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Abstract

We propose a retrieval-augmented convolutional net-

work (RaCNN) and propose to train it with local mixup,

a novel variant of the recently proposed mixup algorithm.

The proposed hybrid architecture combining a convolu-

tional network and an off-the-shelf retrieval engine was de-

signed to mitigate the adverse effect of off-manifold adver-

sarial examples, while the proposed local mixup addresses

on-manifold ones by explicitly encouraging the classifier to

locally behave linearly on the data manifold. Our eval-

uation of the proposed approach against seven readily-

available adversarial attacks on three datasets–CIFAR-10,

SVHN and ImageNet–demonstrate the improved robustness

compared to a vanilla convolutional network, and compa-

rable performance with the state-of-the-art reactive defense

approaches.

1. Introduction

Since the initial investigation in [35], adversarial exam-

ples have drawn a large interest. Various methods for both

generating adversarial examples as well as protecting a clas-

sifier from them have been proposed. According to [9], ad-

versarial examples can be categorized into those off the data

manifold, which is defined as a manifold on which training

examples lie, and those on the data manifold. Off-manifold

adversarial examples occur as the classifier does not have a

chance to observe any off-manifold examples during train-

ing, which is a natural consequence from the very defini-

tion of the data manifold. On-manifold adversarial exam-

ples however exist between training examples on the data

manifold. There are two causes behind this phenomenon;

(1) the sparsity of training examples and (2) the non-smooth

behavior of the classifier on the data manifold.

We propose to tackle both off- and on-manifold adver-

sarial examples by incorporating an off-the-shelf retrieval

∗Work done while the author worked at Facebook AI Research.

mechanism which indexes a large set of examples and train-

ing this combination of a deep neural network classifier and

the retrieval engine to behave linearly on the data manifold

using a novel variant of the recently proposed mixup algo-

rithm [39], to which we refer as “local mixup.”

The retrieval mechanism efficiently selects a subset of

neighboring examples from a candidate set near the input.

These neighboring examples are used as a local approxi-

mation to the data manifold in the form of a feature-space

convex hull onto which the input is projected. The clas-

sifier then makes a decision based on this projected input.

This addresses off-manifold adversarial examples. Within

this feature-space convex hull, we encourage the classifier

to behave linearly by using local mixup to further address

on-manifold adversarial examples.

We evaluate the proposed approach, called a retrieval-

augmented classifier, with a deep convolutional net-

work [22] on object recognition. We extensively test the

retrieval-augmented convolutional network (RaCNN) on

datasets with varying scales; CIFAR-10 [20], SVHN [26]

as well as ImageNet [7], against seven readily-available ad-

versarial attacks including both white-box (FGSM, iFGSM,

DeepFool, L-BFGS, CW and PGD) and black-box attacks

(Boundary). Our experiments reveal that the RaCNN is

more robust to these attacks than the vanilla convolutional

network, and also achieve comparable robustness with other

reactive state-of-the-art defense methods. To the best of our

knowledge, RaCNN by far achieves the best results among

the proactive defense methods.

2. Retrieval-Augmented CNN

In [9], it was recently demonstrated that adversarial ex-

amples exist both on and off the data manifold. This result

suggests that it is necessary to tackle both types of adver-

sarial examples to improve the robustness of a deep neu-

ral network based classifier to adversarial examples. In this

section, we describe our approach toward building a more

robust classifier by combining an off-the-shelf retrieval en-
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gine and a variant of the recently proposed mix-up learning

strategy.

Let D′ = {(x′
1, y

′
1), . . . , (x

′
M , y′M )} be a candidate set

of examples. This set may be created as a subset from a

training set D = {(x1, y1), . . . , (xN , yN )} or may be an

entire separate set. We use D′ as a proxy to the underlying

data manifold. k(x, x′) is a distance function that measures

the dissimilarity between two inputs x and x′. In order to

facilitate the use of an off-the-shelf retrieval engine, we use

k(x, x′) = ‖φ′(x) − φ′(x′)‖2, where φ′ is a predefined, or

pretrained, feature extractor. We assume the existence of a

readily-available retrieval engine F that takes x as input and

returns the K nearest neighbors in D′ according to k(x, x′).
We then have a deep neural network classifier composed of

a feature extraction φ and a classifier g. This classifier is

trained on a training set D, taking into account the extra set

D′ and the retrieval engine.

