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Abstract

Person re-identification (re-id) remains challenging due

to significant intra-class variations across different cam-

eras. Recently, there has been a growing interest in using

generative models to augment training data and enhance

the invariance to input changes. The generative pipelines

in existing methods, however, stay relatively separate from

the discriminative re-id learning stages. Accordingly, re-id

models are often trained in a straightforward manner on the

generated data. In this paper, we seek to improve learned

re-id embeddings by better leveraging the generated data.

To this end, we propose a joint learning framework that

couples re-id learning and data generation end-to-end. Our

model involves a generative module that separately encodes

each person into an appearance code and a structure code,

and a discriminative module that shares the appearance en-

coder with the generative module. By switching the appear-

ance or structure codes, the generative module is able to

generate high-quality cross-id composed images, which are

online fed back to the appearance encoder and used to im-

prove the discriminative module. The proposed joint learn-

ing framework renders significant improvement over the

baseline without using generated data, leading to the state-

of-the-art performance on several benchmark datasets.

1. Introduction

Person re-identification (re-id) aims to establish iden-

tity correspondences across different cameras. It is often

approached as a metric learning problem [52], where one

seeks to retrieve images containing the person of interest

from non-overlapping cameras given a query image. This

is challenging in the sense that images captured by differ-

ent cameras often contain significant intra-class variations

caused by the changes in background, viewpoint, human

pose, etc. As a result, designing or learning representations

that are robust against intra-class variations as much as pos-

sible has been one of the major targets in person re-id.

∗Work done during an internship at NVIDIA Research.

Figure 1: Examples of generated images on Market-1501

by switching appearance or structure codes. Each row and

column corresponds to different appearance and structure.

Convolutional neural networks (CNNs) have recently

become increasingly predominant choices in person re-id

thanks to their strong representation power and the ability

to learn invariant deep embeddings. Current state-of-the-

art re-id methods widely formulate the tasks as deep met-

ric learning problems [12, 53], or use classification losses

as the proxy targets to learn deep embeddings [22, 38, 40,

47, 52, 55]. To further reduce the influence from intra-class

variations, a number of existing methods adopt part-based

matching or ensemble to explicitly align and compensate

the variations [34, 36, 45, 50, 55].
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Appearance Space Structure Space

clothing/shoes color,

texture and style,

other id-related cues, etc.

body size, hair, carrying,

pose, background,

position, viewpoint, etc.

Table 1: Description of the information encoded in the la-

tent appearance and structure spaces.

Another possibility to enhance robustness against input

variations is to let the re-id model potentially “see” these

variations (particularly intra-class variations) during train-

ing. With recent progress in the generative adversarial net-

works (GANs) [10], generative models have become ap-

pealing choices to introduce additional augmented data for

free [54]. Despite the different forms, the general consid-

erations behind these methods are “realism”: generated im-

ages should possess good qualities to close the domain gap

between synthesized scenarios and real ones; and “diver-

sity”: generated images should contain sufficient diversity

to adequately cover unseen variations. Within this context,

some prior works have explored unconditional GANs and

human pose conditioned GANs [9, 16, 26, 30, 54] to gener-

ate pedestrian images to improve re-id learning. However,

a common issue behind these methods is that their genera-

tive pipelines are typically presented as standalone models,

which are relatively separate from the discriminative re-id

models. Therefore, the optimization target of a generative

module may not be well aligned with the re-id task, limiting

the gain from generated data.

In light of the above observation, we propose a learn-

ing framework that jointly couples discriminative and gen-

erative learning in a unified network called DG-Net. Our

strategy towards achieving this goal is to introduce a gen-

erative module, of which encoders decompose each pedes-

trian image into two latent spaces: an appearance space

that mostly encodes appearance and other identity related

semantics; and a structure space that encloses geometry

and position related structural information as well as other

additional variations. We refer to the encoded features in the

space as “codes”. The properties captured by the two latent

spaces are summarized in Table 1. The appearance space

encoder is also shared with the discriminative module, serv-

ing as a re-id learning backbone. This design leads to a sin-

gle unified framework that subsumes these interactions be-

tween generative and discriminative modules: (1) the gen-

erative module produces synthesized images that are taken

to refine the appearance encoder online; (2) the encoder, in

turn, influences the generative module with improved ap-

pearance encoding; and (3) both modules are jointly opti-

mized, given the shared appearance encoder.

