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Abstract

We propose a variational Bayesian scheme for pruning

convolutional neural networks in channel level. This idea is

motivated by the fact that deterministic value based pruning

methods are inherently improper and unstable. In a nut-

shell, variational technique is introduced to estimate dis-

tribution of a newly proposed parameter, called channel

saliency, based on this, redundant channels can be removed

from model via a simple criterion. The advantages are

two-fold: 1) Our method conducts channel pruning with-

out desire of re-training stage, thus improving the compu-

tation efficiency. 2) Our method is implemented as a stand-

alone module, called variational pruning layer, which can

be straightforwardly inserted into off-the-shelf deep learn-

ing packages, without any special network design. Exten-

sive experimental results well demonstrate the effectiveness

of our method: For CIFAR-10, we perform channel removal

on different CNN models up to 74% reduction, which results

in significant size reduction and computation saving. For

ImageNet, about 40% channels of ResNet-50 are removed

without compromising accuracy.

1. Introduction

Deep convolutional neural networks have achieved a

significant success in computer vision community, such

as object recognition [13, 25, 37, 44], semantic segmen-

tation [2, 28], object detection [9, 26] and video analy-

sis [45, 46]. Due to the huge storage and computation

costs, deep models are difficult to implement on resource-

constrained platforms, such as, mobile and wearable device.

To solve this problem, various methods have been pro-

posed to improve the efficiency of CNN models or to

compress the models into more compact representations.

These approaches include tensor factorization [35, 48], net-
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Figure 1. Variational CNN Pruning: We prune redundant chan-

nel based on distribution of channel saliency γ. Dotted line de-

notes pruned channel and solid line denotes preserved one. Best

view in color.

work quantization [4, 40], and weight pruning [11, 32].

Though theoretically plausible, these methods usually re-

quire specific software or hardware implementation, which

inevitably introduce extra overhead, i.e., not practically ap-

plicable. Some other methods [15,30] obtain compact mod-

els with hand-crafted manner, which need manual interven-

tion and suffer from compromise performance.

An alternative method is channel pruning [14,27,29,43],

which removes redundant channels in models. Channel

pruning operations are fully supported by off-the-shelf deep

learning library, thus they are very flexible in practical im-

plementation. Moreover, channel pruning reduces memory

footprint dramatically (i.e., feature maps). Recent meth-

ods [14,29] remove one layer by minimizing the reconstruc-

tion error between the consecutive layers. However, these

methods adopt the greedy algorithm for channel selection,

which is time-consuming, as the computation complexity is

linearly proportional to the layers of model. Sparsity based

methods [23,43] impose Lp norm on a group of weights, for

channel shrinkage. However, despite their favorable perfor-

mance, approaches for channel pruning have inherent draw-

backs. 1) Complexity: most of these methods need extra re-

training stage for performance restoration. Even some need
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to conduct several iterations of alternative pruning and re-

training, which is very time-consuming and not friendly for

operation in practice. 2) Stability: layer-alternative param-

eter optimization approach inevitably suffers from instabil-

ity. Namely, parameters of hidden layers may change dras-

tically during consecutive iterations. This results in arbi-

trary removal of some channels during optimization, which

is NOT interpretable. This eventually causes unexpected

performance degradation after pruning.

To address aforementioned issues, we re-formulate the

channel pruning problem within a Bayesian probabilistic

learning framework (i.e., in contrast to previous determin-

istic methods), called variational CNN pruning, to yield

compact, stable, interpretable and flexible compression.

To avoid introducing additional parameters, the proposed

probabilistic pruning framework directly operates on re-

defined scaling factor in Batch Normalization (BN). Dif-

ferent from [27], we extend the scaling factor to include

bias term, called channel saliency, and still keep the lin-

ear form of Batch Normalization. Instead of deterministic

value computation, we regard each channel saliency as a

random variable and seek a proper probabilistic distribution

to model it.

