
PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing

Hengshuang Zhao1∗ Li Jiang1∗ Chi-Wing Fu1 Jiaya Jia1,2

1The Chinese University of Hong Kong 2Tencent Youtu Lab

{hszhao, lijiang, cwfu, leojia}@cse.cuhk.edu.hk

Abstract

This paper presents PointWeb, a new approach to ex-

tract contextual features from local neighborhood in a point

cloud. Unlike previous work, we densely connect each point

with every other in a local neighborhood, aiming to spec-

ify feature of each point based on the local region charac-

teristics for better representing the region. A novel mod-

ule, namely Adaptive Feature Adjustment (AFA) module, is

presented to find the interaction between points. For each

local region, an impact map carrying element-wise impact

between point pairs is applied to the feature difference map.

Each feature is then pulled or pushed by other features in

the same region according to the adaptively learned impact

indicators. The adjusted features are well encoded with re-

gion information, and thus benefit the point cloud recogni-

tion tasks, such as point cloud segmentation and classifi-

cation. Experimental results show that our model outper-

forms the state-of-the-arts on both semantic segmentation

and shape classification datasets.

1. Introduction

We have witnessed great progress in image recognition

tasks, such as image classification [11, 22, 26, 7, 9, 8]

and semantic segmentation [14, 3, 35], which are mainly

advanced by the development of deep learning techniques

with massive model capacity. Beyond 2D image recog-

nition, there is increasingly growing interest in 3D vi-

sion [18, 36, 6, 34, 4] for applications of autonomous driv-

ing, augmented reality, robotics, etc. Advent of large-scale

high-res 3D datasets [1, 5] also gives rise to the environment

of reasoning 3D data with deep neural networks.

Directly extending 2D image deep learning methods to

3D recognition tasks is not always feasible, since 3D scenes

are usually described by a set of points that are unordered

and scattered in 3D. It is also not reasonable to simply apply

2D feature aggregating operations like convolution to irreg-

ular point clouds, since these operations generally work on

∗Equal contribution.

Max

Pool

Max

Pool

(a)

(b)

(c)

Max

Pool

shared

MLP

shared

MLP

shared

MLP

Figure 1. 3D segmentation illustration. (a) PointNet++ [20]. (b)

DGCNN [32]. (c) Our approach with the Adaptive Feature Ad-

justment (AFA) module. Blue points represent the features that in-

tegrate pair information. Red points are the features that integrate

region information. Compared with aggregating pair features from

a center point to others by concatenation, our approach adaptively

learns the impact indicator between each point pair, and aggregates

features in the whole region.

regular grids. Approaches [16, 23, 21] addressed this prob-

lem by voxelizing point clouds and applying 3D CNN for

feature learning, which is a natural thought. These meth-

ods run slowly and may suffer from information loss dur-

ing the voxelization. Alternatively, PointNet [18] architec-

ture directly processes raw point clouds with shared Multi-

Layer Perception (MLP). The following PointNet++ [20]

further improved the performance by introducing a hierar-

chical structure to extract global and local features. Unlike

2D convolutions that integrate features for a pixel with its

local neighborhood, feature aggregation of a local region in

PointNet++ is implemented by max pooling as in Fig. 1 (a).

For the Dynamic Graph CNN (DGCNN) [32], it aggre-

gates information in each local region by concatenating fea-

tures of a center point with the feature difference between

5565

the center point and its k nearest neighbors, followed by an

MLP and max pooling (Fig. 1 (b)). Here, the pair relation-

ship is only considered for the center point and the consoli-

dation of region information is still limited, since the actual

operation for region aggregation is also achieved by a sim-

ple max pooling. PointCNN [13] addressed this problem by

sorting the points into a potentially canonical order and ap-

plying convolution on the points. Whether points permuted

and weighted by the X -transformation [13] are in a canoni-

cal order or not yet requires further investigation.

Different from the above methods, we exhaust the con-

textual information in a local region by connecting and ex-

ploring all pairs of points in the region. To this end, we for-

mulate a novel module, namely the Adaptive Feature Ad-

justment (AFA), to interconnect all pairs of points in the

local region and eventually form a locally fully-linked web.