2.1. Inference

Local Characterization of Data Manifold Given a new

input x, we use the retrieval engine F to retrieve the

examples x′
k’s from D′ that are closest to x: F (x) =

{x′
1, . . . , x

′
K}. We then build a feature-space convex hull

C(F (x)) =

{

K
∑

k=1

αkφ(x
′
k)

∣

∣

∣

∣

∣

K
∑

k=1

αk = 1 ∧ ∀k : αk ≥ 0

}

.

As observed earlier, linear interpolation of two input vec-

tors in the feature space of a deep neural network often cor-

responds to a plausible input vector [2, 19, 27]. Based on

this, we consider the feature-space convex hull C(F (x)) as

a reasonable local approximation to the data manifold.

Trainable Projection Exact projection of the input x onto

this convex hull C(F (x)) requires expensive optimization,

especially in the high-dimensional space. As we consider a

deep neural network classifier, the dimension of the feature

space φ′ could be hundreds or more, making this exact pro-

jection computationally unfeasible. Instead, we propose to

learn a goal-driven projection procedure based on the atten-

tion mechanism [1].

We compare each input x′
k ∈ F (x) against x and com-

pute a score: βk = φ(x′
k)

⊤Uφ(x), where U is a trainable

weight matrix [24]. These scores are then normalized to

form a set of coefficients: αk = exp(βk)∑
K

k′=1
exp(β

k′ )
. These co-

efficients αk’s are then used to form a projection point of x

in the feature-space convex hull

C(F (x)) : P(x) = PC(F (x))(x) =

K
∑

k=1

αkφ(x
′
k).

This trainable projection could be thought of as learn-

ing to project an off-manifold example on the locally-

approximated manifold to maximize the classification ac-

curacy.

Classification The projected feature PC(F (x))(x) now

represents the original input x and is fed to a final classi-

fier g. In other words, we constrain the final classifier to

work only with a point inside a feature-space convex hull

of neighboring training examples. This constraint alleviates

the issue of the classifier’s misbehaviors in the region out-

side the data manifold up to a certain degree.1

Randomization At the expense of computational over-

head, we can improve the robustness further. We retrieve

K ′ = cK examples, where c ≫ 1, and uniformly se-

lect K examples at random to form a feature-space convex

hull. We evaluate this approach later against the strongest

attack [5].

2.2. Training

The output of the classifier g(P(x)) is almost fully dif-

ferentiable w.r.t. the classifier g, both of the features extrac-

tors (φ′ and φ) and the attention weight matrix U , except

for the retrieval engine F .2 This allows us to train the en-

tire pipeline using backpropagation [31] and gradient-based

optimization.

Local Mixup This is however not enough to ensure the

robustness of the proposed approach to on-manifold ad-

versarial examples. During training, the classifier g only

observes a very small subset of any feature-space convex

hull. Especially in a high-dimensional space, this greatly

increases the chance of the classifier’s misbehaviors within

these feature-space convex hulls, as also noted in [9]. In

order to address this issue, we propose to augment learning

with a local variant of the recently proposed mix-up algo-

rithm [39].

The goal of the original mixup is to encourage a classifier

to act linearly between any pair of training examples. This

is done by linearly mixing in two randomly-drawn train-

ing examples and creating a new linearly-interpolated ex-

ample pair during training. Let two randomly-drawn pairs

be (xi, yi) and (xj , yj), where yi and yj are one-hot vec-

tors in the case of classification. Mixup creates a new pair

(λxi +(1−λ)xj , λyi +(1−λ)yj) and uses it as a training

example, where λ ∈ [0, 1] is a random sample from a beta

distribution. We call this original version global mixup, as

it increases the linearity of the classifier between any pair of

training examples.

