection over union (mIoU), mean

of class-wise accuracy (mAcc), and overall point-wise ac-

curacy (OA).

Performance Comparison Tables 1 and 2 show the

quantitative results of different methods under the two set-

tings mentioned above. In this highly competitive dataset,

our PointWeb achieves the highest performance in terms of

mIoU and OA on Area 5 evaluation and yields the high-

est mIoU and mAcc on the 6-fold setting. The mIoU of

PointWeb reaches 60.28% on Area 5, 2.01% higher than

the current state-of-the-art, PCCN. Meanwhile, the mIoU

of PointWeb on the 6-fold cross evaluation reaches 66.73%,

outperforming the previous best method by 1.34 points.

Visual demonstration is given in Fig. 5. PointWeb well

captures certain detailed structures in the point clouds. As

shown in the figure, inconspicuous object parts, like legs

of chair and table, can be distinguished and recognized cor-
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Method OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [18] - 48.98 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22

SegCloud [28] - 57.35 48.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 70.40 75.89 40.88 58.42 12.96 41.60

PointCNN [13] 85.91 63.86 57.26 92.31 98.24 79.41 0.00 17.60 22.77 62.09 74.39 80.59 31.67 66.67 62.05 56.74

SPGraph [12] 86.38 66.50 58.04 89.35 96.87 78.12 0.00 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22

PCCN [31] - 67.01 58.27 92.26 96.20 75.89 0.27 5.98 69.49 63.45 66.87 65.63 47.28 68.91 59.10 46.22

PointWeb 86.97 66.64 60.28 91.95 98.48 79.39 0.00 21.11 59.72 34.81 76.33 88.27 46.89 69.30 64.91 52.46

Table 1. Semantic segmentation results on S3DIS dataset evaluated on Area 5.

Method OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [18] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

RSNet [10] - 66.45 56.47 92.48 92.83 78.56 32.75 34.37 51.62 68.11 60.13 59.72 50.22 16.42 44.85 52.03

SPGraph [12] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [13] 88.14 75.61 65.39 94.78 97.3 75.82 63.25 51.71 58.38 57.18 71.63 69.12 39.08 61.15 52.19 58.59

PointWeb 87.31 76.19 66.73 93.54 94.21 80.84 52.44 41.33 64.89 68.13 71.35 67.05 50.34 62.68 62.20 58.49

Table 2. Semantic segmentation results on S3DIS dataset with 6-folds cross validation.

Method mIoU mAcc OA

Baseline 55.88 62.30 85.29

No-Link 55.12 61.55 85.89

Summation 53.07 59.87 84.25

Subtraction 60.28 66.64 86.97

Concatenation 58.65 65.41 86.22

Table 3. Ablation results on the S3DIS dataset Area 5.

Method mIoU mAcc OA

GANN 58.23 65.15 86.10

PointWeb 60.28 66.64 86.97

with Softmax 59.11 65.79 86.44

with Channel Share 58.27 64.99 86.22

Table 4. Compared with GANN [29] on the S3DIS dataset Area 5.

rectly. The last row shows two failure cases. In the left case,

part of clutter on the wall is misclassified as board. While

in the second one, clutter-liked part on the wall is recog-

nized in our algorithm but not in the ground truth. Part of

the clutter in the left is mixed with the bookcase.

Ablation Study To better understand the influence of our

design logic, we conduct ablation experiments on the S3DIS

dataset adopting Area 5 for evaluation. We first investigate

the combination function g in fimp inside each local group

with four different styles, i.e., no combination between each

paired points, combination through feature summation, fea-

ture subtraction, and feature concatenation. The quantita-

tive results are shown in Table 3. Our choice of subtraction

operation on local feature for adjustment is more discrimi-

native and representative than the other alternatives.

Learning adjustment on individual feature without inter-

action with other features fails to harvest the local region

context. Summation operation of paired features results in

a decrease of discriminative ability of features in local re-

gions. It thus harms the recognition ability. Concatenation

of paired features makes part of the feature representation

almost the same, which is not as good as our choice of sub-

traction. With our subtraction operation, the combination

between each feature pair Fi and Fj is unique and thus en-

hances the classification ability.

Further, we compare with the Graph Attention Network

(GANN) [29] that is designed for graph problems. GANN

builds connections with concatenation. Softmax operation

is applied on the attention coefficients whereas AFA does

not. Hence, the impact of AFA can be positive or neg-

ative, acting as push or pull. Also, our impact indicators

vary over channels as represented in Eq. (9), giving higher

flexibility than the scale coefficients in GANN that share

weights across channels. The comparisons are listed in Ta-

ble 4 where our PointWeb gets the highest scores.

Last but not least, for subtraction operation, we investi-

gate the self-adaptive learned impact indicators operated on

the feature itself directly other than working on the feature

difference map alternatively. With impact factors imposed

directly on the features (frel(Fi, Fj) = Fj), the testing re-

sult is 59.79%/66.63%/86.51% (for mIoU/mAcc/OA). It is

not as good as the impact feature that operates on the dif-

ference maps (frel(Fi, Fj) = Fi − Fj), which yields the

highest performance as 60.28/66.64/86.97 (%).

