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Abstract

Although existing image caption models can produce

promising results using recurrent neural networks (RNNs),

it is difficult to guarantee that an object we care about

is contained in generated descriptions, for example in the

case that the object is inconspicuous in the image. Prob-

lems become even harder when these objects did not ap-

pear in training stage. In this paper, we propose a novel ap-

proach for generating image captions with guiding objects

(CGO). The CGO constrains the model to involve a human-

concerned object when the object is in the image. CGO en-

sures that the object is in the generated description while

maintaining fluency. Instead of generating the sequence

from left to right, we start the description with a selected

object and generate other parts of the sequence based on

this object. To achieve this, we design a novel framework

combining two LSTMs in opposite directions. We demon-

strate the characteristics of our method on MSCOCO where

we generate descriptions for each detected object in the im-

ages. With CGO, we can extend the ability of description

to the objects being neglected in image caption labels and

provide a set of more comprehensive and diverse descrip-

tions for an image. CGO shows advantages when applied to

the task of describing novel objects. We show experimental

results on both MSCOCO and ImageNet datasets. Evalua-

tions show that our method outperforms the state-of-the-art

models in the task with average F1 75.8, leading to better

descriptions in terms of both content accuracy and fluency.

1. Introduction

Generating descriptions for images, namely image cap-

tioning, is a challenging task in computer vision. It can be

used in many practical applications, such as robotic scene

understanding and assistant systems for visually impaired

users. In the past few years, deep neural networks are

extensively used in image captioning [25, 12, 40, 17, 3],

achieving fluent and accurate descriptions in commonly

Figure 1. Existing models for image captioning generate the de-

scriptions from left to right. Our CGO approach start generating

with a selected object instead. CGO enables us to incorporate the

selected objects into descriptions precisely, and generate a set of

diverse and comprehensive descriptions for an image.

used datasets, e.g. MSCOCO [21]. However, they are lim-

ited in the control of the generation process. For instance,

a picture may contain many objects but a description sen-

tence usually contains only one or a small number of ob-

jects, as shown in Fig. 1. Although we can accurately clas-

sify or detect objects in the image with existing methods

[13, 36, 32], we cannot force the language model to de-

scribe the object we care about. This can be important in

practice because the model may be queried for a specific

object. Including a novel object in the description is even

harder, in the cases where the object has not been seen in the

training data. Several recent works have studied the task of

describing novel objects but it is still an open question. In

this paper, we propose a novel approach that generates im-

age captions with guiding objects (CGO). CGO can ensure

that the user-selected guiding object is contained in a fluent

description. The selected object can be any object detected

from the image, even if it is unseen in the image caption

training data.

The encoder-decoder structure is most widely used in

recent image caption works and recurrent neural networks

(RNNs) are often used as the language model to generate
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descriptions. In current approaches, the description is usu-

ally generated one by one as a word sequence from left to

right. CGO is built on encoder-decoder structure, but in-

stead of generating sequences from left to right, CGO gen-

erates sentences based on selected objects. We call them

guiding objects as they guide the content of sequences in the

generating process. A guiding object is the object that we

want to include in the description. It may appear at any po-

sition in the sequence. We design a novel framework com-

bining two LSTMs [14] to generate the left part and the right

part of the sequence around the object. In this process, it is

important that the content of the two sequences are coher-

ent. In CGO, each LSTM encodes information of the other

part of the sequence and then generates a sequence condi-

tioned on the encoded sequence and visual features from

the image. This helps the two sequences to connect with

the guiding object fluently. It also enables us to generate

multiple different descriptions for each selected object by

providing different information sequences to the LSTMs.

Some earlier works on image caption tasks are template-

based methods [20, 11]. These methods detect visual con-

cepts from an image and fill them into templates directly.

Although this enables us to control the presence of selected

objects in the descriptions, the generated sentences are in

limited forms and lack diversity. In CGO approach, the

guiding object does not go through the encoding-decoding

process and thus it acts like in template-based methods. At

the same time, as the sequences on both sides are generated

by the LSTMs, the sentences can be more fluent and diverse

comparing with template methods. This makes CGO better

at dealing with the novel object captioning task.