1 The quality of the local approximation may not be uniformly high

across the input space.
2 The introduction of this non-differentiable retrieval engine further

contributes to the increased robustness.
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It is however unnecessary for our purpose to use

global mixup, as our goal is to make the classifier bet-

ter behave (i.e., linearly behave) within a feature-space

convex hull C(F (x)). Thus, we use a local mixup

in which we uniformly sample the convex coefficients

αk’s at random to create a new mixed example pair

(
∑K

k=1 αkφ(x
′
k),

∑K

k=1 αky
′
k). We use the Kraemer Algo-

rithm [33].

Overall We use stochastic gradient descent (SGD) for

training. At each update, we perform NCE descent steps

for the usual classification loss, and NMU descent steps for

the proposed local mixup.

2.3. Retrieval Engine F

The proposed approach does not depend on the specifics

of a retrieval engine F . Any off-the-shelf retrieval engine

that supports dense vector lookup could be used, enabling

the use of a very large-scale D′ with latest fast dense vector

lookup algorithms [16]. In this work, we used a more rudi-

mentary retrieval engine based on locality-sensitive hash-

ing [6] with a reduced feature dimension using random pro-

jection [3], as the sizes of candidate sets D′ contain approx-

imately 1M or less examples. The key φ′(x) was chosen to

be a pretrained deep neural network without the final fully-

connected classifier layers [21, 14].

3. Attack Scenarios

S1 (Direct Attack) In this work, we consider the candi-

date set D′ and the retrieval engine which indexes it to be

“hidden” from the outside world. This property makes a

usual white-box attack more of a gray-box attack in which

the attacker has access to the entire system except for the

retrieval part.

S2 (Retrieval Attack) Despite the hidden nature of the

retrieval engine and the candidate set, it is possible for the

attacker to confuse the retrieval engine, if they could ac-

cess the feature extractor φ′. We furthermore give the at-

tacker the access not only to φ′ but the original classifier g′

which was tuned together with φ′. This allows the attacker

to create an adversarial example on g′(φ′(x)) that could po-

tentially disrupt the retrieval process. Although unlikely in

practice, we test this second scenario to investigate the pos-

sibility of compromising the retrieval engine.

4. Attack Methods

Fast gradient sign method (FGSM) creates an adver-

sarial example by adding the scaled sign of the gradient of

the loss function L computed using a target class ŷ to the in-

put. Iterative FGSM (iFGSM) improves upon the FGSM

by iteratively modifying the input x for a fixed number of

steps. DeepFool was proposed in [25] to create an adver-

sarial example by finding a residual vector r ∈ R
dim(x) with

the minimum Lp-norm with the constraint that the output

of a classifier must flip. L-BFGS from [36] more explic-

itly constrains the input to lie inside a tight box defined by

training examples using L-BFGS-B [40]. CW from [5] di-

rectly solves the original formulation of adversarial exam-

ples [35] and has been found recently to defeat most of the

recently proposed defense mechanisms [4]. We consider

this the strongest attack and test the self-ensemble approach

against it.

Boundary brendel2017decision proposed a powerful

black-box attack, or more specifically decision-based at-

tack, that requires neither the gradient nor the predictive

distribution. It only requires the final decision of the clas-

sifier. Starting from an adversarial example, potentially far

away from the original input, it iteratively searches for a

next adversarial example closer to the original input.

5. Related Work

Data-independent transformation aims at minimizing

regions that are off the data manifold. dziugaite2016study

demonstrated that JPEG-compressed images suffer less

from adversarial attacks. lu2017no suggest that trying vari-

ous scaling of an image size could overcome adversarial at-

tacks. guo2017countering use compressed sensing to trans-

form an input image by reconstructing it from its lower-

resolution version while minimizing the total variation [30].

More recently, buckman2018thermometer proposed to dis-

cretize each input dimension using thermometer coding.

These approaches are attractive due to their simplicity, but

there have some work showing that it is not enough to de-

fend against sophisticated adversarial examples [32].

Data-Dependent Transformation relies on data-

dependent transformation. gu2014towards use a denoising

autoencoder [38]. samangouei2018defensegan and

song2017pixeldefend respectively use a pixelCNN [37]

and generative adversarial network [10] to replace an

input image with a nearby image. Instead of using a

separately trained generative model, guo2017countering

uses a technique of image quilting [8]. These approaches

are similar to our use of a retrieval engine. They however

do not address the issue of misbehaviors of a classifier on

the data manifold.