We formulate the image generation as switching the ap-

pearance or structure codes between two images. Given

any pairwise images with the same/different identities, one

is able to generate realistic and diverse intra/cross-id com-

posed images by manipulating the codes. An example of

such composed image generation on Market-1501 [51] is

shown in Figure 1. Our design of the generative pipeline not

only leads to high-fidelity generation, but also yields sub-

stantial diversity given the combinatorial compositions of

existing identities. Unlike the unconditional GANs [16,54],

our method allows more controllable generation with better

quality. Unlike the pose-guided generations [9, 26, 30], our

method does not require any additional auxiliary data, but

takes the advantage of existing intra-dataset pose variations

as well as other diversities beyond pose.

This generative module design specifically serves for our

discriminative module to better make use of the generated

data. For one pedestrian image, by keeping its appearance

code and combining with different structure codes, we can

generate multiple images that remain clothing and shoes but

change pose, viewpoint, background, etc. As demonstrated

in each row of Figure 1, these images correspond to the

same clothing dressed on different people. To better capture

such composed cross-id information, we introduce the “pri-

mary feature learning” via a dynamic soft labeling strategy.

Alternatively, we can keep one structure code and combine

with different appearance codes to produce various images,

which maintain the pose, background and some identity re-

lated fine details but alter clothes and shoes. As shown in

each column of Figure 1, these images form an interesting

simulation of the same person wearing different clothes and

shoes. This creates an opportunity for further mining the

subtle identity attributes that are independent of clothing,

such as carrying, hair, body size, etc. Thus, we propose the

complementary “fine-grained feature mining” to learn addi-

tional subtle identity properties.

To our knowledge, this work provides the first frame-

work that is able to end-to-end integrate discriminative and

generative learning in a single unified network for person

re-id. Extensive qualitative and quantitative experiments

show that our image generation compares favorably against

the existing ones, and more importantly, our re-id accuracy

consistently outperforms the competing algorithms by large

margins on several benchmarks.

2. Related Work

A large family of person re-id research focuses on met-

ric learning loss. Some methods combine identification loss

with verification loss [46, 53], others apply triplet loss with

hard sample mining [5, 12, 32]. Several recent works em-

ploy pedestrian attributes to enforce more supervisions and

perform multi-task learning [25, 35, 42]. Alternatives har-

ness pedestrian alignment and part matching to leverage on

the human structure prior. One of the common practice is

to split input images or feature maps horizontally to take

advantage of local spatial cues [22, 38, 48]. In a similar
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Figure 2: A schematic overview of DG-Net. (a) Our discriminative re-id learning module is embedded in the generative

module by sharing appearance encoder Ea. A dash black line denotes the input image to structure encoder Es is converted

to gray. The red line indicates the generated images are online fed back to Ea. Two objectives are enforced in the generative

module: (b) self-identity generation by the same input identity and (c) cross-identity generation by different input identities.

(d) To better leverage generated data, the re-id learning involves primary feature learning and fine-grained feature mining.

manner, pose estimation is incorporated into learning local

features [34,36,45,50,55]. Apart from pose, human parsing

is used in [18] to enhance spatial matching. In comparison,

our DG-Net relies only on simple identification loss for re-

id learning and requires no extra auxiliary information such

as pose or human parsing for image generation.

Another active research line is to utilize GANs to aug-

ment training data. In [54], Zheng et al. first introduce to use

unconditional GAN to generate images from random vec-

tors. Huang et al. proceed with this direction with WGAN

[1] and assign pseudo labels to generated images [16]. Li et

al. propose to share weights between re-id model and dis-

criminator of GAN [24]. In addition, some recent methods

make use of pose estimation to conduct pose-conditioned

image generation. A two-stage generation pipeline is devel-

oped in [27] based on pose to refine generated images. Sim-

ilarly, pose is also used in [9,26,30] to generate images of a

pedestrian in different poses to make learned features more

robust to pose variances. Siarohin et al. achieve better pose-

conditioned image generation by using a nearest neighbor

loss to replace the traditional ℓ1 or ℓ2 loss [33]. All the

methods set image generation and re-id learning as two dis-

jointed steps, while our DG-Net end-to-end integrates the

two tasks into a unified network.