In this paper, we first demonstrate the characteristics of

our method on MSCOCO to generate descriptions for each

detected object in the image. Usually only a small portion

of objects in each image is mentioned in image caption la-

bels. With CGO, however, we can extend the ability of de-

scription to the objects which are neglected and thus pro-

vide a set of more comprehensive and diverse descriptions

for an image (as in Fig.1). Then we apply CGO to the novel

object captioning task and show its advantages when fac-

ing with unseen objects. We test our proposed approach

on MSCOCO dataset and exhibit descriptions generated for

ImageNet [34] objects. Experiments show that our method

outperforms the state-of-the-art models on multiple evalua-

tion metrics, such as METEOR [8], CIDEr [37], SPICE [2]

and novel object F1 scores. The generated descriptions are

improved in terms of both content accuracy and fluency.

2. Related Work

Image captioning. In earlier image captioning studies,

template-based models [20, 11] or retrieval-based models

[10] were commonly used. The template-based models de-

tect visual concepts from a given image and fill them into

templates to form sentences. Thus the generations usually

lack diversity. The retrieval-based models find the most

consistent sentences from existing ones and cannot generate

new descriptions. In recent works, the structure of encoder-

decoder with deep neural networks is widely used [40, 17].

In [43, 12, 23], attention mechanism is used to make the

language model pay attention to different areas of the im-

age at each time step. In [31, 33, 22, 45], reinforcement

learning algorithms are applied to train the language mod-

els, enabling non-differentiable metrics to be used as train-

ing objectives.

Diverse descriptions. Controllability in generating pro-

cess and diversity of descriptions are studied in recent years

[6, 15, 35, 39, 41, 46]. GAN-based methods [6, 35] and

VAE-based methods [15, 41] are used to improve diver-

sity and accuracy of descriptions. In [26], generated sen-

tences can contain words of different topics. [9] proposed

a method to constrain the part-of-speech of words in gener-

ated sentences. Different from CGO, these methods do not

precisely control the inclusion of objects in the descriptions.

[7, 6] studied generating descriptive paragraphs for images.

[16] generates descriptions for each semantic informative

region in images. These approaches require additional la-

bels in dataset, e.g. Visual Genome [19]. CGO approach

does not need additional labels. The descriptions are gen-

erated based on the whole image with CGO, so the objects

may have richer relationships with each other.

Describing novel objects. The novel object captioning task

is first proposed by Hendricks et al. [5]. The proposed

model DCC is required to describe objects unseen during

training. In NOC [38], a joint objective is used to train

object classifiers and language models together. LSTM-

C [44] applied copying mechanisms in NLP to incorporate

novel words in generations. NBT and DNOC [24, 42] use

language models to generate templates with slots or place-

holders and then fill them with objects recognized from

images. Unlike [5, 38, 44, 24, 42], novel objects are not

predicted by the language model in CGO, making it possi-

ble to contain novel words in sentences precisely. CBS [1]

constrains the objects contained in generated sentences by

adding constraints in beam search process. Different from

CBS, novel words does not participate in the calculation of

probability when decoding in CGO. Some works [29] in

NLP researches also use approaches of generating sentences

with constrained words.

3. Approach

Given an image, CGO is able to incorporate the selected

guiding object into generated sentences. In this process, two

LSTMs are combined to generate the partial sequences on

two sides of the guiding object. We use LSTM-L to de-

note the LSTM generating the left part of the sequence and

LSTM-R to denote the other that generates the sequence on
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Figure 2. Our CGO approach. We select the guiding object and an object sequence according to the output of an object classifier. The

sequence of objects is used as input to LSTM-L, providing with information about an assumed right-side sequence. LSTM-L generates

the left-side sequence according to visual features and the input object sequence. The generated left-side sequence is then used as input

to the LSTM-R to generate the right-side sequence. Then we connect the two partial sequences with the guiding object to get a complete

description.

the right side. CGO can be applied flexibly to other existing

RNN language models.

3.1. Problem Formulation

In commonly-used encoder-decoder models, convolu-

tional neural networks (CNNs) [36, 13] are usually used as

the encoder. Visual features representing information of the

image from a CNN are then passed to a language model.