We then learn the adjustment on the point feature from the

point-pair difference as shown in Fig. 1 (c). This strategy

enriches point feature in local region, and forms aggregated

feature to better describe local region for 3D recognition.

Our network learns the impact indicators from the point-

pair difference to determine feature adjustment, thus allow-

ing an appropriate adaptation for better generality. Fig. 2

illustrates the process of feature adjustment. Further, we

propose the PointWeb framework with our novel AFA mod-

ule for 3D scene recognition, as shown in Fig. 4, which

achieves state-of-the-art results on point cloud scene under-

standing tasks, including point cloud semantic segmenta-

tion and shape classification. The top ranking experimental

results are achieved on the three most competitive datasets,

i.e., Stanford Large-Scale 3D Indoor Space (S3DIS) [1] for

semantic segmentation, ScanNet [5] for semantic voxel la-

beling, and ModelNet40 [33] for shape classification. We

believe this effective adaptive feature adjustment module

can benefit other point cloud understanding tasks. We

give all the implementation details, and make our code and

trained models publicly available1. Our main contribution

is twofold.

• We enable information interchange between each

paired 3D points through adaptive feature adjustment

(AFA). This module largely enhances the representa-

tion ability of the learned point-wise features.

• We propose the PointWeb framework with the key

module AFA. It achieves top performance on various

competitive point cloud datasets, thus demonstrating

its effectiveness and generality.

2. Related Work

3D Data Representation Real scanned data has a collec-

tion of 3D point coordinates. To adapt the data for con-

1https://github.com/hszhao/PointWeb

volution, one straightforward approach is to voxelize it in

a 3D grid structure [16, 23]. However, the representation

is clearly inefficient, since most voxels are usually unoccu-

pied. Later, OctNet [21] explored the sparsity of voxel data

and alleviated this problem. However, the memory occu-

pancy is still high when it comes to deeper neural networks.

Moreover, since voxels are discrete representation of space,

this method still requires high resolution grids with large

memory consumption as a trade-off to keep a level of rep-

resentation quality.

Another common 3D representation is in multi-view [19,

24, 25], where the point data is projected to various specific

image planes in the 3D space to form 2D images. By this

means, point data can be processed using conventional con-

volution on 2D images. This approach, however, ignores the

intrinsic geometric relationship of 3D points, and the choice

of image planes could heavily affect results. Occluded parts

in the 3D data due to projection are not handled.

Deep Learning on Point Cloud PointNet [18] first dis-

cusses the irregular format and permutation invariance of

point sets, and presents a network that directly consumes

point clouds. PointNet++ [20] extends PointNet by fur-

ther considering not only the global information but also

the local details with a farthest sampling layer and a group-

ing layer. Although the local context is exploited in Point-

Net++, information in local regions may not be well aggre-

gated using only max pooling. Hence, DGCNN [32] aggre-

gates the local context information by linking each center

point with its k nearest neighbors. The paired features are

then independently encoded by an MLP. The aggregation

operation on the local regions is still a simple max pooling.

Recent methods improve context integration by extend-

ing the convolution operator to regular grid structure to han-

dle unordered points. PCCN [31] has parametric continuous

convolution operations that define a kernel function over

the continuous support domain. PointCNN [13] exploits

the canonical order of points by permuting and weighting

input points and features with a X -Conv operator, the re-

organized points are then processed by a conventional con-

volution. Besides, Superpoint Graph (SPG) [12], on the

other hand, focuses on dealing with large point clouds. The

points are adaptively partitioned into geometrically homo-

geneous elements to build a superpoint graph, which is then

fed into a graph neural network for producing the semantic

labels.

Our work also centers on the aggregation of local fea-

tures. Unlike previous methods that adapt convolution in

point clouds, we put our attention onto the interaction be-

tween points in each local neighborhood region. By ex-

hausting the context information between all point pairs,

our network module refines the features to make them more

descriptive regarding the local neighborhood region.

5566

!"