Adversarial training trains a classifier on both train-

ing examples and adversarial examples generated on-

the-fly [11]. lee2017generative extended this proce-

dure by introducing a GAN that learns to generate ad-

versarial examples. Instead, robust optimization di-

rectly modifies a learning algorithm to induce robustness.

cisse2017parseval proposed Parseval training that encour-

ages the Lipschitz constant to be less than one. More
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Clean FGSM iFGSM DeepFool

L2 0 1e-04 2e-04 4e-04 1e-05 2e-05 8e-05 1e-05 2e-05 8e-05

Baseline 85.15 14.05 7.5 4.22 55.2 26.17 2.59 26.04 11.72 0.34

RC-K5 72.57 42.97 34.29 24.55 72.57 72.48 45.46 64.34 61.34 60.96

RC-K5-MU 75.6 46.37 37.9 28.11 74.89 74.89 48.12 66.96 63.84 63.55

RC-K10 79.52 52.95 43.9 33.77 79.12 79 55.27 72.89 71.81 71.14

RC-K10-MU 80.80 53 44.01 33.47 79.87 79.72 54.36 73.63 72.35 71.26

Table 1. The CIFAR-10 classifiers’ robustness to the adversarial attacks in the S2 (Retrieval Attack)

FGSM iFGSM DeepFool L-BFGS Boundary

Figure 1. The CIFAR-10 classifiers’ robustness to the adversarial attacks in the Scenario 1 (Direct Attack). The x-axis indicates the strength

of attack in terms of the normalized L2 distance. The y-axis corresponds to the accuracy.

recently, sinha2018certifiable proposed a tractable robust

optimization algorithm It ensures that the classifier well-

behaves in the neighborhood of each training point.

Retrieval-Augmented Neural Networks The proposed

approach tightly integrates an off-the-shelf retrieval engine

into a deep neural network. A similar approach has recently

gained popularity. gu2017search use a text-based retrieval

engine to build a non-parametric neural machine translation

system. wang2017k proposed a similar approach to text

classification, and guu2017generating to language model-

ing. It was also applied to online learning [23, 34].

6. Experiments

Datasets We test the proposed approach (RaCNN or RC)

on three datasets of different scales. CIFAR-10 has 50k

training and 10k test examples, with 10 classes. SVHN has

73k training and 26k test examples, with 10 classes. Ima-

geNet has 1.3M training and 50k validation examples with

1,000 classes. For CIFAR-10 and ImageNet, we use the

original training set as a candidate set, i.e., D′ = D, while

we use the extra set of 531k examples as a candidate set

in the case of SVHN. The overall training process involves

data augmentation on D but not D′.

Architectures We train a deep convolutional network for

each dataset, remove the final fully-connected layers and

use the remaining stack as a fixed feature extractor φ for re-

trieval. We use the same convolutional network from above

for the RaCNN (RC) as well (separated into φ and g by the

final average pooling) for each dataset. For CIFAR-10 and

SVHN, we train φ and g from scratch. For ImageNet, on

the other hand, we fix φ = φ′ and train g from the pre-

trained ResNet-18 above. The latter was done, as we ob-

served it greatly reduced training time in the preliminary

experiments.

Training and Evaluation We use Adam [18] as an opti-

mizer and investigate the influence of the newly introduced

components–retrieval and local mixup (MU)– by varying

K ∈ {5, 10} and NMU ∈ {0, 5}.

In addition to the accuracy on the clean test set,

we look at the accuracy per the amount of perturbation

used to create adversarial examples. We use the de-

fault MeanSquaredDistance from the Foolbox library;

this amount is computed as a normalized L2 distance be-

tween the original example x and its perturbed version

x̃: L2(x, x̃) =
‖x−x̃‖2

2

dim(x)∗
(

max(x)−min(x)
)

2 . We use Foolbox

[29, 28] for all the attacks other than CW for which we use

the implementation from [12, 13]. 3 Our attacks are gener-

ally performed with clipping the outbounded pixel values at

each step.