RNNs such as the LSTM, are usually used as the language

model in the decoding process. Given an image I , we aim

to generate a sequence y = (y1, y2, ..., yT ) for description,

where T denotes the length of the sequence and yi is a word

in the model vocabulary. The size of the vocabulary is V .

Denoting θ the parameters in the encoder-decoder model,

the objective of the learning process is to find the optimal θ

so that

θ
∗ = argmax p(y∗|I,θ) (1)

where θ
∗ denotes the optimized model parameters, y∗ de-

notes the ground truth sequence. When the LSTM is used as

the language model, at each time step t it predicts the prob-

ability of the next word in the sequence according to image

features ft, the input word xt at this time step and the hid-

den state ht−1 of the LSTM at time t− 1. xt belongs to the

model vocabulary.

p(yt|y1, ..., yt−1) = LSTM(ft, xt,ht−1) (2)

The image features ft vary in different model settings. In

some models, e.g. NIC [40], image features f is only pro-

vided to the language model at time step t = 0. Models us-

ing attention mechanisms will use attended image features

at each time step t as

at = ATT (xt,ht−1) (3)

ft = f ⊙ at (4)

where at denotes the attention weight maps at the time step

t and ⊙ denotes element-wise multiplying. The form of

the function ATT to calculate attention weights varies with

different attention mechanisms.

If we hope the generated sequence contain a spe-

cific word, the desired sequence becomes y =
(y1, ..., yk−1, yk, yk+1, ..., yT ), where yk is the specific

word. At this time, the model output is conditioned on both

image I and the word yk. Model parameters are trained to

be

θ
∗ = argmax p(y∗

left|I, yk,θ)p(y
∗

right|I, yk,θ) (5)

where yleft = (y1, ..., yk−1) and yright = (yk+1, ..., yT ).
y∗

left and y∗

right are the ground truth partial sequences.

The right-side partial sequence yright could be of arbitrary

length. We combine two LSTMs in opposite directions to

complete the sequences on both sides of yk.

3.2. LSTM­L

For the given image I and the word yk, we first use

the LSTM-L to generate the left-side partial sequence. At

each time step t, LSTM-L predicts the previous word con-

ditioned on the image features ft, the input word xt, and the

hidden state ht+1.

p(yt|yt+1, ..., yk) = LSTML(ft, xt,ht+1) (6)

However, there are problems in this process. An image

often contains more than one objects. These objects can be

arranged in descriptions in different orders. For instance,

‘there is an apple and a banana on the table’ and ‘there is a

banana and an apple on the table’ are both correct descrip-

tions. These two sentences could appear in the ground truth
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labels of an image at the same time. LSTM-L would have

no idea about the right-side partial sequence when it is only

provided with yk (Fig. 3(a)). In experiments, we found that

the model would tend to output a general and conservative

results, such as ‘a banana’ in such process. It is usually

correct in grammar but lacking in variety. In contrast, vari-

ous objects would occur in the left-side partial sequence in

human generated descriptions.

The objects to be described are usually decided before

we speak. Similarly in image captioning, we could get suf-

ficient information about objects in the image before gen-

erating a description. Therefore, we first assume that a set

of objects will appear in the description, and set the order

in which these objects are arranged. Then we can get a

sequence of object labels that is assumed to occur in the

right-side sequence. We denote the object label sequence

as S = {object1, ..., objectm}, where m is the number of

objects in S and can be chosen arbitrarily. Objects in S

will not appear in the sequence generated by LSTM-L, but

they will affect the contents in the sequence (Fig. 3(b)). Se-

quence S is used as input to LSTM-L and encoded before

yk. LSTM-L now generates the sequence according to the

image I , the assumed sequence S and yk.

p(yt|yt+1, ..., yk, S) = LSTML(ft, xt,ht+1) (7)

Similar to normal generating processes, when the pre-

dicted word is the ending label <END>, the left-side se-

quence is completed and the sentence reaches the begin-

ning.