!#

!$ … !"

Feature Map !% : &×(Difference Map)*%++
(%)

: &×(×(

!$

⋯

⋯

(/0 !"

!$

⋯

⋯

Impact Map 1% : &×(×(

⨀ ⨁

Local

Patch 4

sum(-1)

Adjusted Feature Map

!%
5

: &×(

!#
5

!$
5

…!"
5

Local

Patch 4

(a) (b) (c)

XYZ Space Feature Space

Figure 2. Our Adaptive Feature Adjustment (AFA) module.

3. Our Method

Exploring the relationship among points in a local re-

gion is the focus of this paper. Particularly, after we extract

pointwise features (or point features, for short) using a neu-

ral network, further aggregating these local features helps

improve the point cloud recognition quality for the tasks of

semantic segmentation and classification.

Given a 3D point cloud, PointNet++ [20] uses the far-

thest point sampling to choose points as centroids, and then

applies kNN to find the neighboring points around each

centroid, which well defines the local patches in the point

cloud. For a local patch (or local neighborhood) R of M

points, we denote by F the set of point features in R, such

that F = {F1, F2, ..., FM}, where Fi ∈ R
C . C denotes the

number of channels in each point feature.

Here, the ultimate goal is to obtain a representative fea-

ture Fout ∈ R
Cout of region R, where Cout is the number

of channels in the output feature. PointNet++ obtains the

representative feature using MLP followed by max pooling.

However, the procedure does not involve regional informa-

tion exchange among the points in local neighborhood.

In our approach, we densely connect points in R as a

local web of points, and formulate an Adaptive Feature Ad-

justment (AFA) module to learn the impact of each point on

other points for adjusting their features. By this means, we

take the neighborhood context into the point features and

enhance the capability of the features to describe the local

neighborhood. Fig. 2 gives an overview of the AFA module.

We call our overall network PointWeb, since our approach

effectively extracts local neighborhood context through a

web of densely-connected points.

3.1. Adaptive Feature Adjustment (AFA) Module

Given region R and its feature set F = {F1, F2, ..., FM},

we first formulate the adaptive feature adjustment (AFA)

module to enhance the point features in F by learning the

contextual information in local neighborhood as

F ′
i = Fi +∆Fi and ∆Fi = fmod(Fi,F), ∀ Fi ∈ F, (1)

where F ′
i is the enhanced Fi, and ∆Fi is learned from F

through the feature modulator denoted as fmod.

The next challenge is to formulate the feature modulator

to efficiently exchange and further aggregate information in

F. Intuitively, different features in the local region impose

varied impact to enhance every Fi. Our feature modulator

addresses this problem by adaptively learning the amount of

impact given by each feature in F on each Fi. It is expressed

as

fmod(Fi,F) =
∑M

j=1
fimp(Fi, Fj) · frel(Fi, Fj), (2)

where fimp is a function that is learned for calculating the

amount of impact of Fj on Fi, while frel represents how

Fj relates to Fi. It is worth noting that we also include the

self-impact of Fi in the modulator.

3.1.1 Impact Function fimp

The Multi-Layer Perception (MLP) network was presented

in [18, 20] that approximates a general function over a point

set. We use MLP to calculate the impact function fimp, as

illustrated in Fig. 3. It is formulated as

wij = fimp(Fi, Fj) = MLP(g(Fi, Fj)), (3)

where g is a function to combine features Fi and Fj , and

wij is the resulting impact indicator of Fj on Fi.

One simple approach to model g is to just concatenate

the two features. This solution has an obvious limitation

that g completely contains Fi and Fj , where half of the

feature channels remain unchanged even if Fj varies. This

makes Fi dominate when calculating the impact. Another

choice is to take the feature sum (Fi + Fj) as g. We note

this strategy is also problematic since the impact of Fj on

Fi becomes the same as that of Fi on Fj . This type of sym-

metric impact yields an undesirable property, which will be

demonstrated experimentally later.

