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Abstract

Developing high light efficiency imaging techniques to

retrieve high dimensional optical signal is a long-term

goal in computational photography. Multispectral imaging,

which captures images of different wavelengths and boost-

ing the abilities for revealing scene properties, has devel-

oped rapidly in the last few decades. From scanning method

to snapshot imaging, the limit of light collection efficiency

is kept being pushed which enables wider applications es-

pecially under the light-starved scenes. In this work, we

propose a novel multispectral imaging technique, that could

capture the multispectral images with a high light efficiency.

Through investigating the dispersive blur caused by spec-

tral dispersers and introducing the difference of blur (DoB)

constraints, we propose a basic theory for capturing mul-

tispectral information from a single dispersive-blurred im-

age and an additional spectrum of an arbitrary point in the

scene. Based on the theory, we design a prototype system

and develop an optimization algorithm to realize snapshot

multispectral imaging. The effectiveness of the proposed

method is verified on both the synthetic data and real cap-

tured images.

1. Introduction

The spectrum of light contains rich information of the

scene, and is of great significance for many applications,

e.g., medical diagnostics [3], object distinguishment [8],

face recognition [26], etc. The core technique for captur-

ing the spectrum of light is snapshot multispectral imaging,

i.e., taking images or videos of different wavelength band

over the visible wavelength range in a single snapshot.

Existing snapshot multispectral imaging techniques can

be mainly categorized into five main categories: tomog-

raphy methods [9], remapping methods [7, 13, 16], coded

aperture methods [11, 17, 23, 28, 30], spectral filter based

∗Both authors contributed equally to this work.
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Figure 1. Overview of our imaging method. (a) Prototype system:

incoming light is splitted into two light paths: a sharp gray im-

age is captured from one light path for the location information of

edges. A dispersive-blurred and margin-masked image is captured

on the other path for the DoB constraints and the additional spec-

trum of the edge point. (b) DoB constraints along each edge: the

derivative of the dispersive blur along each edge equals the differ-

ence of the spectrum of the adjacent areas. (c) DoB constraints

over all edges constitute a graph, based on which we reconstruct

the hyperspectral images.

methods [5, 21, 22, 25] and RGB camera based meth-

ods [1, 2, 4, 10, 33]. The total light throughput of these

multispectral imaging techniques is sacrificed either in the

spatial or the spectral dimension, which greatly reduce the

signal-to-noise-ratio (SNR) of measurements and prevent

the high-quality multispectral reconstruction [24]. Thus,

improving the light throughput is one of the key concern in

spectrometer design, especially for the video-rate spectral

imagers where the exposure time is strictly limited.

In this paper, we propose a novel snapshot multispec-

tral imaging technique with high light throughput. Based

on the difference of blur (DoB) constraints [12] (i.e., the

derivative of the dispersive blur along the dispersive direc-

tion over each edge is exactly the difference of spectrum

of the adjacent area, as shown in Fig. 1(b)), we theoret-
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ically prove that we can recover the multispectral images

from a single dispersive-blurred image plus an additional

spectrum of a single point in the scene. Specifically, the

multispectral image reconstruction problem can be mod-

elled as a N -linear equation system, and through introduc-

ing a graph model, we theoretically prove that DoB con-

straints provide only N − 1 independent constraints and

the spectrum of an additional point is required for multi-

spectral recovery. We propose to introduce the edge mask

to get an additional spectrum of the edge point and realize

the full rank retrieval of multispectral images. Based on

the theory we proved, we design a snapshot multispectral

imaging technique (Fig. 1(a)) that could capture all the re-

quired information. The imager is composed of two light

paths: the dispersive-blurred path is for capturing the above

mentioned full rank multispectral information and the gray-

camera path is for locating the sharp edge. An optimiza-

tion algorithm is proposed to reconstruct the multispectral

information from the captured two images. Since the light

throughput loss introduced around the edge is ignorable, our

methods could achieve snapshot multispectral imaging with

a high light efficiency.

High throughput imaging could directly improve the

SNR of the measurements, and improve the following hy-

perspectral recovery, which is especially important in the

light-starved applications such as multispectral fluorescence

microscopic imaging [20], high speed multispectral imag-

ing [31] and plenoptic light imaging techniques [32, 34],

etc. Besides, other than the spectral domain imaging, the

theory and imaging method we proposed for extracting the

information from dispersion could be applied to the other

domain, such as time domain, and enables high-throughput

snapshot ultrafast imaging [14].