At training time, we randomly select an object as yk from

a ground truth caption label and then extract S from the par-

tial sentence on the right side of yk. The left part of the sen-

tence is provided to LSTM-L as the ground truth sequence.

For a given image, we minimize the cross-entropy loss of

the model.

Loss = −

k−1∑

t=0

logp(y∗t |yt+1, ..., yk) (8)

Note that the loss is only calculated for the generated left-

side partial sequence, namely outputs at time steps earlier

than t = k.

3.3. LSTM­R

After getting the left-side partial sequence from the

LSTM-L, LSTM-R takes this sequence as input and com-

plete the other part of the sentence. The model is now

trained to be

θ
∗

R
= argmax p(y∗

right|I, yleft, yk,θ) (9)

In practice, we do not need to process the caption labels in

the form as a right-side partial sequence. Instead, we can

Figure 3. (a) Generated sequences on two sides of the guiding ob-

ject (‘orange’) could be incoherent when they are generated inde-

pendently. (b) Object label sequences are used as input to LSTM-

L, providing with information about the right-side sequence. The

LSTM-L generates different left-side sequences when the input

sequences are different.

simply follow the process of training a normal LSTM that

generates the sentences from left to right. The training loss

for a given image and a selected yk is different between

these two processes

Lossnormal = −

T∑

t=0

logp(y∗t |y0, ..., yt−1) (10)

LossLSTM−R = −

T∑

t=k+1

logp(y∗t |y0, ..., yt−1) (11)

where Lossnormal and LossLSTM−R denote loss functions

in the two processes. Note that Lossnormal makes stricter

restrictions than LossLSTM−R. The process of generating

a complete sentence can be seen as a special case where

the length of the input sequence is zero. On the other hand,

the LSTM trained with complete sequences allows us to use

the model more flexibly. When there is no object detected

in the image (e.g. a picture of the blue sky), or when no

object is requested to be contained in the descriptions, we

can use LSTM-R as a normal language model and start from

the time step t = 0. In this case, the process is reduced to

normal ones and generates sentences from left to right.

Our approach can be applied to all types of RNN lan-

guage models for image captioning. In the inference pro-

cess, various decoding methods can be used, including the

greedy sampling and beam search methods.

3.4. Novel Word Embedding

In the encoding process, an input word xt is represented

as a one-hot vector xt and is then embedded with the

learned parameter Wx. Embedding vector Wxxt is used

as input to the language model at time step t. A word that

is unseen during training will not be generated by the lan-

guage model when doing inference.

In CGO approach, when a novel object is selected as the

guiding object, we can simply use the embedding vector

from another seen object that is similar to this object. A
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Figure 4. Examples of descriptions for selected objects are shown in the left column. The object at the beginning of each line in CGO

results denotes the guiding word used for that description. Objects contained in the ground truth labels are in blue and the others are in

green. Examples of diverse descriptions for a fixed guiding object is shown in the right column.

similar object can be chosen according to WordNet [28] or

distances between word embedding vectors from word2vec

[27] or GloVe [30]. In normal left-to-right generating pro-

cess, using embedding vectors from a similar object can-

not force the language model to generate the novel word.

With CGO however, since the novel word is incorporated in

the generated sentence directly, without going through the

encoding-decoding process, we do not need the language

model to predict the novel word. Instead, the novel word is

only used in the encoding process, and the embedding result

from a similar object is sufficient in this process.

3.5. Model Details

Caption Model. In our experiments, we use the bottom-

up and top-down attention model (Up-Down) [3] as our

base model. The LSTM-L and the LSTM-R are both Up-

Down models. In our experiments, we use the pretrained

model features from [4]. It is extracted from a Faster R-

CNN model built on ResNet-101 [13] and is pretrained on

MSCOCO and Visual Genome.

Object Classifier. The objects in an given image can be

recognized with existing object detection models or object

classifiers. In our experiments, we follow previous works

[5, 1] using a multi-label classifier to determine whether an

object appears in the image. We classify the 80 object cate-

gories in the MSCOCO object detection dataset. We use the

same feature in the classifier as in the language model.