Feature Visualization For full understanding of the pro-

posed AFA module, we produce the T-SNE [15] visualiza-

tion on the input and output features that are with or without

the adjustment module processing. Features on S3DIS with

13 categories are used. We randomly sample 100 points

from the full area for each category and plot the feature dis-

tribution as illustrated in Fig. 7. From left to right are the

input features, output features generated by the baseline net-
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Input Ground Truth Our PointWeb Input Ground Truth Our PointWeb

ceiling wall beam bookcasefloor column window door table chair sofa board clutter

Figure 5. Visualization of semantic segmentation results on Stanford 3D Indoor Space dataset.

Figure 6. Semantic voxel labeling accuracy on ScanNet dataset.

Compared approaches are 3DCNN [2], PointNet [18], TCDP [27],

PointNet++ [20], PointCNN [13], and our PointWeb.

work without AFA and output feature by our PointWeb ar-

chitecture with the AFA module to enhance the information

exchange and connect paired points inside local regions.

Compared with the baseline network, where the local re-

gion features are processed independently with just MLPs,

our densely-connected feature adaption can promote the

network learning to generate more compact, representative

and more distinctive feature representations. Thus points

of different categories are recognized more easily and pre-

cisely. The qualitative visualization indicates that the AFA

module clearly enhances the discriminative ability of point

features.

4.3. ScanNet Semantic Voxel Labeling

The ScanNet [5] dataset contains 1,513 scanned and re-

constructed indoor scenes, split into 1201/312 for training

and testing. For the semantic voxel labeling task, 20 cat-

egories are used for evaluation and 1 class for free space.

We follow previous data processing pipeline [5, 20], where

points are uniformly sampled from scenes and are divided

into blocks, each of size 1.5m×1.5m. During the training,

8,192 point samples are chosen, where no less than 2% vox-

els are occupied and at least 70% of the surface voxels have

valid annotation. Points are sampled on-the-fly. All points

in the testing set are used for evaluation and a smaller sam-

pling stride of 0.5 between each pair of adjacent blocks is

adopted during the testing. In the evaluation, overall seman-

tic voxel labeling accuracy is adopted. For fair comparisons

with the previous approaches, we do not use the RGB color
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(a) Input (b) Baseline (c) PointWeb

Figure 7. T-SNE visualization of features on S3DIS datasets with 13 classes: (a) input feature, (b) baseline output feature without AFA

module (c) PointWeb output feature with AFA module incorporated.

(a) Ground Truth (b) Our PointWeb

Figure 8. ScanNet result visualization.

information for training and testing.

Fig. 6 shows the semantic voxel labeling results. Our

method reaches the first place on this dataset. Visual results

are shown in Fig. 8, where PointWeb well classifies the sur-

rounding objects and stuff in various rooms.

4.4. ModelNet40 Classification

The ModelNet40 [33] dataset contains 12,311 CAD

models from 40 object categories. They are split, so that

9,843 models are used for training and 2,468 for testing.

Following [20], we uniformly sample the points from each

CAD model together with computed normal vectors from

the object meshes. For the classification framework, we re-

place the feature propagation layers with global max pool-

ing and fully connected (FC) layers. Points in each shape

model are randomly shuffled to augment the training set.

Method input mAcc OA

3DShapeNets [33] voxel 77.3 84.7

VoxNet [16] voxel 83.0 85.9

Subvolume [19] voxel 86.0 89.2

MVCNN [24] image - 90.1

PointNet [18] point 86.2 89.2

PointNet++ [20] point - 91.9

SpecGCN [30] point - 92.1

DGCNN [32] point 90.2 92.2

PointCNN [13] point 88.1 92.2

PointWeb point 89.4 92.3

Table 5. Shape classification results on ModelNet40 dataset.

Two dropout layers with drop rate 0.5 are added into the

last two FC layers to reduce the over-fitting.

Table 5 shows the results of different methods evaluated

regarding the overall accuracy and mean accuracy in each

category. Our method is one of the top ranking solutions

on this dataset. It shows a principled way to improve the

applicability of point-based strategies for point cloud un-

derstanding.

5. Concluding Remarks

We have presented the adaptive feature adjustment

(AFA) module and PointWeb architecture for 3D point

cloud processing and recognition. It sets a dense connection

of point pairs inside local regions, thus enabling every point

to gather features from all others. Compared with the tradi-

tional approaches that are not aware of the local context and

information interchange with other components, our frame-

work enables better learning of feature representations for

point cloud processing. Extensive experiments with our

state-of-the-art results on three competitive datasets demon-

strate the effectiveness and generality of our approach. We

believe the proposed module can, in principle, advance the

research of 3D scene understanding in the community.
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