Meanwhile, some recent studies also exploit synthetic

data for style transfer of pedestrian images to compensate

for the disparity between the source and target domains. Cy-

cleGAN [58] is applied in [8, 57] to transfer pedestrian im-

age style from one dataset to another. StarGAN [6] is used

in [56] to generate pedestrian images with different camera

styles. Bak et al. [3] employ a game engine to render pedes-

trians using various illumination conditions. Wei et al. [44]

take semantic segmentation to extract foreground mask in

assisting style transfer. In contrast to the global style trans-

fer, we aim for manipulating appearance and structure de-

tails to facilitate more robust re-id learning.

3. Method

As illustrated in Figure 2, DG-Net tightly couples the

generative module for image generation and the discrim-

inative module for re-id learning. We introduce two im-

age mappings: self-identity generation and cross-identity

generation to synthesize high-quality images that are online

fed into re-id learning. Our discriminative module involves

primary feature learning and fine-grained feature mining,

which are co-designed with the generative module to better

leverage the generated data.
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3.1. Generative Module

Formulation. We denote the real images and identity

labels as X = {xi}
N
i=1 and Y = {yi}

N
i=1, where N is the

number of images, yi ∈ [1,K] and K indicates the number

of classes or identities in the dataset. Given two real images

xi and xj in the training set, our generative module gener-

ates a new pedestrian image by swapping the appearance or

structure codes of the two images. As shown in Figure 2,

the generative module consists of an appearance encoder

Ea : xi → ai, a structure encoder Es : xj → sj , a decoder

G : (ai, sj) → xi
j , and a discriminator D to distinguish be-

tween generated images and real ones. In the case i = j,

the generator can be viewed as an auto-encoder, so xi
i ≈ xi.

Note: for generated images, we use superscript to denote

the real image providing appearance code and subscript to

indicate the one offering structure code, while real images

only have subscript as image index. Compared to the ap-

pearance code ai, the structure code sj maintains more spa-

tial resolution to preserve geometric and positional proper-

ties. However, this may result in a trivial solution for G to

only use sj but ignore ai in image generation since decoders

tend to rely on the feature with more spatial information. In

practice, we convert input images of Es into gray-scale to

drive G to leverage both ai and sj . We enforce the two ob-

jectives for the generative module: (1) self-identity genera-

tion to regularize the generator and (2) cross-identity gener-

ation to make generated images controllable and match real

data distribution.

Self-identity generation. As illustrated in Figure 2(b),

given an image xi, the generative module first learns how to

reconstruct xi from itself. This simple self-reconstruction

task serves as an important regularization role to the whole

generation. We reconstruct the image using the pixel-wise

ℓ1 loss:

Limg1
recon = E[‖xi −G(ai, si)‖1]. (1)

Based on the assumption that the appearance codes of the

same person in different images are close, we further pro-

pose another reconstruction task between any two images

of the same identity. In other words, the generator should

be able to reconstruct xi through an image xt with the same

identity yi = yt:

Limg2
recon = E[‖xi −G(at, si)‖1]. (2)

This same-identity but cross-image reconstruction loss en-

courages the appearance encoder to pull appearance codes

of the same identity together so that intra-class feature vari-

ations are reduced. In the meantime, to force the appearance

codes of different images to stay apart, we use identification

loss to distinguish different identities:

Ls
id = E[− log(p(yi|xi))], (3)

where p(yi|xi) is the predicted probability that xi belongs

to the ground-truth class yi based on its appearance code.

Cross-identity generation. Different from self-identity

generation that works with image reconstruction using the

same identity, cross-identity generation focuses on image

generation with different identities. In this case, there is

no pixel-level ground-truth supervision. Instead, we intro-

duce the latent code reconstruction based on appearance and

structure codes to control such image generation. As shown

in Figure 2(c), given two images xi and xj of different iden-

tities yi 6= yj , the generated image xi
j = G(ai, sj) is re-

quired to retain the information of appearance code ai from

xi and structure code sj from xj , respectively. We should

then be able to reconstruct the two latent codes after encod-

ing the generated image:

Lcode1
recon = E[‖ai − Ea(G(ai, sj))‖1], (4)

Lcode2
recon = E[‖sj − Es(G(ai, sj))‖1]. (5)

Similar for self-identity generation, we also enforce identi-

fication loss on the generated image based on its appearance

code to keep the identity consistency:

Lc
id = E[− log(p(yi|x

i
j))], (6)

where p(yi|x
i
j) is the predicted probability of xi

j belonging

to the ground-truth class yi of xi, the image that provides

appearance code in generating xi
j . Additionally, we employ

adversarial loss to match the distribution of generated im-

ages to the real data distribution:

Ladv = E[logD(xi) + log(1−D(G(ai, sj))]. (7)

Discussion. By using the proposed generation mecha-

nism, we enable the generative module to learn appearance

and structure codes with explicit and complementary mean-

ings and generate high-quality pedestrian images based on

the latent codes. This largely eases the generation complex-

ity. In contrast, the previous methods [9,16,26,30,54] have

to learn image generation either from random noise or man-

aging the pose factor only, which is hard to manipulate the

outputs and inevitably introduces artifacts. Moreover, due

to using the latent codes, the variants in our generated im-

ages are explainable and constrained in the existing contents

of real images, which also ensures the generation realism.

In theory, we can generate O(N × N) different images by

sampling various image pairs, resulting in a much larger

online generated training sample pool than the ones with

O(2×N) images offline generated in [16, 30, 54].

3.2. Discriminative Module

Our discriminative module is embedded in the generative

module by sharing the appearance encoder as the backbone

for re-id learning. In accordance with the images generated

by switching either appearance or structure codes, we pro-

pose the primary feature learning and fine-grained feature
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mining to better take advantage of the online generated im-

ages. Since the two tasks focus on different aspects of gen-

erated images, we branch out two lightweight headers on

top of the appearance encoder for the two types of feature

learning, as illustrated in Figure 2(d).

Primary feature learning. It is possible to treat the

generated images as training samples similar to the exist-

ing work [16, 30, 54]. But the inter-class variations in the

cross-id composed images motivate us to adopt a teacher-

student type supervision with dynamic soft labeling. We use

a teacher model to dynamically assign a soft label to xi
j , de-

pending on its compound appearance and structure from xi

and xj . The teacher model is simply a baseline CNN trained

with identification loss on the original training set. To train

the discriminative module for primary feature learning, we

minimize the KL divergence between the probability distri-

bution p(xi
j) predicted by the discriminative module and the

probability distribution q(xi
j) predicted by the teacher:

Lprim = E[−

K∑

k=1

q(k|xi
j) log(

p(k|xi
j)

q(k|xi
j)
)], (8)

where K is the number of identities. In comparison with the

fixed one-hot label [30, 59] or static smoothing label [54],

this dynamic soft labeling fits better in our case, as each syn-

thetic image is formed by the visual contents from two real

images. In the experiments, we show that a simple baseline

CNN serving as the teacher model is reliable to provide the

dynamic labels and improve the performance.

Fine-grained feature mining. Beyond the direct usage

of generated data for learning primary features, an inter-

esting alternative, made possible by our specific genera-

tion pipeline, is to simulate the change of clothing for the

same person, as shown in each column of Figure 1. When

training on images organized in this manner, the discrimi-

native module is forced to learn the fine-grained id-related

attributes (such as hair, hat, bag, body size, and so on) that

are independent to clothing. We view the images gener-

ated by one structure code combining with different appear-

ance codes as the same class as the real image providing

the structure code. To train the discriminative module for

fine-grained feature mining, we enforce identification loss

on this particular categorizing:

Lfine = E[− log(p(yj |x
i
j))]. (9)

This loss imposes additional identity supervision to the dis-

criminative module in a multi-tasking way. Moreover, un-

like the previous works using manually labeled pedestrian

attributes [25, 35, 42], our approach performs automatic

fine-grained attribute mining by leveraging on the synthetic

images. Furthermore, compared to the hard sampling policy

applied in [12, 32], there is no need to explicitly search for

the hard training samples that usually possess fine-grained

details, since our discriminative module learns to attention

on the subtle identity properties through this fine-grained

feature mining.

Discussion. We argue that our high-quality synthetic im-

ages, in nature, can be viewed as “inliers” (contrary to “out-

liers”), as our generated images maintain and recompose

the visual contents from real data. Via the above two fea-

ture learning tasks, our discriminative module makes spe-

cific use of the generated data in line with the way how we

manipulate the appearance and structure codes. Instead of

using a single supervision as in almost all previous meth-

ods [16,30,54], we treat the generated images in two differ-

ent perspectives through the primary feature learning and

fine-grained feature mining, where the former focuses on

the structure-invariant clothing information and the latter at-

tentions to the appearance-invariant structural cues.