4. Experiments and Results

In this section we show the ability of CGO to incorporate

selected objects into descriptions. In subsection 4.1 and 4.2,

we show the characteristics of CGO by generating descrip-

tions for each selected object in an image. In subsection

4.2 we show the diversity of the generated descriptions. In

subsection 4.3 and 4.4 we apply CGO approach to the novel

object captioning task.

Dataset. Models are trained and evaluated on MSCOCO

dataset which includes 123287 images. There are 80 ob-

ject categories labeled for object detection and each image

is labeled with 5 human generated descriptions for image

captioning. We follow the previous work [12] to preprocess

the caption labels that all labels are converted to lower case

and tokenized. Words occur less than 5 times are filtered

out and the others form a vocabulary of size 9487. We use

the Karpathy’s splits [17] in subsection 4.1 and 4.2 which

is widely used in image caption studies. 113287 images are

used in training set, 5000 images in validation set and 5000

in test set. In subsection 4.3 we use splits following [5].

Details are in subsection 4.3. In subsection 4.4 we test the

model on the ILSVRC2012 validation set which contains

1000 classes and each image is labeled with its category.

Training details. In our experiments, the object classifiers

are optimized with stochastic gradient descent (SGD). The

learning rate is set to 1e-4 and decays by 0.1 in every 10

epochs. The classifiers are trained for 20 epochs. The lan-
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Model METEOR Avg.Num Avg.R

Base ( b = 1 ) 26.6 1.50 0.55

Base ( b = 3 ) 27.3 1.68 0.59

Base ( b = 5 ) 27.1 1.82 0.62

Base ( b = 10 ) 26.7 1.98 0.66

Base ( caption GT ) 27.3 - -

CGO ( k = 1 ) 24.4 1.62 0.50

CGO ( k = 3 ) 24.4 2.43 0.67

CGO ( k = 5 ) 24.2 2.77 0.73

CGO ( k = 10 ) 24.2 2.92 0.75

Caption GT label - 2.01 0.61

CGO ( caption GT ) 28.0 - -

CGO ( det GT ) 24.2 3.06 1.00

Table 1. ‘Base’ denotes the base model used as baseline. b indi-

cates using the top b beam search generations. For CGO we use

the top k objects predicted by the object classifier as guiding ob-

jects. ‘Caption GT label’ is the statistical result of the ground truth

labels. Base (caption GT) shows descriptions containing at least

one object that occur in ground truth caption labels. CGO (caption

GT) shows the score of descriptions whose guiding objects occur

in ground truth caption labels. CGO (det GT) shows results when

we generate descriptions for each object in the image (using ob-

ject detection ground truth labels). Avg.Num denotes the average

number of object categories in descriptions for an image. Avg.R

denotes the average recall.

Figure 5. Examples of recalls for a single object category. T1∼T10

denotes CGO results with different numbers of selected objects.

GT denotes the statistical results of the ground truth caption labels.

B denotes the results of the base model.

guage models are optimized using Adam [18]. The learning

rate is set to 1e-4 and decays by 10 in every 20 epochs. The

LSTM-L is trained for 80 epochs and LSTM-R is trained

for 40 epochs.

4.1. Describe Each Selected Object

To demonstrate the characteristics of our method, we

generate one description for each object selected in images

to get a set of sentences describing different objects in each

image. We choose k objects with the highest probability as

the guiding objects according to the outputs of the object

classifier. We test the models with k = 1, 3, 5, 10 respec-

tively. We count the average number of different object cat-

egories involved in the set of descriptions for each image.

2 objects selected 3 objects selected

Object label Uniq. M Uniq. M

Caption label 1.47 26.1 2.08 25.7

Detection label 1.48 24.7 2.62 23.5

Table 2. Results when we select guiding objects from caption la-

bels and object detection labels. M denotes the METEOR score.

Uniq. denotes the average number of unique descriptions for each

fixed guiding object.

We also count the recall of each object category. That is,

whether the object appearing in an image is mentioned in

the set of descriptions. It should be noted that whether an

object occurs in the image is decided according to the ob-

ject detection labels, since caption labels often contain only

a small portion of the objects appearing in the image.