6.1. CIFAR­10

In the CIFAR-10 experiments, our model contains 6 con-

volutional layers and 2 fully-connected layers. For each

layer we employ batch normalization [15] and ReLU fol-

lowing convolution.

3Noted that the Foolbox implementation searches over many attack hy-

perparameters to obtain the most optimized perturbation distance while

achieving fooling. The implementation from [12, 13] differs in that it uses

one empirically suitable set of hyperparameters to save computation. That

being said, it might not be fair to compare attack strengths if they are im-

plemented in different libraries.
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S1 (Direct Attack) We present in Fig. 1 the effect of ad-

versarial attacks with varying strengths (measured in the

normalized L2 distance) on both the vanilla convolutional

network (Baseline) and the proposed RaCNN’s with various

settings. Across all the adversarial attacks, it is clear that

the proposed RaCNN is more robust to adversarial exam-

ples than the vanilla classifier is. The proposed local mixup

improves the robustness further, especially when the num-

ber of retrieved examples is small, i.e., K = 5. We conjec-

ture that this is due to the quadratically increasing number

of pairs, i.e.,
K(K−1)

2 , for which local mixup must take care

of, with respect to K.

S2 (Retrieval Attack) In Table 1, we present the accuracy

of both the baseline and RaCNN’s with varying strengths of

white-box attacks, when the feature extractor φ′ for the re-

trieval engine is attacked. We observe that it is indeed pos-

sible to fool the proposed RaCNN by attacking the retrieval

process. Comparing Fig. 1 and Table 1, we however notice

that the performance degradation is much less severe in this

second scenario.

6.2. SVHN

We use the same architecture and hyper-parameter set-

ting as in the CIFAR-10 experiments.

S1 (Direct Attack) On SVHN, we observe a similar trend

from CIFAR-10. The proposed RaCNN is more robust

against all the adversarial attacks compared to the vanilla

convolutional network. Similarly to CIFAR-10, the pro-

posed approach is most robust to DeepFool and Boundary,

while it is most susceptible to L-BFGS. We however notice

that the impact of local mixup is larger with SVHN than

was with CIFAR-10.

Another noticeable difference is the impact of the num-

ber of retrieved examples on the classification accuracy. In

the case of CIFAR-10, the accuracies on the clean test ex-

amples (the first column in Table 1) between using 5 and

10 retrieved examples differ significantly, while it is much

less so with SVHN (the first column in Table 2.) We con-

jecture that this is due to a lower level of variation in input

examples in SVHN, which are pictures of house numbers

taken from streets, compared to those in CIFAR-10, which

are pictures of general objects.

S2 (Retrieval Attack) We observe a similar trend be-

tween CIFAR-10 and SVHN, when the feature extractor φ′

for retrieval was attacked, as shown in Tables 1–2.

6.3. ImageNet

We use ResNet-18 [14]. We pretrain it as a standalone

classifier on ImageNet and use the feature extractor part φ′

for retrieval. We use the same feature extractor φ = φ′ for

the RaCNN without updating it. The classifier g is initial-

ized with g′ and tuned during training. In the case of Ima-

geNet, we only try K = 10 retrieved examples with local

mixup. Due to the high computational cost of the L-BFGS

and Boundary attacks, we evaluate both the vanilla classi-

fier and RaCNN against these two attacks on 200 images

drawn uniformly at random from the validation set. We use

Accuracy@5 which is a standard metric with ImageNet.

S1 (Direct Attack) A general trend with ImageNet is sim-

ilar to that with either CIFAR-10 or SVHN, as can be seen in

Fig. 3. The proposed RaCNN is more robust to adversarial

attacks. We however do observe some differences. First,

iFGSM is better at compromising both the baseline and

RaCNN than L-BFGS is, in this case. Second, DeepFool

is much more successful at fooling the baseline convolu-

tional network on ImageNet than on the other two datasets,

but is much less so at fooling the proposed RaCNN.