In particular, we make the following contributions:

• We prove theoretically that we can recover the multi-

spectral images from a single dispersive-blurred image

plus the spectrum of an additional point in the scene

based on the graph theory.

• We develop a pixel-wise spectral reconstruction algo-

rithm based on the proposed theory.

• We build a prototype imaging system to verify this ap-

proach and demonstrate the feasibility and effective-

ness with both synthetic and experimental data.

2. Related Work

Traditional multispectral imaging are implemented

through scanning either along the spatial dimension [6, 27]

or along the spectral dimension [15]. These scanning meth-

ods are slow and the optical throughput is quite low, which

is not applicable for realtime multispectral imaging espe-

cially under light-starved conditions [14, 20, 31]. Snap-

shot spectrometer collect the three dimensional multispec-

tral image in a single exposure period, with a much higher

optical throughput than scanning based methods [18]. Re-

searches in this field has been evolving rapidly in the last

few decades, which can be mainly categorized into five

main methods.

Computed Tomography Methods. Descour and Dere-

niak [9] proposed the Computed Tomography Imaging

Spectrometer (CTIS) and reconstruct the multispectral im-

ages from a set of dispersive projections. Assuming the

number of projection is Np, the spatial resolution captured

is reduced to 1/Np of the sensor pixel number N and so as

the optical throughput. Instead of capturing multiple pro-

jections in different directions, we proposed to capture the

multispectral images with only one dispersive projection,

thus with a much higher light efficiency.

Remaping Methods. Remapping methods are proposed

to remap the 3D multispectral volume to 2D spatial detec-

tion [7, 13, 16]. The spatial information is directly sacri-

ficed in exchange of spectral resolution, i.e., assuming that

the spectral resolution is Nλ, the total optical throughput

of the multispectral imaging is reduced to 1/Nλ. While

in our method, the spectral information all over the image

are dispersively blurred and integrated together, no spatial

information are directly sacrificed and we experimentally

demonstrate that our method could preserve most of the

space information with the proposed algorithm.

Coded Aperture Methods. To overcome the spatial-

spectral resolution trade-offs, methods combing compres-

sive sensing and the statistical priors of natural multispectral

images are proposed [11, 17, 23, 28, 30] , through introduc-

ing random-amplitude aperture to codes both the spatial and

the spectral dimension. These coded aperture based meth-

ods enable multispectral imaging with high spatial resolu-

tion, while the loss of optical throughput introduce by the

random coded aperture is 50% percent and the optical sys-

tem of these methods require complex calibration while our

method only requires simple calibration between the disper-

sive light path and the sharp gray light path.

Spectral Filter Based Methods. To capture the multispec-

tral images with a compact imaging system, a set of spectral

filter array (SFA) based methods with modulations either in

the primal domain [5, 22, 25] or in the Fourier domain [21]

are investigated. Benefiting from the computational recon-

struction, these methods use wide-band spectral filters and

thus can achieve even more than 50% light throughput. But

generally the manufacturing of SFAs is difficult and thus

limits their widely application in practice.

RGB Camera based Methods. Recently, RGB imaging

sensors are explored to recover the multispectral images [1,

2, 4, 10, 33]. While these methods can realize multispectral

with RGB cameras, the RGB Bayer filter blocks a large part

of the light and is light inefficient.

In all, we propose a novel multispectral imaging methods

in this paper, which only requires to capture a single disper-
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sive blurred image and a sharp gray image. Our imaging

system is easy to calibrate, of low cost and light efficient.

With our snapshot spectral imaging technique, we could

capture high SNR measurements of multispectral data and

we demonstrate that our method could achieve state-of-the-

art snapshot multispectral imaging.

3. Theory

In this part, we will introduce the proposed theory for

multispectral imaging and recovery. Our theoretical infer-

ence is based on two assumptions: 1) The image can be

explicitly segmented into a series of regions, and the spec-

tra are uniform up to a scale factor in each region. 2) All

the maximum distance between each pair of adjacent edges

along the dispersive direction are larger than the size of dis-

persion. We need to note that the first assumption are only

invalid in the scene where there are specularities or complex

illumination, which is not the research focus of this paper.