Thus, unimportant layers could be pruned based on the

distribution of the channel saliency. However, directly esti-

mating these distributions involves intractable multidimen-

sional integral in Bayesian manner. We therefore introduce

a stochastic variational inference [20] to estimate the distri-

bution of channel saliency induced by a sparse prior. Our

Bayesian framework possesses the following advantages.

First, by directly applying probabilistic learning on the scal-

ing factor (i.e., our method can also be represented as a

variational-pruning layer ), no additional parameter is in-

troduced in deep CNN model learning, therefore ours can be

directly plugged into any off-the-shelf deep learning pack-

age, without any requirements for special network compo-

nent design. Second, the proposed method conducts chan-

nel pruning with no desire of re-training step. Therefore,

computational efficiency is improved. Third, being formu-

lated in a probabilistic way, optimization process becomes

stable and interpretable. Extensive experiments on CIFAR-

10 show that we can prune up to 74% channels with little

accuracy loss. On ImageNet, the ResNet-50 achieves better

performance than baseline while about 40% channels are

removed.

2. Related Work

Tensor Decomposition. Jaderberg et al. [19] obtain

CNNs substantial speedups via low-rank decomposition.

Denil et al. [5] remove redundant parameters in deep learn-

ing model by using a few weight values to represent each

feature map, which saves a large number of the memory

and computation consumption. Techniques of matrix de-

composition, SVD, is introduced to approximate the weight

matrix in neural networks in [6]. In [42], Tensor Ring (TR)

factorization technology is applied to compress deep neu-

ral networks. However, these methods are impracticable,

because of involving the computation-expensive decompo-

sition operations.

Network Quantization. Courbariaux et al. [4] pro-

pose a method to quantize the network weight with binary

value. To obtain significant improvement for computation

efficiency, Gupta et al. [10] leverage stochastic rounding to

represent weight by a 16-bit wide fixed-point. In [3], net-

work weights are hashed into different groups. For each

group, shared weights are saved with same hash index. To

further compress networks, Tung et al. [40] combine weight

pruning and quantization in a single learning framework.

Rastegari et al. [36] propose XNOR-Networks which im-

pose XNOR and bitcount operations on convolution layer

to quantize weights. Park et al. [34] propose a method for

quantizing weights and activations based on weighted en-

tropy. These low-bit approximation methods usually suffer

form accuracy loss.

Non-structured Pruning. Inspired by neurobiology,

optimal brain damage [22] and optimal brain surgeon [12]

are proposed to remove parameters in networks for sav-

ing storage through an analysis of the Hessian of the loss

function. However, these heuristic based methods are

computationally-intensive and cannot boost running time.

Han et al. [11] judge the importance of weights in net-

work based on magnitude and remove redundant ones with

small value. A data-free algorithm is proposed in [39] to

eliminate the superfluous neurons in fully-connected layers.

Lebedev et al. [21] boost ConvNets speed by group-wise

sparsity operations. Wang et al. [41] propose a density-

diversity penalty on weight to compress fully-connected

networks. Pavlo et al. [32] remove unimportant kernels

based on brute-force search and restore the performance of

compressed networks via fine-tuning. These non-structured

pruning methods [22,24,38] need special software and hard-

ware to speedup inference, due to the irregular sparsity in

weight tensor.

Structured Pruning. Wen et al. [43] exploit CNNs

compression at different grains via imposing L1 norm on a

group of weights. Li et al. [23] propose an one-shot pruning

and retraining strategy to compress filters across multiple

layers. Liu et al. [27] leverage the scale factor of Batch Nor-

malization layer [18] to remove non-efficient channels and

fine-tune the pruned model to restore the comparable accu-

racy. He et al. [14] propose a method that reduces redun-

dant channels based on LASSO regression and least square

reconstruction. [29, 47] transform network pruning into an

optimization problem and perform channel selection in a

layer-wise manner via greedy algorithms. All these struc-

tured pruning methods are hardware friendly, i.e., boosting
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networks inference directly. However, most of these prun-

ing approaches [1, 7, 16] need re-training stage to restore

comparable accuracy, which increases computational com-

plexity and is not friendly for operation. In contrast to these,

our method conducts channel pruning with no desire of re-

training stage, while keeping favorable performance in both

compression and speedup.