S2 (Retrieval Attack) Unlike CIFAR-10 and SVHN, we

have observed that the retrieval attack is sometimes more

effective than the direct attack in the case of ImageNet. For

instance, FGSM can compromise the retrieval feature ex-

tractor φ′ to decrease the accuracy from 77.68 down to 0.20

at L2 = 10−4. We observed a similar behavior with Deep-

Fool, but not with iFGSM.

6.4. CW and Randomization: S1 – Direct Attack

As the CW attack and its variants are the state-of-the-

art attacks available to date [5], we consider it separately

from the other attacks. We pick the proposed RaCNN with

K = 10 and local mixup and evaluate the randomiza-

tion strategy’s robustness to this attack. On CIFAR-10 and

SVHN, we use the second-most-likely prediction as a tar-

get and the strength κ = 0. On the other hand, we use the

sixth most-likely prediction and try both κ = 0 and 10 with

ImageNet, as we report Accuracy@5.

As demonstrated in Fig. 4, the CW attack is effective at

compromising the baseline. On CIFAR-10 and SVHN, CW

is further effective at compromising the proposed RaCNN,

although randomized inference greatly improves the robust-

ness. We however observe an opposite trend on ImageNet,

where randomized inference suffers when the strength of

the CW attack is increased. Nevertheless, we observe that

the proposed approach is more robust than the baseline is.

6.5. Comparison with other SOTA defense ap­
proaches

In Table 4, we compare RaCNN with other best pub-

lished defense approaches. We adopt another strong attack,

the projected gradient descent (PGD), as our benchmarking

attack protocol. We can see from these results that all the
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Clean FGSM iFGSM DeepFool

L2 0 2e-04 4e-04 8e-04 2e-05 8e-05 2e-04 2e-05 8e-05 2e-04

Baseline 95.48 42.09 30.95 21.61 70.41 35.53 11.17 51.10 16.00 4.28

RC-K5 90.78 64.87 53.31 39.44 90.73 75.80 63.41 84.62 81.30 80.55

RC-K5-MU 91.64 68.31 57.20 43.73 91.55 77.74 65.75 86.18 83.20 82.43

RC-K10 92.19 64.94 52.24 37.73 92.10 76.41 62.70 86.18 84.25 82.21

RC-K10-MU 92.49 68.72 57.30 43.49 92.45 78.26 65.50 87.33 84.73 84.10

Table 2. The SVHN classifiers’ robustness to the adversarial attacks in the S2 (Retrieval Attack)

FGSM iFGSM DeepFool L-BFGS Boundary

Figure 2. The SVHN classifiers’ robustness to the adversarial attacks in the Scenario 1 (Direct Attack). The x-axis indicates the strength of

attack in terms of the normalized L2 distance. The y-axis corresponds to the accuracy.

reported defense methods have degraded the clean classifi-

cation performance to some extent.

Although RaCNN does not outperform the SOTA reac-

tive approaches proposed by [12], we argue that RaCNN as

a proactive defense approach can easily be combined with

any reactive defense method. We want to leave this combi-

nation to future work.

6.6. Summary Discussion

We have observed that the proposed RaCNN, when

trained with the local mixup, is more robust to adversarial

attacks, at least those seven considered in the experiments,

than the vanilla convolutional network. More specifically,

the RaCNN was most robust to the black-box, decision-

based attack, while it was more easily compromised by

white-box attacks, especially by the CW and L-BFGS at-

tacks. This suggests that the RaCNN could be an attractive

alternative to the vanilla convolutional network when de-

ployed , for instance, in a cloud-based environment.

In Fig. 5, we show retrieval results given a query im-

age from ImageNet. Although adversarial attack altered

the retrieval engine’s behavior, we see that the semantics of

the query image could still be maintained in retrieved im-

ages, suggesting two insights. First, the robustness of the

RaCNN is largely due to the robustness of the retrieval en-

gine to small perturbation. Even when the retrieval quality

degrades, a majority of retrieved examples are of a similar

class. Second, we could further improve the robustness by

designing the feature extractor φ′ more carefully. For in-

stance, an identity function φ′(x) = x would correspond to

retrieval based on the raw pixels, which would make the re-

trieval engine robust to any adversarial attack imperceptible

to humans. This may however results in a lower accuracy

on clean examples, which is a trade-off that needs to be de-

termined per task.