3.3. Optimization.

We jointly train the appearance and structure encoders,

decoder, and discriminator to optimize the total objective,

which is a weighted sum of the following losses:

Ltotal(Ea, Es, G,D) = λimgL
img
recon + Lcode

recon +

Ls
id + λidL

c
id + Ladv + λprimLprim + λfineLfine, (10)

where Limg
recon = Limg1

recon+Limg2
recon is the image reconstruction

loss in self-identity generation, Lcode
recon = Lcode1

recon +Lcode2
recon is

the latent code reconstruction loss in cross-identity genera-

tion, λimg, λid, λprim, and λfine are weights to control the

importance of related loss terms. Following the common

practice in image-to-image translations [15, 20, 58], we use

a large weight λimg = 5 for the image reconstruction loss.

Since the quality of cross-id generated images is not great

at the beginning, the identification loss Lc
id may make the

training unstable, so we set a small weight λid = 0.5. We

fix the two weights during the whole training process in all

experiments. We do not involve the discriminative feature

learning losses Lprim and Lfine until the generation qual-

ity is stable. As an example, we add in the two losses after

30K iterations on Market-1501, then linearly increase λprim

from 0 to 2 in 4K iterations and set λfine = 0.2λprim. See

more details on how to determine the weights in Section 4.3.

Similar to the alternative updating policy for GANs, in the

cross-identity generation as shown in Figure 2(a), we alter-

natively train Ea, Es and G before the generated image and

Ea, Es and D after the generated image.

4. Experiments

We evaluate the proposed approach following standard

protocols on three benchmark datasets: Market-1501 [51],

DukeMTMC-reID [31], and MSMT17 [44]. We qualita-

tively and quantitatively compare DG-Net with state-of-the-

art methods on both generative and discriminative results.
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Figure 3: Comparison of the generated and real images on Market-1501 across the different methods including LSGAN [28],

PG2-GAN [27], FD-GAN [9], PN-GAN [30], and our approach. This figure is best viewed when zoom in. Please attention

to both foreground and background of the images.

Figure 4: Comparison of the generated images by our full

model, removing online feeding (w/o feed), and further re-

moving identity supervision (w/o id).

Extensive experiments demonstrate that DG-Net produces

more realistic and diverse images, and meanwhile, consis-

tently outperforms the most recent competing algorithms by

large margins on re-id accuracy across all benchmarks.

4.1. Implementation Details

Our network is implemented in PyTorch. In the follow-

ing, we use channel×height×width to indicate the size of

feature maps. (i) Ea is based on ResNet50 [11] pre-trained

on ImageNet [7], and we remove its global average pool-

ing layer and fully-connected layer then append an adap-

tive max pooling layer to output the appearance code a in

2048×4×1. It is mapped to primary feature fprim and fine-

grained feature ffine, both are 512-dim vectors, through two

fully-connected layers. (ii) Es is a shallow network that out-

puts the structure code s in 128×64×32. It consists of four

convolutional layers followed by four residual blocks [11].

(iii) G processes s by four residual blocks and four con-

volutional layers. As in [15] every residual block contains

two adaptive instance normalization layers [14], which in-

tegrate in a as scale and bias parameters. (iv) D follows the

popular multi-scale PatchGAN [17]. We employ discrimi-

nators on the three different input image scales: 64 × 32,

128 × 64, and 256 × 128. We also apply the gradient pun-

Figure 5: Example of image generation by linear interpola-

tion between two appearance codes.

ishment [29] when updating D to stabilize training. (v) For

training, all input images are resized to 256× 128. Similar

to the previous deep re-id models [52], SGD is used to train

Ea with learning rate 0.002 and momentum 0.9. We apply

Adam [19] to optimize Es, G and D, and set learning rate

to 0.0001, and (β1, β2) = (0, 0.999). (vi) At test time, our

re-id model only involves Ea (along with two lightweight

headers), which is of a comparable network size to most

methods using ResNet50 as the backbone. We concatenate

fprim and ffine into a 1024-dim vector as the final pedes-

trian representation. More architecture details can be found

in the supplementary material.