Both the base model and CGO are trained and tested on

MSCOCO Karpathy’s splits [17]. Examples are shown in

the left column of Fig. 4. In Table 1, we show results gen-

erated with the base model using beam search (beam size =

b) as baseline, and results generated with CGO. The aver-

age recall is the macro average of recalls for all 80 object

categories. The average object category number and recall

of baseline model are 1.98 and 0.66 with b = 10. With

CGO, the average number and recall are improved to 2.92

and 0.75 (k = 10). We also count the average number and

recall for the ground truth caption labels. When k = 5
(there are 5 caption labels for each image), the object recall

of CGO is 0.73, higher than that of the caption labels (0.61),

indicating that CGO can describe the objects which are ne-

glected in caption labels. Note that although the base model

can describe more object categories with larger beam size,

it cannot control which objects are described in the process.

The METEOR scores of CGO is around 24.2, lower than

that of the base model (26.7). The evaluation method only

compare the results with ground truth caption labels. Even

if objects appearing in the image are described correctly,

the scores would be low if the objects do not appear in the

ground truth captions. Though the fluency of the gener-

ations cannot be evaluated precisely using this score, this

provides us with a rough reference. We also evaluate the de-

scriptions whose guiding objects appear in the ground truth

labels and the METEOR score is 28.0. This suggests that

the generated sentences are fluent when the guiding objects

are in-domain for the caption labels.

Figure 5 shows recalls of 7 objects as examples. Com-

paring with the base model and ground truth caption labels,

recall of inconspicuous objects such as “cup” (from 0.15 to

0.69) and “bowl” (from 0.21 to 0.65) can be improved sig-

nificantly with CGO.
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Model bottle bus couch microwave pizza racket suitcase zebra Avg. F1

DCC [5] 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8

NOC [38] 17.8 68.8 25.6 24.7 69.3 68.1 39.9 89.0 49.1

LSTM-C [44] 29.7 74.4 38.8 27.8 68.2 70.3 44.8 91.4 55.7

CBS+T4 [1] 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0

NBT + G [24] 14.0 74.8 42.8 63.7 74.4 19.0 44.5 92.0 53.2

DNOC [42] 33.0 76.9 54.0 46.6 75.8 33.0 59.5 84.6 57.9

CGO (ours) 45.0 79.0 69.2 64.6 87.3 89.7 75.8 95.0 75.8

Table 3. F1 scores of the novel objects on the test split.

Out-of-Domain Scores In-Domain Scores

Model SPICE METEOR CIDEr Avg. F1 SPICE METEOR CIDEr

DCC [5] 13.4 21.0 59.1 39.8 15.9 23.0 77.2

NOC [38] - 21.4 - 49.1 - - -

LSTM-C [44] - 23.0 - 55.7 - - -

CBS + T4 [1] 15.9 23.3 77.9 54.0 18.0 24.5 86.3

NBT + G [24] 16.6 23.9 84.0 53.2 18.4 25.3 94.0

CGO (po = 0.5) 17.7 23.9 89.1 75.8 18.0 25.1 94.7

CGO (po = 0.7) 17.7 23.9 88.2 75.8 18.4 25.3 95.8

CGO (po = 0.9) 18.1 24.2 90.0 75.8 19.6 26.3 103.3

Table 4. Descriptions generated for in-domain and out-of-domain images are evaluated using image caption metrics. po is the threshold for

selecting guiding objects which are in-domain. When the probability of occurrence of an object predicted by the object classifier exceeds

po, it is used as the guiding object. We choose the object with the highest probability when more than one object meet the requirement.

4.2. Diverse Descriptions for Each Object

In this part we show CGO’s ability to generate diverse

descriptions with a fixed guiding object. We randomly se-

lect an object as the guiding object from an image and

choose n = 1 or 2 other objects to form the LSTM-L input

sequence. With n = 1, the input sequence can be <Guiding

object> or <Guiding object, Object1>, ‘Object1’ denotes

the chosen object for the LSTM-L input sequence. With

n = 2 we test with 3 different input sequences with length

1, 2 and 3.