3. Variational CNN Pruning

In this section, we propose a variational Bayesian

scheme for channel pruning in convolutional networks:

Variational CNN Pruning. First, we reformulate the Batch

Normalization layer, by extending scale factor to shift term,

called channel saliency. Instead of deterministic value, we

estimate the distribution of channel saliency via variational

inference. To further facilitate pruning, a sparsity-inducing

prior is imposed on the channel saliency. Then we prune re-

dundant channels based on distributions of channel saliency

via a simple criterion. Our method is implemented as a

variational-pruning layer, which can be inserted into any

existing framework without special design.

3.1. Batch Normalization Revisit

Batch Normalization (BN) [18] has been introduced in

current convolutional neural networks as a standard layer,

which improves training speed and accelerates convergence

process. This great performance benefits from normaliz-

ing activation distribution by using the mini-batch statistics

(i.e., σB and µB). xin and xout are represented as input

and output activation map, respectively, and B denotes the

mini-batch. BN layer performs normalization as follows:

BN(x) =
xin − µB
√

σ2
B + ǫ

;xout = γ · BN(x) + β (1)

where µB and σB denote the mean and standard deviation

of input activations over B. An affine transformation is ap-

plied on normalized activations by a linear function learn-

able parameter, i.e., scale factor γ and shift factor β.

Batch Normalization (BN) has been inserted between

convolution and non-linearity layer, constituting a basic cell

in modern networks. γ and β are channel-wise parameters

on models, with function of scaling and shifting. Param-

eter γ can represent the effectiveness coefficient of corre-

sponding channels and no parameter need to be introduced.

Because of this characteristic, it makes sense to choose the

parameter γ as a factor to indicate the importance of con-

volution channel [27]. However, two significant issues are

ignored here:

1) we notice the fact that parameters γ and β are inde-

pendent in BN. Thus, eliminating unimportant channel with

small γ′s value is an improper manner, due to ignoring the

influence of shift term. For example, a channel has zero

value of γ but with a big value of β. Pruning this channel

is arbitrary, because activations of this channel are not zero

and still contribute effect to the next layer.

2) The value of parameter in hidden layer changes dras-

tically after several iterations in training stage. This means

that the value (e.g., scale factor) is dynamical. Determining

the effect of layer by only observing a value of the param-

eter is not sufficient. We argue that this is one significant

cause for performance degradation after pruning [27].

To remedy this, we reformulate Batch Normalization

layer in Equation 1 as follows:

xout = γ · BN(x) + β̃, (2)

where, β̃ = γ · β. (3)

We extend the scale factor γ on shift term β, while still

maintaining affine function of BN. In the case, the parame-

ter γ can be directly utilized as factors on channels, called

channel saliency, because activation of each channel is to-

tally depended on γ. Rather than through the value of γ, we

prune unimportant channels based on the distribution of γ,

which is estimated by variational inference (more details in

Sec 3.2). We do not introduce any parameters in BN layer

and the reformulated BN layer can be inserted into any ex-

isting frameworks.

3.2. Variational Inference on Channel Saliency

Instead of deterministic value, we prune channel with the

distribution of channel saliency. Obviously, this method

is more stable and interpretable, because the distribution

contains rich information and has good mathematical prop-

erty. Thus, we estimate distribution of channel saliency via

Bayes rule. More details are discussed as follows:

Consider a dataset D = {(xi, yi)}
N
i=1, x is input data

and y is corresponding label. Our goal is to learn a model

with parameter γ of the conditional probability p(y|x, γ).
Parameter γ is channel saliency defined in previous section

and we leverage γ to determine the effect of each channel.