4.2. Generative Evaluations

Qualitative evaluations. We first qualitatively compare

DG-Net with its two variants that ablate online feeding and

identity supervision. As shown in Figure 4, without online

feeding generated images to appearance encoder, the model

suffers from blurry edges and undesired textures. If further

removing identity supervision, the image quality is unsat-

isfying as the model fails to produce the accurate clothing

color or style. This clearly shows that our joint discrimina-

tive learning is beneficial to the image generation.

Next we compare our full model with other genera-

tive approaches, including one unconditional GAN (LS-

GAN [28]) and three open-source conditional GANs (PG2-

GAN [27], PN-GAN [30] and FD-GAN [9]). As compared

in Figure 3, the images generated by LSGAN have severe

artifacts and duplicated patterns. FD-GAN are prone to gen-

erate very blurry images, which largely deteriorate the real-
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Figure 6: Examples of our generated images by swapping appearance or structure codes on the three datasets. All images are

sampled from the test sets.

Methods
Realism Diversity

(FID) (SSIM)

Real 7.22 0.350

LSGAN [28] 136.26 -

PG2-GAN [27] 151.16 -

PN-GAN [30] 54.23 0.335

FD-GAN [9] 257.00 0.247

Ours 18.24 0.360

Table 2: Comparison of FID (lower is better) and SSIM

(higher is better) to evaluate realism and diversity of the

real and generated images on Market-1501.

ism. PG2-GAN and PN-GAN, both conditioned on pose,

generate relatively good visual results, but still contain visi-

ble blurs and artifacts especially in background. In compar-

ison, our generated images are more realistic and close to

the real in both foreground and background.

To better understand the learned appearance space,

which is the foundation for our pedestrian representations,

we perform a linear interpolation between two appearance

codes and generate the corresponding images as shown in

Figure 5. These interpolation results verify the continuity

in the appearance space, and show that our model is able to

generalize in the space instead of simply memorizing trivial

visual information. As a complementary study, we also gen-

erate images by linearly interpolating between two structure

codes while keeping the appearance code intact. See more

discussions regarding this study in the supplementary ma-

terial. We then demonstrate our generation results on the

three benchmarks in Figure 6, where DG-Net is found to

be able to consistently generate realistic and diverse images

across the different datasets.

Quantitative evaluations. Our qualitative observations

above are confirmed by the quantitative evaluations. We

use two metrics: Fréchet Inception Distance (FID) [13] and

Figure 7: Comparison of success and failure cases in our

image generation. In the failure case, the logo on t-shirt of

the original image is missed in the synthetic image.

Structural SIMilarity (SSIM) [43] to measure realism and

diversity of generated images, respectively. FID measures

how close the distribution of generated images is to the real.

It is sensitive to visual artifacts and thus indicates the real-

ism of generated images. For the identity conditioned gen-

eration, we apply SSIM to compute intra-class similarity,

which can be used to reflect the generation diversity. As

shown in Table 2, our approach significantly outperforms

other methods on both realism and diversity, suggesting the

high quality of our generated images. Remarkably, we ob-

tain a higher SSIM than the original training set thanks to

the various poses, carryings, backgrounds, etc. introduced

by switching structure codes.

Limitation. We notice that due to data bias in the orig-

inal training set, our generative module tends to learn the

regular textures (e.g., stripes and dots) but ignores some rare

patterns (e.g., logos on shirts), as shown in Figure 7.

4.3. Discriminative Evaluations

Ablation studies. We first study the contributions of pri-

mary feature and fine-grained feature in Table 3. We train

ResNet50 with identification loss on each original training

set as the baseline. It also serves as the teacher model in

primary feature learning to perform dynamic soft labeling

on the generated images. Our primary feature is found to

largely improve over the baseline. Notably, the fine-grained

2144



Methods
Market-1501 DukeMTMC-reID MSMT17

Rank@1 mAP Rank@1 mAP Rank@1 mAP

Baseline 89.6 74.5 82.0 65.3 68.8 36.2

fprim 94.0 84.4 85.6 72.7 76.0 49.7

ffine 91.6 75.3 78.7 61.2 71.5 43.5

fprim, ffine 94.8 86.0 86.6 74.8 77.2 52.3

Table 3: Comparison of baseline, primary feature, fine-

grained feature, and their combination on the three datasets.