Results are shown in Table 2. When we use objects

chosen from object detection labels, the average number of

unique descriptions is 1.48 with 2 different inputs, and 2.62

with 3 different inputs. This shows that CGO can gener-

ate different descriptions even with a fixed guiding object.

Examples are shown in the right column in Fig. 4.

4.3. Novel Object Captioning

In this part, we demonstrate the effectiveness of CGO

when applied to the novel object captioning task. Follow-

ing [5], 8 object categories, ‘bus, bottle, pizza, microwave,

couch, suitcase, racket, zebra’ are selected as novel objects.

At training time, images are excluded from the MSCOCO

training set if their caption labels contain the novel objects.

Half of the MSCOCO validation set is used as validation set

and the other half as the test set. F1 score is used to eval-

uate the accuracy of containing the novel objects. For each

novel object category, if the generated description and the

ground truth label contain the object at the same time, it is

regarded as true positive. The average F1 score is the macro

average across the 8 categories. Image caption evaluating

metrics are used to evaluate the quality of the generated sen-

tences, including SPICE [2], METEOR [8] and CIDEr [37].

Descriptions for out-of-domain images (containing a novel

object) and in-domain images are evaluated respectively.

Similar with prior work [5, 1], labels for the object clas-

sifier is obtained from caption labels. The full training set

is used when training the classifier, including the images

which contain novel objects. A novel object is used as the

guiding object if it appears in the image. We determine

whether a novel object appears in an image according to the

results from the object classifier. The probability thresholds

of using an object as the guiding object are chosen to maxi-

mize the F1 score on the validation set. For novel words, we

simply replace their word embedding vectors with other in-

domain objects under the same super categories, e.g. ‘bot-

tle’ → ‘cup’. The results are shown in Table 3 and Table 4.

Examples of descriptions are shown in Fig. 6.

Comparing to existing models, CGO significantly im-

proves the F1 score of novel objects, with the average F1

score 75.8. In fact, the F1 score of the output directly de-
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Figure 6. Examples of descriptions generated for out-of-domain

objects (in blue). O1 → O2 indicates that we use O1 as the guid-

ing object which is encoded using the word embedding vector of

an in-domain object O2. Errors are underlined.

pends on the accuracy of the classification results, just like

the template-based models. Note that using different RNN

models or different CNN features in the language model

does not affect the F1 result. On the other hand, CGO takes

advantage of the LSTM language model and generates flu-

ent descriptions. METEOR scores are improved to 24.2 for

out-of-domain images and 26.3 for in-domain images. We

test the CGO with different probability thresholds po for in-

do-main objects. An in-domain object is used as the guiding

object when probability predicated by the object classifier

exceed the threshold. The generating process is reduced to

the usual left-to-right generation process when the classifier

is not certain about the objects contained in the image.

As the object classifier is independent with the language

model, using more advanced models such as object detec-

tion models might further improve the F1 scores. In CGO

approach, we only guarantee one selected object to be men-

tioned, but this does not affect its practicability. In many

scenarios, novel words do not appear intensively and we are

Figure 7. Examples of generated captions for ImageNet objects (in

blue). With CGO, an object could be involved in descriptions even

if it did not appear in the model vocabulary.

allowed to use more than one description for an image in

practice. In addition, CGO can be used in conjunction with

other methods such as CBS [1], to contain more objects in

the outputs while ensuring that the guiding object is con-

tained in the descriptions.

4.4. Descriptions for ImageNet Objects

Similar to previous works [44, 38], we show qualitative

results of our method describing the ImageNet [34] objects.

Objects which do not appear in the vocabulary mined from

the MSCOCO caption labels are novel to the models trained

on the MSCOCO. We use the model trained on Karpathy’s

training split to generate descriptions. Examples are shown

in Fig. 7 and more examples of results can be found in Ap-

pendix. Similar to the process in subsection 4.3, word em-

bedding vectors of novel objects are replaced with embed-

ding vectors of the seen objects. e.g. ‘schooner’→‘boat’.

5. Conclusion

We present a novel image captioning approach where the

sentence generating process starts from a selected guiding

object. Our CGO allows us to include a specific object in

generated sentences and describe images in a comprehen-

sive and diverse manner.
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