After obtaining the prior knowledge of γ (prior distribu-

tion), we can inference the posterior distribution of γ with

Bayes rule. However, computing such a posterior distribu-

tion p(γ|D) = p(γ)p(D|γ)/p(D) is difficult, because the

p(D) =
∫

p(D, γ)dγ is a computation-intractable integral.

It is hard to obtain distribution of channel saliency directly.

Hence, an effectively approximated method, variational in-

ference, is introduced to tackle this problem. Compared to

MCMC, variational inference is a good choice, benefiting

from its solidly theoretical property and small computation

cost.

In variational inference, instead of computing the true

posterior distribution directly, we assume a parameterized

distribution qφ(γ) to approximate p(γ|D). By this way, the
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unsolvable inference problem is cast to a tractable optimiza-

tion problem. We can estimate the posterior distribution by

minimizing the distance between qφ(γ) and the true pos-

terior distribution p(γ|D) by Kullback-Leibler divergence,

i.e., minφ DKL(qφ(γ)||p(γ|D). Minimizing the KL diver-

gence is equivalent to maximizing the evidence lower bound

(ELBO) as follows:

L(φ) = LD(φ)−DKL(qφ(γ)||p(γ)), (4)

where, LD(φ) =
∑

(x,y)∈D

Eqφ(γ)[log p(y|x, γ)]. (5)

The object function consists of two terms, expected log-

likelihood LD(φ) and KL divergence. The LD(φ) is a re-

construction term which aims to maximize the probability

of the model prediction, e.g., minimizing the sum of pre-

diction error. The KL divergence term is a regularization

term, where a sparse prior will be introduced as sparsity-

induced penalty on the channel saliency γ. Optimizing the

two terms, we can take into account the performance and

compression simultaneously. The trade-off between the two

terms leads to a compact and effective model.

Due to the expectation in Equation 5, the gradient can

not be computed directly. Following [8, 20, 31], we intro-

duce Reparametrization Trick to obtain an unbiased dif-

ferentiable minibatch-based Monte Carlo estimator of ex-

pected log-likelihood. M is the mini-batch size and N is

the number of data. In this way qφ(γ) can be represented as

a differentiable function γ = f(φ, ǫ), where ǫ ∼ N (0, 1).
Then Equation 5 can be reformulated as follows:

LD(φ) ≃ LA
D(φ) =

N

M

M
∑

m=1

log p(yim|xim, γim = f(φ, ǫ)),

(6)

L(φ) ≃ LA
D(φ)−DKL(qφ(γ)||p(γ)). (7)

In this way, we can solve optimization problem (Eqn. 5) by

an approximation manner.

Let w be the weights of the neural networks. The model

can be represented as p(y|x,w, γ), which is conditional on

w. Therefore, we can still keep the the evidence lower

bound (ELBO) as object function:

L(φ,w) ≃ LA
D(φ,w)−DKL(qφ(γ)||p(γ)). (8)

Optimizing the object function is to obtain the approx-

imate distribution of channel saliency qφ(γ) and networks

weights w. The model can be trained in an end-to-end man-

ner [33].

3.3. KLdivergence with Sparse Prior

As shown in Equation 8, KL-divergence between the

posterior and prior distributions need to be computed. A

common choice of the approximate posterior is a fully fac-

torized Gaussian distribution, formulated as follows:

qφ(γ) =

C
∏

i=1

q(γi), γi ∼ N (µi, σi). (9)

Our goal is to fine-tune the learnable parameters φ = (µ, σ)
with the object function. In order to remove channels, the

approximate distribution qφ(γ) should be sparse. Then the

inefficient channels can be determined easily. Namely, we

eliminate channels based on the mean and variance of dis-

tribution of channel saliency γ. Thus, we introduce a prior

distribution as follows:

p(γ) =

C
∏

i=1

p(γi), γi ∼ N (0, σ∗
i ), (10)

where we fix mean to zero value. Thus, induced by this

sparse prior, the channel saliency is encouraged to towards

zero. Then the KL-divergence in ELBO can be calculated

tractable as below:

DKL(qφ(γ)||p(γ)) =
∑

i

DKL(qφ(γi)||p(γi))

=
∑

i

log
σ∗
i

σi

+
σ2
i + µ2

i

2(σ∗
i )

2
−

1

2
.