As for the second assumption, in most cases, the edges of

the narrow region are not exactly parallel, the information

is mixed inconsistently, where heterogeneous information

contained in the edges along the narrow regions can still

guarantee the high fidelity spectral recovery, as will be fur-

ther demonstrated in the experimental part.

To simplify the derivation, we consider the case with-

out shading effect first and discuss the effect introduced by

shading later. Without shading, natural images consisted of

a set of surfaces with unified spectral reflectance are consid-

ered first. We will show that DoB constraints can provide

most of the spectral information for recovering the entire

multispectral image, except a single additional spectrum of

an arbitrary point is required.

3.1. DoB Constraints

In 1989, Funt and Ho [12] have pioneeringly proposed to

estimate the difference of spectra from image edges. To fa-

cilitate further inference, we first briefly introduce this DoB

constraints. According to the principle of dispersion, the

spectrum of a single point will spread spatially when pass-

ing the dispersive elements, generating a spectral dispersion

band s, which maps the spectrum into spatial domain. Con-

sidering an edge between two regions (i, j) with two dif-

ferent spectral dispersion band (si, sj), the DoB constraints

can be represented as:

∇θb = δij ∗ (si − sj), (1)

where δij is the impulse function, indicating the edge loca-

tion between regions i and j, ∗ denotes spatial convolution,

∇θb represent the derivative of the image intensity b at the

edge along the projection angle θ. Thus, if we know the

position δij of the edge, we can derive the difference of the

spectra si and sj from the derivative of the dispersive blur.
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Figure 2. Illustration of the graph model and verification on syn-

thetically generated image. The ‘mushroom’ multispectral image

in Fig. 1(b) is used to synthesize the sharp gray image and the dis-

persive image, which is dispersively blurred on x− direction. (a)

The corresponding graph model. (b) The reconstructed spectral

curves (RC) as well as the ground truth spectral curves (GC) of

the surface pieces indexed in (a).

For a dispersive blurred image, we could define an edge

matrix A and DoB matrix B to represent the DoB con-

straints. Mathematically, we use each row of A and B to

denote a DoB constraint of an edge. All the DoB constraints

of the entire dispersive blurred image can be formulated by

AS = B, (2)

where S = [s1, s2, . . . , sN ]T denote the spectra of regions

1, 2, . . . , N in the image, each row of A has only two non-

zero elements 1 and −1 which indicates the corresponding

spectra si and sj of the two surfaces beside the edge, each

row of B is the derivative of blur at the edge. We will prove

in the next section that A is of rank N -1, and an additional

spectrum of a single point is required to realize full-rank

recovery of S.

3.2. Graph Theory for Spectrum Reconstruction

To facilitate discussing the rank of A, we build a corre-

sponding graph model G = (V, E), where V is the vertex

set and each vertex denote a single surface. E is the edge

set and each edge denotes the adjacency between the corre-

sponding vertexes. As in Fig. 2, by introducing the graph

model, each row of A corresponds to an edge in E . We use

the undirected graph in this paper without loss of generality

and since each of the surfaces in an image is at least adja-

cent to another surface, the undirected graph G is connected.

Given the customized edge matrix A of a dispersive blurred

image and its corresponding graph model G, we have the

following theorem.

Theorem 1 The rank of the edge matrix A exactly equals

to the edge number of the spanning tree of its corresponding

undirected connected graph G.

Theorem 1 follows from Lemma 1 below which proves the

equivalence of the connected graph G and its spanning tree

G′ for the spectrum reconstruction problem. According to
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the characteristics of trees, a tree G′ of N vertexes has N−1
edges, and thus its corresponding edge matrix A′ has N−1
rows. In other words, the rank of A and A′ is smaller than

or equals to N − 1. Meanwhile, according to Lemma 2, the

edge matrix of a tree is of full row rank. Therefore, the rank

of A′ and the rank of A are both N − 1.

Lemma 1 A connected graph G and its spanning tree G′

have the same spectrum solution space.

Proof sketch of Lemma 1 We separate the lemma into the

forward and backward propositions.

Forward proposition: any feasible solution S of graph

model G is also a solution of G′. Assume A and B are

the corresponding edge matrix and the DoB matrix of the

graph model G, S is a solution of AX = B. The spanning

tree G′ of G can be derived by removing the edges which

are parts of cycles while keeping the connection property.