With these considerations, we thus model g(Fi, Fj) =
Fi −Fj , making the impact calculated as the difference be-

tween the two feature vectors. We will show later in Table 3

5567

𝐹"
𝐹#

Impact Function 𝑓"%&

		𝑐𝑜𝑚𝑏𝑖𝑛𝑒 	𝑀𝐿𝑃 𝒘𝒊𝒋

Figure 3. Illustration of the impact function fimp for Fj on Fi.

the statistics from experiments of using the three different

forms of g. Note here i = j is a special case, for which we

set g(Fi, Fi) as Fi. Therefore, the impact of Fi on itself is

estimated by its own feature Fi.

3.1.2 Relation Function frel

On the other hand, the relation function frel aims to decide

how the impact indicator wij acts on Fi. A naive method is

to directly multiply wij with Fj as

frel(Fi, Fj) = Fj . (4)

Then, the overall fmod in Eq. (2) becomes

fmod(Fi,F) =

M
∑

j=1

fimp(Fi, Fj) · Fj . (5)

Though the result quality of point cloud recognition tasks

using this naive relation function already improves com-

pared to the baseline, the performance of our framework

can be further boosted using a different vector form for frel.

Mathematically, we model the relation function as

frel(Fi, Fj) =

{

Fi − Fj if i 6= j

Fi if i = j
. (6)

Please refer to the ablation study in Section 4 to compare

the performance using different forms of relation functions.

Now, for each feature Fi in local region R, the overall

output of the feature adjustment is

F
′

i = α
(i)
i · Fi +

M
∑

j=1,j 6=i

α
(i)
j · (Fj − Fi), (7)

where

α
(i)
j =

{

−fimp(Fi, Fj) if i 6= j

1 + fimp(Fi, Fi) if i = j
. (8)

In other words, the formulation works like a force field in

the local region R (see Fig. 2 (c)), where every other feature

in R acts on Fi with a force (in the feature space), trying to

push Fi towards or away from itself. The intensity and di-

rection of the force are determined by the coefficient α
(i)
j ,

which is adaptively learned according to the difference be-

tween the two feature vectors. Hence, the output F
′

i incor-

porates the context information of the whole region, thus

better describing the characteristics of the region.

3.1.3 Element-wise Impact Map

Besides the two key functions fimp and frel, it is noted that

the impact factors wij = fimp(Fi, Fj) (j = 1, ..,M) oper-

ate on the feature difference map in an element-wise fash-

ion. The length of each factor equals the number of chan-

nels in the feature. Considering that the interaction between

two point features may differ throughout the channels, in-

stead of computing point-wise impact factors, an element-

wise impact map covering the whole region and all channels

are obtained for each feature in the local region. The impact

map for Fi is formulated as

Wi = [wi1,wi2, ...,wiM]. (9)

Denote the number of channels as C and the size of the

impact map as C ×M . The feature modulator is then rep-

resented in matrix form as

fmod(Fi,F) = (Wi ⊙ F
(i)
diff)e, (10)

where ⊙ denotes element-wise multiplication, e is an all-

one vector, and F
(i)
diff is the feature difference map of size

C ×M . Specifically,

F
(i)
diff = [F1 − Fi, ..., Fi, ..., FM − Fi]. (11)

3.2. PointWeb with Local Feature Modulation

Our framework is built upon the PointNet++ architec-

ture, which is a hierarchical network composed of several

set-abstraction levels. Inside each local region in the ab-

straction module, both the global and local features are in-

corporated for point set recognition. However, in Point-

Net++, the only operation to aggregate information in each

local region is max pooling, while our PointWeb framework

builds a fully-linked web of points among the point features

in each local region and then integrates the information of

the region by learning to determine their mutual influence.

The overall framework of PointWeb for semantic segmenta-

tion is shown in Fig. 4. The major ingredient for improving

the performance is the Adaptive Feature Adjustment (AFA)

module, which is the highlighted box in the figure.

In detail, each grouping layer is followed by an AFA

module introduced in Section 3.1. Please refer to Fig. 2

for the illustration of the AFA module for a local region.