The robustness of the proposed RaCNN comes at the ex-

pense of the generalization performance on clean input ex-

amples. We have observed however that this degradation

could be controlled at the expense of computational over-

head by varying the number of retrieved examples per input.

This controllability could be an important feature when de-

ploying such a model in production.

7. Conclusion

In this paper, we proposed a novel retrieval-augmented

convolutional network classifier (RaCNN) that integrates

an off-the-shelf retrieval engine to counter adversarial at-

tacks. The RaCNN was designed to tackle both off- and

on-manifold adversarial examples, and to do so, we use a

retrieval engine to locally characterize the data manifold as

a feature-space convex hull and the attention mechanism to

project the input onto this convex hull. The entire model,

composed of the retrieval engine and a deep convolutional

network, is trained jointly by the novel local mixup learning

strategy which encourages the classifier to behave linearly

within the feature-space convex hull.

We have evaluated the proposed approach on three

standard benchmarks–CIFAR-10, SVHN and ImageNet–

against six white-box attacks and one black-box, decision-

based attack. The experiments have revealed that the pro-

posed approach is more robust than the vanilla convolu-

tional network in all the cases. The RaCNN was found to be

especially robust to the black-box, decision-based attack.

The proposed approach consists of three major com-

ponents; (1) local characterization of data manifold, (2)

data manifold projection and (3) regularized learning on the
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Clean FGSM iFGSM DeepFool

L2 0 1e-04 2e-04 4e-04 1e-05 2e-05 4e-05 1e-05 2e-05 4e-05

Baseline 88.98 15 13.12 11.65 9.59 3.57 1.82 0.29 0.17 0.16

RC-K10-MU 77.68 20.17 17.40 14.70 77.28 64.97 17.67 35.74 35.72 35.71

Table 3. The ImageNet classifiers’ robustness to the adversarial attacks in the S2 (Retrieval Attack).

FGSM iFGSM DeepFool L-BFGS Boundary

Figure 3. The ImageNet classifiers’ robustness to the adversarial attacks in the Scenario 1 (Direct Attack). The x-axis indicates the strength

of attack in terms of the normalized L2 distance. The y-axis corresponds to the accuracy. The adversary utilizes top-5 accuracies for

attacks.

CIFAR-10 SVHN ImageNet

Figure 4. The robustness of the classifiers to the CW attack under

the Scenario 1 (Direct Attack). The x-axis indicates the strength

of attack in terms of the normalized L2 distance. The y-axis corre-

sponds to the accuracy. “ Rand” indicates that inference was done

with the randomization strategy.

Name Clean Acc S1 / Gray-box Acc

Vanilla CNN 69.5 3.1

Crop Ensemble [12] 63.2 41.5

TV Minimization [12] 60.9 32.5

Image Quilting [12] 39.8 35.4

Adversarial Logit Pairing [17] 52.8 24.5

RaCNN 60.2 25.9

RaCNN + Rand 60.1 28.4

Table 4. The comparison of RaCNN with other SOTA defense ap-

proaches. The results are obtained subject to
‖x−x̃‖2
‖x‖2

≤ 0.06.

manifold. There is a large room for improvement in each

of these components. For instance, a feature-space convex

hull may be replaced with a more sophisticated kernel esti-

mator. Projection onto the convex hull could be done better,

and a better learning algorithm could further improve the

robustness against on-manifold adversarial examples. We

leave these possibilities as future work.

Clean

iFGSM (S1 – Direct Attack) with L2 = 2× 10
−5

iFGSM (S2 – Retrieval Attack) with L2 = 2× 10
−5

iFGSM (S1 – Direct Attack) with L2 = 4× 10
−5

iFGSM (S2 – Retrieval Attack) with L2 = 4× 10
−5

Figure 5. The left-most column of each panel shows the query

image, and the next five images have been retrieved by F . We

show the retrieval results using the original image (Clean) and the

adversarial images one panel at a time. Even with noise largely

enough to fool any vanilla convolutional network, the retrieval en-

gine changes largely maintains the semantics of the query image.
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