In other words, the edge matrix A′ and the DoB matrix B′

are pruned version of A and B, and the removed rows just

correspond to the removed edges. Therefore, the forward

proposition here is self-evident since the solution space of

G is exactly a subset of the solution space of G′.

Backward proposition: any feasible solution S′ of graph

model G′ is also a solution of G. Since a removed edge

e is a part of a certain cycle C in the original graph G, it

means that the rest edges of the cycle C\e form a path con-

necting the vertexes of the end of the removed edge e. As

the direction of the edges denote the direction of difference

operation (from 1 to −1) and once a certain directed con-

straint is known, its reverse version can be easily derived by

changing the sign of the elements of the corresponding row

in B, thus we can form a directed path from one end of the

removed edge e to the other end, and the summation of the

corresponding rows of A has two non-zero elements 1,−1,

which corresponds to the start and end vertexes respectively.

This summed row vector exactly equals the removed edge

e. Consequentially, the removed row of e can be linearly

represented by the rest rows of C\e, so that the solution S′

satisfies the constraints C\e in graph G′ also satisfies the

constraint C = (C\e) ∪ e in graph G.

Lemma 2 The edge matrix A of an undirected acyclic

graph G, a.k.a. a tree, is of full row rank.

Proof sketch of Lemma 2 According to Lemma 1, the so-

lution spaces of the given undirected acyclic graph G and

its corresponding complete graph G∗ (i.e., G∗ has the same

vertex set with G, and every pair of distinct vertexes in G∗

is connected by a unique edge) are exactly the same, that is

because G can be regarded as a spanning tree of G∗. Mean-

while, a chain graph Gc which is the subgraph of G∗ and

threads all the vertexes of G∗ is as well a spanning tree of G∗

and also share the same solution space of G∗. Therefore, G
and Gc have the same solution space as well. Furthermore,

the edge matrix Ac of the chain graph Gc is an incomplete

Toeplitz matrix which is of full row rank obviously. Since

the chain graph Gc and G have the same solution space, Ac

and A have the same solution space as well and thus both

of them are of full row rank (N − 1).

3.3. Shading effect

Because of the illumination condition and the shape of

the scenes, the light emitted from the different points of a

same surface may have different irradiance. The uniform

assumption ignores this shading effect and thus is incapable

of dealing with the real scenes. In the following, we intro-

duce the shading effect by using the irradiance scale model

to make the proposed method more feasible for practical

applications.

For the points of a certain surface, we assume that the

reflectances are of the uniform spectrum up to a scale, which

means that the observed spectrum of a certain pixel p in

surface i is,

sop = Ipsi, (3)

where Ip is the illumination intensity integrated over all

wavelength, si is the normalized spectrum of surface i and

sop is the observed spectrum of pixel p in it, we could get

∇
(p,q)
θ |p∈surf(i),q∈surf(j)b = δij ∗ (Ipsi − Iqsj), (4)

where (p, q) denote the adjacent pixels in surface i and j.

∇
(p,q)
θ b is the DoB constraint of pixel pair (p, q). For each

adjacent surface pair i and j, there are many DoB con-

straints with different intensity pairs Ip and Iq . A set of

constraints with different intensity elements Ip and Iq in-

stead of 1 and −1 then replace each row of adjacent matrix

A. In most cases, when there are several different weighted

constraints for a single surface pair, the matrix A becomes

full-rank, and the problem is solvable. However, we found

the condition number of A is not always small in practice,

since the shading caused intensity change is insufficiently

large to provide an additional well-defined constraint. Thus,

we propose to introduce the spectrum of a single point to re-

duce the ill-posedness in practice.

Note that after introducing the irradiance scale model

in Eq. 4, the number of unknowns increases from NM to

NM + P , where P is the number of pixels. The added

unknowns are the intensities of the sharp gray scale image.