Specifically, every two features in the same local region are

linked to form a web (Fig. 2 (b)). Then, the features are

updated by considering the interactions among them (Fig. 2

(c)). This framework makes the same feature grouped in

different local regions specified on the basis of the region

characteristics.

Without changing the number and size of features, our

AFA module can be seen as a feature transformation mod-

ule, which exchanges and aggregates context information

5568

!"#$%&'$(
)*+,$(

-"./0+,1
2344

! "#$ % & ! "#$ % ' % (&) * +, -

!"!#
$%&'()

*+,'-
! +, % (&) * +, -

! "#$ % ' % (&) * +, -

-%"#&5
67)

! "#$ % ' % * "#$

6"8
)**0+,1

! "#$ % *"#$

.'-,'-
! "#$ % (&) * "#$ -

! % (&) *-

/)-#!01-234-5%+#6)7)(

-&$(
9:'$#";$+*,
7&<&0'(

!&"$=#&(
)#*/"1"$+*,
7&<&0'(

>?

! % *./00!12

@#*''(
A,$#*/B
7*''

Figure 4. Architecture of our PointWeb for point cloud semantic segmentation. Adaptive Feature Adjustment (AFA) module follows the

kNN grouping layer for constructing a fully-connected web in each local region and transferring information among points.

throughout the space and channel in each local region. The

adjusted features are then given to MLP and max pooling

for further information integration in different channels.

4. Experimental Evaluation

Our proposed PointWeb framework is effective for point

cloud scene understanding. To demonstrate the effective-

ness, we conduct experiments on both point cloud seman-

tic segmentation and classification tasks. Two large-scale

3D point cloud segmentation datasets, including Stanford

Large-Scale 3D Indoor Space (S3DIS) [1] and ScanNet [5],

are adopted. Another shape classification dataset Model-

Net [33] is used for classification evaluation.

4.1. Implementation Details

We conduct our experiments based on the PyTorch [17]

platform. During the training, we use the SGD solver with

base learning rate of 0.05 and a mini-batch size of 16. Mo-

mentum and weight decay are set to 0.9 and 0.0001, respec-

tively. For the S3DIS dataset, we train for 100 epochs and

decay the learning rate by 0.1 for every 25 epochs. For the

ScanNet and ModelNet40 datasets, we train for 200 epochs

and decay the learning rate by 0.1 for every 50 epochs.

4.2. S3DIS Semantic Segmentation

Data and Metric The S3DIS [1] dataset contains 3D

scans in six areas including 271 rooms. Each point in the

scan is annotated with one of the semantic labels from 13

categories (chair, table, ceiling, floor, clutter etc.). To pre-

pare the training data, we follow [20], where the points are

uniformly sampled into blocks of area size 1m×1m. Each

point is represented with a 9D vector (XY Z, RGB and a

normalized location in the room).

During the training, we randomly sample 4,096 points

from each block on-the-fly. During the testing, we adopt

all the points for evaluation. Following [20, 28, 12, 13],

we report the results on two settings, i.e., testing on Area

5 (rooms are not present in other folds) and 6-fold cross

validation (calculating the metrics with results from dif-

ferent folds merged). For the evaluation metrics, we use

mean of class-wise intersection over union (mIoU), mean

of class-wise accuracy (mAcc), and overall point-wise ac-

curacy (OA).

Performance Comparison Tables 1 and 2 show the

quantitative results of different methods under the two set-

tings mentioned above. In this highly competitive dataset,

our PointWeb achieves the highest performance in terms of

mIoU and OA on Area 5 evaluation and yields the high-

est mIoU and mAcc on the 6-fold setting. The mIoU of

PointWeb reaches 60.28% on Area 5, 2.01% higher than

the current state-of-the-art, PCCN. Meanwhile, the mIoU

of PointWeb on the 6-fold cross evaluation reaches 66.73%,

outperforming the previous best method by 1.34 points.

Visual demonstration is given in Fig. 5. PointWeb well

captures certain detailed structures in the point clouds. As

shown in the figure, inconspicuous object parts, like legs

of chair and table, can be distinguished and recognized cor-

5569