(11)

The reason of making this choice is summarized as below:

1) The selected prior distribution has sparse property

which can encourage parameters γ towards zero. Accord-

ing to this, we can straightforwardly prune ineffective layers

based on γ .

2) There is no distribution gap between qφ(γ) and p(γ).
The KL divergence will be zero, when the expectation µ
and variance σ of two distributions have same value. This

character guarantees that the γ can be calculated accurately.

3) The KL divergence DKL(qφ(γ)||p(γ)) can be com-

puted tractable, because both distributions belong to Gaus-

sian. Other sparsity distributions, such as Laplace distribu-

tion or log-uniform distribution, also can be used as prior

distribution. However, we cannot obtain closed-form solu-

tion of the KL-divergence, due to the involved intractable

integrals. Although some methods of numerical estimation

can be used to estimate the KL term, this will introduce in-

evitable errors.

Let the variance of the both distributions to be identical,

Equation 11 can be simplified as follows:

DKL(qφ(γ)||p(γ)) =
∑

i

kµ2
i (12)
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Where k is a coefficient and inversely proportional to vari-

ance. In this case, the mean value (i.e., µ ) of the approx-

imated distribution is encouraged to be small, due to im-

posing a L2 norm. Hence, we can discard corresponding

channels safely.

3.4. Variational Pruning on Channels

We optimize ELBO with the KL-divergence mentioned

above to obtain the distribution of channels salience γ,

where γ ∼ q(γ|φ = (µ, σ)). Then we remove redundant

channel based on the following criterion.

Based above section, obtained channel saliency γ obeys

a gaussian distribution. Consider to the centrality prop-

erty of gaussian, samples distribute around the expectation.

When the expectation µ is close to zero and variance is

small, the probability of variable γ is close to zero. Based

on this idea, we eliminate redundant channels when the op-

timized parameters are less than thresholds, i.e., (µ, σ) <
(τ, θ). The pseudocode of variational constitutional neural

networks pruning is illustrated in Algorithm 1.

Algorithm 1 Variational CNN Pruning

Input: N pairs data {(xi, yi)}
N
i=1, C channels {γi}

C
i=1

Output: φ,w

1: for epoch= 1 to K do

2: qφ(γ) =
∏C

i=1 q(γi)
3: γi ∼ N (µi, σi)
4: L(φ,w) ≃ LA

D(φ,w)−DKL(qφ(γ)||p(γ)).
5: Optimize : L(φ,w)
6: Update Parameters

7: for i = 1 to C do

8: if ui < τ , σi < θ then

9: Pruning the i-channel

10: end if

11: end for

12: end for

The algorithm is implemented in BN as a special layer,

called variational pruning layer. We do not introduce extra

parameter here and all operations can be integrated in this

layer. The variational pruning layer is easy to implement

as a separate module, which can be inserted to any existing

framework.

4. Experiments

In this section, we carry out extensive experiments to

evaluate the performance of the proposed method on im-

age classification task. Three representative networks, in-

cluding VGG Net [37], DenseNet [17], and ResNet [13],

are chosen for compression. We report the performances on

CIFAR and ImageNet datasets, and compare to state-of-the-

arts. All these experiments demonstrate the effectiveness of

our method.

4.1. Implementation Details

Training Strategy. For CIFAR, the learning rate is set

as 0.1, and divided by 10 at the 150 and 240 epochs, respec-

tively. We train networks for 300 epochs and with batch size

of 256. For ImageNet, the learning rate is set as 0.1, and di-

vided by 10 at 60 and 90 epochs. We train them with batch

size of 256 and 120 epochs for total. All these networks are

optimized by stochastic gradient decent (SGD), with nes-

terov momentum 0.9 and weight decay 10−4. Random flip

and crop are applied for data augmentation on CIFAR and

ImageNet datasets.