Although the sharp gray image can be retrieved from the

dispersive blurred image by using blind deblurring algo-

rithms, we propose to use the hybrid camera system as in

[7] to directly capture the sharp gray image. Therefore, in

the following experiment, we propose a multispectral imag-

ing technique that could captures the sharp gray image, the

dispersive blurred image and a single spectrum of a certain

point in a snapshot way and verify the proposed theory.
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4. Point-wise Reconstruction Algorithm

Based on the proposed theory, we propose a spectral im-

ager as in Fig. 1(a): incoming light is splitted into two light

paths capturing both the dispersive blurred image and the

sharp gray image. To capture the required additional spec-

trum of a single point, we introduce a side block mask in the

dispersive light path to cut off the sides of the virtual image

focused on sensor #1. Thus the spectra of these blocked re-

gions are known (i.e. zero for all spectral channels), and the

full rank information for multispectral image reconstruction

can be captured.

If the segmentation of scenes is given, the spectra of each

surface can be reconstructed by solving Eq. 2. However,

practically, computing exact segmentations is usually diffi-

cult for existing segmentation technologies. Therefore, in

this subsection, we develop a pixel-wise reconstruction al-

gorithm with two snapshot inputs, i.e. the dispersive blurred

image and sharp gray image, to make the proposed method

feasible in practice.

4.1. Problem Statement

Fidelity Term. Using the proposed system, we can cap-

ture dispersive blurred and sharp gray image pairs simulta-

neously, and the acquisition process can be denoted by

G = PgS =
∑

λ

S(x, y, λ)

D = PdS =
∑

λ

S(x+∆x(λ), y, λ),
(5)

where G and D are the gray projection and dispersive pro-

jection of the multispectral cube S. Pg and Pd are the pro-

jection matrix. x, y are the spatial coordinates and λ denotes

wavelength. Given this projection model, the basic fidelity

term of our reconstruction problem is derived,

Ef = ||G−Pg(S)||
2 + ||D−Pd(S)||

2, (6)

where Ef denotes the fidelity term of our objective func-

tion, and || · ||2 is the square of L-2 norm, which is usually

applied for reconstruction problem.

DoB Constraint. Instead of segmenting input images into

regions and extracting DoB constraints explicitly, we utilize

the pixel-wise difference projection constraints to model the

DoB constraints here,

EDoB = ||∇x,yD−Pd(∇x,yS)||
2, (7)

where ∇x,y means the difference operation in both row x
and column y directions. ∇x,yS is full of zeros except for

the pixels on the edges, and the non-zero value on the edge

along the spectral dimension is exactly the difference be-

tween the spectra of the adjacent surfaces. The dispersive

projection operation shear the difference cube and project

the differences on the edges of all the channels on the DoB

plane. ∇x,yD denotes the difference map of dispersive

blurred image, and thus exactly matches the DoB projec-

tions. This pixel-wise difference projection constraint for-

mulates all the DoB constraints.

Side Block Constraint. We introduce the side block con-

straint to model the the marginal mask:

Eside = ||S⊙M||2, (8)

where M is the side block mask with 1 in the block areas

and 0 in the rest, and ⊙ denotes the pixel-wise product.

Cross-channel & Sparse Regularizer. The proposed

method is essentially benefited from the piece-wise smooth

assumption of natural scenes, and the segmentation is used

to imply this assumption in the inferences in Sec.3. In our

practical implementation, the cross-channel and sparse con-

straints are adopted to replace the explicit segmentation to

reduce the ill-posedness of the problem. The cross-channel

and sparse regularizer can enforce the piece-wise smooth-

ness on spatial domain and similar edge locations on differ-

ent spectral channels [19]. In our scenario, a sharp projec-

tion image is given, which can be used as the reference map

for the cross-channel and sparse constraint,

Ecs = ||∇x,yS||1 +
∑

λ

||∇x,ySλ(x, y)−∇x,yG||1, (9)

where || · ||1 is the L-1 norm, and ||∇x,yS||1 is the sparse

term.
∑

λ ||∇x,ySλ(x, y) − ∇x,yG||1 is the cross-channel

term, and ∇x,ySλ(x, y) is the gradient map of spectral

channel Sλ, ∇x,yG denotes the gradient map of sharp pro-

jection G.

Objective Function. So far, we have all the fidelity and

constraints of our multispectral reconstruction problem, and

the final objective function becomes

E = Ef + λDoBEDoB + λsideEside + λcsEcs, (10)

where λDoB , λside and λcs are the weights of correspond-

ing terms respectively.

4.2. Optimization

To optimize Eq. 10, we first introduce an auxiliary vari-

able Qcs here,

E′ =Ef + λDoBEDoB + λsideEside

+ βcs||∇S−Qcs||
2 + λcs||Qcs||1

+ λcs||Qcs −∇G||1.