Figure 8: Analysis of the re-id learning related hyper-

parameters α and β to balance primary and fine-grained fea-

tures in training (left) and testing (right).

feature without using important appearance information but

only considering subtle id-related cues already achieves im-

pressive accuracy. By combining the two features, we can

further improve the performance, which substantially out-

performs the baseline by 6.1% for Rank@1 and 12.4% for

mAP on average of the three datasets. We then evaluate the

two features independently learned after our synthetic im-

ages are offline generated. This results in an 84.4% mAP

on Market-1501, inferior to the 86.0% mAP of the end-to-

end training, suggesting that our joint generative training is

beneficial to the re-id learning.

Influence of hyper-parameters. Here we show how to

set the re-id learning related weights: one is α, the ratio

between λfine and λprim to control the importance of Lfine

and Lprim in training; the other is β to weight ffine when

combined with fprim as the final pedestrian representation

in testing. We search the two hyper-parameters on a vali-

dation set split out from the original training set of Market-

1501 (first 651 classes for training and rest 100 classes for

validation). Based on the valiation results in Figure 8, we

choose α = 0.2 and β = 0.5 in all experiments.

Comparison with state-of-the-art methods. Finally

we report the performance of our approach with other state-

of-the-art results in Tables 4 and 5. Note that we do

not apply any post processing such as re-ranking [49] or

multi-query fusion [51]. On each dataset, our approach

attains the best performance. Comparing with the meth-

ods using separately generated images, DG-Net achieves

clear gains of 8.3% and 10.3% for mAP on Market-1501

and DukeMTMC-reID, indicating the advantage of the pro-

posed joint learning. Moreover, our framework is more

training efficient: we use only one training phase for joint

image generation and re-id learning, while others require

Methods
Market-1501 DukeMTMC-reID

Rank@1 mAP Rank@1 mAP

Verif-Identif [53] 79.5 59.9 68.9 49.3

DCF [21] 80.3 57.5 - -

SSM [2] 82.2 68.8 - -

SVDNet [37] 82.3 62.1 76.7 56.8

PAN [55] 82.8 63.4 71.6 51.5

GLAD [45] 89.9 73.9 - -

HA-CNN [23] 91.2 75.7 80.5 63.8

MLFN [4] 90.0 74.3 81.0 62.8

Part-aligned [36] 91.7 79.6 84.4 69.3

PCB [38] 93.8 81.6 83.3 69.2

Mancs [41] 93.1 82.3 84.9 71.8

DeformGAN [33] 80.6 61.3 - -

LSRO [54] 84.0 66.1 67.7 47.1

Multi-pseudo [16] 85.8 67.5 76.8 58.6

PT [26] 87.7 68.9 78.5 56.9

PN-GAN [30] 89.4 72.6 73.6 53.2

FD-GAN [9] 90.5 77.7 80.0 64.5

Ours 94.8 86.0 86.6 74.8

Table 4: Comparison with the state-of-the-art methods on

the Market-1501 and DukeMTMC-reID datasets. Group 1:

the methods not using generated data. Group 2: the methods

using separately generated images.

Methods Rank@1 Rank@5 Rank@10 mAP

Deep [39] 47.6 65.0 71.8 23.0

PDC [34] 58.0 73.6 79.4 29.7

Verif-Identif [53] 60.5 76.2 81.6 31.6

GLAD [45] 61.4 76.8 81.6 34.0

PCB [38] 68.2 81.2 85.5 40.4

Ours 77.2 87.4 90.5 52.3

Table 5: Comparison with the state-of-the-art methods on

the MSMT17 dataset.

two training phases to sequentially train generative mod-

els and re-id models. DG-Net also outperforms other non-

generative methods by large margins on the two datasets.

As for the recent released large-scale dataset MSMT17,

DG-Net performs significantly better than the second best

method by 9.0% for Rank@1 and 11.9% for mAP.

5. Conclusion

In this paper, we have proposed a joint learning frame-

work that end-to-end couples re-id learning and image gen-

eration in a unified network. There exists an online inter-

active loop between the discriminative and generative mod-

ules to mutually benefit the two tasks. Our two modules

are co-designed to let the re-id learning better leverage the

generated data, rather than simply training on them. Exper-

iments on three benchmarks demonstrate that our approach

consistently brings substantial improvements to both image

generation quality and re-id accuracy.
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