Compression Metric. Channels, Parameter and FLOPs

(floating point operations) are used to measure network

compression. Channels indicate the memory footprint. Pa-

rameter and FLOPs denote the storage space and compu-

tation cost, respectively. In this paper, we only count pa-

rameter and FLOPs over convolutional layer, because the

proposed method focuses on channel-level compression of

convolutional neural networks. In addition, we only count

multiply operation for FLOPs.

Pruning Details. All models are trained from scratch

as baseline. We prune unimportant channels based on the

distribution of the proposed channel saliency. When the pa-

rameters of the distribution are less than thresholds, the cor-

responding channel will be removed from the model. The

thresholds τ and θ are empirically set as 0.02 and 0.01, re-

spectively. We set the variance of prior and approximated

posterior to be identical for simplifying the KL loss, which

benefits for training [8]. Different from prior arts, the pro-

posed method does not need fine-tuning to refine the pruned

model.

4.2. Results on CIFAR10

The purpose of our approach is pruning redundant chan-

nels for saving storage space and computation consumption.

We conduct our experiments on CIFAR-10 dataset with

three classic deep networks: VGG, DenseNet and ResNets.

Channels, parameters and FLOPs are used to measure the

performance of the pruning models. The experiment results

are reported in Table 1.

VGG Net. For VGG net, the 16-layer (13-Conv + 3FC)

model is adopted to perform on CIFAR-10 dataset. We re-

move 62% channels while keeping the accuracy at 93.18%,

which is slightly lower than baseline. Notably, more than

70% of the parameters are reduced and nearly 40% compu-

tation is saved. This greatly facilitates VGG model, popular

backbone for object detection and semantic segmentation,

to deploy on mobile devices.

DenseNet. For DenseNet, we remove 60% inefficient

channels with only 1% drop of accuracy. This is extremely

meaningful for DenseNet which consumes a vast amount

of memory, because the reduction of channels will decrease

memory footprint directly. We also save more than half stor-
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Model Accuracy Channels Pruned Parameters Pruned FLOPs Pruned

VGG-16 Base 93.25% 4224 - 14.71M - 313M -

VGG-16 Pruned 93.18% 1599 62% 3.92M 73.34% 190M 39.10%

DenseNet-40 Base 94.11% 9360 - 1.04M - 282M -

DenseNet-40 Pruned 93.16% 3705 60% 0.42M 59.67% 156M 44.78%

ResNet-20 Base 92.01% 1808 - 0.21M - 8.9M -

ResNet-20 Pruned 91.66% 1114 38% 0.17M 20.41% 7.5M 16.47%

ResNet-56 Base 93.04% 4496 - 0.57M - 22.3M -

ResNet-56 Pruned 92.26% 2469 45% 0.46M 20.49% 17.8M 20.30%

ResNet-110 Base 93.21% 8528 - 1.12M - 42.4M -

ResNet-110 Pruned 92.96% 3121 63% 0.66M 41.27% 26.9M 36.44%

ResNet-164 Base 93.58% 12560 - 1.68M - 62.4M -

ResNet-164 Pruned 93.16% 3238 74% 0.73M 56.70% 31.8M 49.08%

Table 1. Accuracy and pruning ratio on CIFAR-10. We count pruned channels, parameters and FLOPs over different deep models, and the

accuracy of pruned models are reported without retraining stage. We train these models from scratch without pruning as baseline in our

experiments.