(11)

Then Eq. 11 can be solved by iteratively optimizing two

sub-problems.

Q-subproblem. In this subproblem, we just optimize the

Qcs related terms and update the optimal Qcs by fixing S.
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The sub-objective function becomes

E(Qcs) =βcs||∇S−Qcs||
2 + λcs||Qcs||1

+ λcs||Qcs −∇G||1.
(12)

Eq. 12 can be optimized in a pixel-wise way, which means

the sub-objective function can be divided into a series

of sub-functions E(Qcs) =
∑

(x,y) E(Qcs(x, y)), which

takes only one single pixel into consideration,

E(Qcs(x, y)) = βcs||∇S(x, y)−Qcs(x, y)||
2

+ λcs||Qcs(x, y)||1 + λcs||Qcs(x, y)−∇G(x, y)||1.
(13)

To minimize Eq. 12 fast, we adopt the 2-D lookup table

method in [36]. Specifically, the minimum Qcs with differ-

ent ∇S(x, y) and ∇G(x, y) are recorded. In practice, both

∇S(x, y) and ∇G(x, y) are uniformly sampled from -1 to

1 with interval 0.002. For each combination of ∇S(x, y)
and ∇G(x, y), the minimum Qcs are computed numeri-

cally. By generating the 2-D lookup table before hand, we

can solve the Q-subproblem efficiently.

S-subproblem. Then, the spectral cube S is updated in S-

subproblem. The terms related to S are

E(S) =Ef + λDoBEDoB + λsideEside

+ βcs||∇S−Qcs||
2.

(14)

It is obvious that all the terms in Eq. 14 are quadratic

terms, and thus can be easily solved by gradient based op-

timization algorithm. In our implementation, the Conjugate

Gradient (CG) algorithm is used to optimize Eq. 14.

5. Assessment

In this section, the proposed method is verified on vari-

ous scenes, including both synthetic and real captured data.

Both quantitative and qualitative comparisons with state-of-

the-art multispectral imaging methods are conducted.

5.1. Experiments on Synthetic Data

We test the proposed method on the Columbia Multi-

spectral Image Database (CMID) [35] to verify the effec-

tiveness, build a prototype spectrometer and further demon-

strate our method on real captured data.

Quantitative Comparisons with State-of-the-art Meth-

ods. We first test the proposed method on the dataset

and compare the PSNR with state-of-the-art compressive

snapshot multispectral imagers, i.e. SD-CASSI [29], DD-

CASSI [17]. Considering our system actually requires two

kinds of projections, i.e., the sharp gray projection and

the dispersive blurred projection, we also compare the per-

formance with the hybrid version of SD-CASSI and DD-

CASSI, i.e. hybrid SD-CASSI and hybrid DD-CASSI, and

hybrid PMIS [7, 30] for fair comparison. Fig. 3 shows the

Figure 3. Quantitative comparisons with state-of-the-art multi-

spectral imaging methods on hyperspectral dataset [35].
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Figure 4. Comparison on different noise levels with state-of-the-art

multispectral imagers.

Peak Signal to Noise Ratio (PSNR) of the results of pro-

posed method and other state-of-the-art methods. We can

see that the reconstruction quality of proposed method is

comparable or even better than the state-of-the-art spectral

imaging method. Besides, the proposed method performs

slightly worse than other methods on the images containing

invalid cases of our assumptions, like the Balloons scene

which contains severe specular highlight effects. As for the

cases coincided with the assumptions, the proposed method

can achieve better performance, showing the great potential

of proposed method in hyperspectral imaging.

Performance Comparison with Different Noise Levels.

We also apply the proposed method on different noise lev-
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Figure 5. Spectral reconstruction results comparisons of the pro-

posed and state-of-the-art methods. Curves extracted from three

multispectral images (i.e. ‘lemon slices ms’, ‘lemons ms’ and

‘real and fake strawberries ms’) from CMID [35] are presented.

Three selected points of each image are marked in the RGB im-

ages (top row), and the corresponding spectral curves of the Point

1, 2 and 3 are shown in second to bottom rows respectively.

Sensor 

#1

Imaging 

Lens
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Figure 6. The prototype spectrometer: front view and side view.

els to test the noise tolerance of our method, and compare

it with other multispectral imaging methods. As shown

in Fig. 4, the degrading trend of the performance of our

method is much slower than that of DD-CASSI based meth-

ods, showing the excellent capablility of noise resistance of

our method. Especially for the hybrid-DD-CASSI method,

which performs comparable with our method on noise free

data, the recovery performance degrades rapidly with the

increase of noise. In contrast, the SD-CASSI and hybrid-

SD-CASSI present good noise tolerance in the experiments,

so that their results become better or comparable than DD-

CASSI and hybrid-DD-CASSI when noise level is larger.

It is worth noting that the proposed scheme can enhance

the light throughput of the spectral imager, and thus de-

crease the noise level of observed measurements as well.

In other words, under the same illumination condition, the

measurements of our proposed system can achieve higher

SNR than other hybrid state-of-the-art snapshot multispec-

tral imagers. Considering the proposed method achieves

comparable or even better performance in noise tolerance

experiment, as shown in Fig. 4, our method is of great po-

tential in the light-starved applications [20, 32, 34], which

is a common case in most multispectral imaging scenarios.

We present the reconstructed spectral curves of proposed

and state-of-the-art methods on the images from CMID

[35], as shown in Fig. 5. Compared with the other three

spectral imaging methods, the proposed method achieves

much higher accuracy.

5.2. Experiments on Real Captured Data

We build the prototype spectral imager as in Fig. 6, and

reconstruct real captured spectral images with the proposed

algorithm. As for the calibration step, since the prism dis-

perser which leads to nonlinear dispersion is used in our

system, we pre-calibrate the non-linear dispersion, and cor-

rect the reconstructed spectral curves with the calibration

results. The prism can introduce additional anisotropy aber-

rations, which may deteriorate the quality of our imaging

system. This is a common problem of prism-based spec-

trometers, and can be greatly alleviated by adopting Amici

prism (exactly what we use). The reconstruction results are

shown in Fig. 7. The 1st column is the captured dispersive

image and the second column is the captured sharp gray

image. We reconstruct the multispectral images from these

two measurements. Based on the reconstructed multispec-

tral images, we calculate the corresponding RGB images

and compare with the captured RGB images. The results

are shown in the 3th-4th column. As shown, our result re-

sembles the captured RGB images, demonstrating the high

quality of our results. Further, the reconstructed images at

480 nm, 540 nm, 620 nm, 650 nm and the corresponding

detailed region are shown in the 5th-8th column. As shown

in column 7 and 8, our method could recover the spatial

details, further verifying the proposed algorithm on the re-

trieving ability of spatial resolution. The ground truth here

is captured by an RGB camera. Accurately calibrating its

characteristics, e.g., the white balance, the spectral trans-

mission of optical lenses and the spectral response curves

of its RGB sensor, is difficult in practice and the inaccuracy

may cause slight color difference between captured images

and our results. Furthermore, to check the reconstruction

quality directly, we use a single point spectrometer to cap-

ture the ground truth spectra of points in the scene and com-
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pare with our method. The scene illumination is a tungsten

lamp and as compared, our results resemble the captured

spectrum from the single point spectrometer, verifying the

effectiveness of our method.

6. Discussion and Conclusion

In this paper, we propose a novel view of the multi-

spectral imaging problem. By exploring the dispersive blur

between adjacent regions in dispersive blurred images, we

propose to reconstruct the spectral images from the DoB

constraints. A graph model is introduced to describe the lin-

ear equation system consisting of DoB constraints. Based

on the graph model, we prove the most important conclu-

sion of this paper, i.e., the whole spectral image can be re-

constructed from a single dispersive blurred image and the

spectrum of a single point. Based on the theory, we build an

effective spectral imaging method. The proposed method

have the following advantages: (1) Without using modula-

tion, the proposed spectral imaging method is simple, easy

to calibrate and low cost, promising for wider applications.

(2) The light throughput can be flexibly tuned through ad-

justing the splitting ratio of light between the two arms with

different beamsplitters, so that the spectral imager can ap-

proach very high light throughput (70%-80%).

As for future work, there are a few interesting topics

that are worth to explore, such as directly estimating the

edge information from the dispersive blurred image, fur-

ther modeling the specularities and complex illumination

conditions, introducing perpendicular dispersion pairs for

anisotropy reduction.
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