Model Accuracy Channels Pruned Parameters Pruned FLOPs Pruned

VGG-16 Base 73.26% 4224 - 14.71M - 313M -

VGG-16 Pruned 73.33% 2883 32% 9.14M 37.87% 256M 18.05%

DenseNet-40 Base 74.64% 9360 - 1.04M - 282M -

DenseNet-40 Pruned 72.19% 5851 37% 0.65M 37.73% 218M 22.67%

ResNet-164 Base 75.56% 12560 - 1.68M - 62.4M -

ResNet-164 Pruned 73.76% 6681 47% 1.38M 17.59% 45.4M 27.16%

Table 2. Accuracy and pruning ratio on CIFAR-100. We count pruned channels, parameters and FLOPs on VGG-16, DenseNet-40 and

ResNet-164.

age space by reducing 60% of parameters and boost com-

putation by decreasing about 45% FLOPs. Although struc-

ture of DenseNet is pretty compact, our method still exerts

pruning on channels. We consider this benefits from the

proposed variational pruning method.

ResNets. For ResNets, we adopt four different structures

on CIFAR-10, including ResNet-20, ResNet-56, ResNet-

110, and ResNet-164. ResNets for CIFAR-10 have three

stages of residual block, and each stages followed by down-

sampling layer to resize the scale of feature maps. As shown

in the table 1 and Figure 2, we note that the pruned chan-

nels increase obviously form ResNet-20 to ResNet-164, and

the reduction ratio raises from 38% to 74%. The proposed

method has achieved notable result on ResNet-164, by re-

moving 57% parameters and 49% FLOPs. As a common

choice, we increase the layers to improve the performance

of models. However, this operation will involve more re-

dundant layers at the same time. The purpose of our method

is eliminating redundant channels. Therefore, with more

layers, the effect of our method is more obvious.

0

20

40

60

80

ResNet20 ResNet56 ResNet110 ResNet164

P
ru

n
in

g
 R

at
io

 (
%

)

Channels Parameters FLOPs

Figure 2. ResNets performed on CIFAR-10. We compare chan-

nels, parameters and FLOPs on four different layers of ResNet

network. Best view in color.

4.3. Results on CIFAR100

As illustrated in Table 2, the proposed method is evalu-

ated on CIFAR-100 for three deep networks, e.g., VGG-16,

DenseNet-40 and ResNet-164. We note that our method ob-

tain the better performance on deeper model. The removed
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(a) VGG-16 (b) DenseNet-40 (c) ResNet-20

(c) ResNet-56 (d) ResNet-110 (e) ResNet-164

Figure 3. Compression and Accuracy Curves. We show the details of compression process about VGG-16, DenseNet-40 and ResNets. Best

view in color.

Model Top-1 Top-5 Channels Pruned

ResNet-50 Base 75.1% 92.8% 26560 -

ResNet-50 [29] 72.8% 91.1% 18592 30%

ResNet-50 Ours 75.2% 92.1% 15920 40%

Table 3. Performance and Comparison on ImageNet.

Dataset Model Accuracy Channels Params

CIFAR-10

Dense40∗ [27] 89.5% 60% 54%

Denset40 Ours 93.1% 60% 59%

Res164∗ [27] 47.7% 60% 34%

Res164 Ours 93.1% 74% 56%

CIFAR-100

Dense40∗ [27] 67.7% 40% 35%

Dense40 Ours 72.1% 37% 38%

Res164∗ [27] 48.0% 40% 13%

Res164 Ours 73.7% 47% 17%

Table 4. Comparison with other method on CIFAR dataset. ∗ de-

notes pruning without fine-tuning stage.

channels raise from 32% in VGG-16 to 47% in ResNet-164.

We consider deep models contain more redundant channels,

and the proposed method is sensitive to these. Removing

these non-essential channels is useful for saving memory,

storage and computation.

4.4. Results on ImageNet

ImageNet dataset is a large scale image recognition

benchmark. The dataset contains 1.2 million images for

training and 50000 images for validation. All these images

come from 1000 different categories.

To further evaluate the effect of variational pruning on

large scale dataset, we perform our method on ImageNet

dataset for ResNet-50. From Table 3, we note that the

pruned model performs better than baseline in Top-1 ac-

curacy, while 40% channels have been removed. This

demonstrates the pruned model is compact and efficient,

and is meaningful for reducing memory footprint. Com-

pared to [29], our methods obtains higher accuracy and

eliminates more channels.

4.5. Comparison with Other Method

As shown in Table 4, we compare the proposed method

with [27], which utilizes the deterministic value of scale

factor to remove channels. Unlike this, we eliminate unim-

portant channels based distributions and do not need fine-

tuning stage to restore performance.

To keep comparison fair, we use the results of [27] with

no fine-tuning stage. For ResNet-164, we exceed [27] al-

most two times of accuracy and obtain higher compression

performance in Parameters and FLOPs on CIFAR-10. Af-

ter pruning, the accuracy of [27] drops drastically. The poor

performance suffers from eliminating unimportant channels

based on deterministic value. Because weights in hidden

layers change straightly during training process, removing

channels based on deterministic value is arbitrary. In con-

trast to this, our method is more robust and maintains accu-

racy after compression, which benefits from pruning based

on distribution.
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Figure 4. ResNet-50 on ImageNet. Statistics of preserved channels

in 16 residual blocks and the first convolutional layer. Best view

in color.

4.6. Analysis

4.6.1 Compression and Accuracy

As illustrated in Figure 3, accuracy and compression curves

are given about 6 networks, which perform on CIFAR-10

dataset. The compression ratio is defined as follows:

#compression rate =
#preserved channels

#all channels
(13)

We note that the accuracy is increasing, while the compres-

sion rate is decreasing. The proposed method removes re-

dundant channels and improves accuracy at the same time.

We consider this benefits from the loss (Eqn 8). Namely,

the KL term focuses on channel shrinking and the expect-

log term updates the weights for prediction. The trade-off,

between the two constraint item, leads the model to be a

compact and effective one.

4.6.2 Channel Pruning Analysis

As shown in Figure 4, we reveal the pruning details about

ResNet-50 on ImageNet dataset. We account the preserved

channels about 16 residual-blocks and the first convolu-

tional layer. The pruned channels mainly concentrate on

the middle stage of the model, and channels have few re-

duction at both ends. This phenomenon is caused by that

channels at the last block contain abundant semantic in-

formation, which is crucial for image recognition. So it is

hard to remove these channels. Interlayer-channels include

more detailed information. Some of these are non-efficient

and redundant. Removing these channels has little impact

on the performance of model. This proves that our varia-

tional pruning method could determine the importance of

channels, namely, maintaining efficient channels while re-

moving superfluous channels. The superior character of our

method leads to the result that removing a large number of

channels with considerable margin of baseline, and further

demonstrates the fact that some of parameters and activa-

tions in deep model are invalid and cumbersome.
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Figure 5. Sensitivity Analysis. We report compression rate and

accuracy at different value of threshold τ . Best view in color.

4.6.3 Sensitivity Analysis

We choose 5 different value of parameter τ (threshold for

mean), and perform VGG-16 on CIFAR-10 with these pa-

rameters. As illustrated in Figure 5, with the increase of τ ,

the compression rate is increased from 51% to 70% and ac-

curacy is dropped down from 93.5% to 89%. This means

more compact model will sacrifice more accuracy. When

we tune the τ below 0.02, a little accuracy is obtained but

the compression rate drops drastically. When we turn up the

threshold for smaller size model, the performance becomes

worse. Therefore, to achieve a trade-off between compres-

sion and accuracy, we empirically set τ as 0.02.

5. Conclusion

We propose a variational pruning method for removing

unimportant channels in convolutional neural networks.

We reformulate the Batch Normalization layer to obtain

a new parameter, called channel saliency, which can be

leveraged to measure the effect of channel. To avoid the

deterministic value, we estimate the distribution of channel

saliency via Bayes rule, then a simple yet effective criterion

is used to prune redundant channels. Our method conducts

channel pruning with no desire of re-training stage and can

be implemented as separated module which is flexible and

transplantable. The extensive experiments on CIFAR and

ImageNet demonstrate the outstanding performance of the

proposed method.
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