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Abstract

Most existing Re-IDentification (Re-ID) methods are

highly dependent on precise bounding boxes that enable im-

ages to be aligned with each other. However, due to the

challenging practical scenarios, current detection models

often produce inaccurate bounding boxes, which inevitably

degenerate the performance of existing Re-ID algorithms.

In this paper, we propose a novel coarse-to-fine pyramid

model to relax the need of bounding boxes, which not only

incorporates local and global information, but also inte-

grates the gradual cues between them. The pyramid model

is able to match at different scales and then search for the

correct image of the same identity, even when the image

pairs are not aligned. In addition, in order to learn dis-

criminative identity representation, we explore a dynamic

training scheme to seamlessly unify two losses and extract

appropriate shared information between them. Experimen-

tal results clearly demonstrate that the proposed method

achieves the state-of-the-art results on three datasets. Es-

pecially, our approach exceeds the current best method by

9.5% on the most challenging CUHK03 dataset.

1. Introduction

Person Re-IDentification (Re-ID) aims to associate the

images of the same person captured at different physical

sites, facilitating cross-camera tracking techniques used in

vision-based smart retail and security surveillance. In gen-

eral, person Re-ID is considered to be the next high-level

task after a pedestrian detection system, so the basic as-

∗Major work was done when the author worked in YouTu Lab.
†Corresponding Author: winfredsun@tencent.com
‡Corresponding Author: rrji@xmu.edu.cn

...

…

...

Image …

Figure 1. The examples of part-based matching at different scales,

when bounding boxes are not aligned or parts of human body have

been occluded. The red bounding box indicates that most cues in

the two parts are varied. We can see that, in a finely partitioned

way, a handful of horizontal stripes (left) cannot be well-matched

due to different cues, while those stripes (right) in a more global

view have more similar cues.

sumption of Re-ID is that the detection model can provide

precise and highly-aligned bounding boxes. Despite the re-

cent great progress, there are limited room for the perfor-

mance improvement of existing methods due to the prob-

lems with part-based models and the difficulties in training.

Drawbacks of part-based models: As it is well-known,

part-based models can generally achieve promising perfor-

mance in many computer vision tasks, because these mod-

els are potentially robust to some unavoidable challenges

such as occlusion and partial variations. Actually, the per-

formance of person Re-ID in the real-world applications is

severely affected by these challenges. Thus, the recent pro-

posed Part-based Convolutional Baseline (PCB) [24] can

achieve the state-of-the-art results. PCB is simple but very

effective and even can outperform other learned part mod-

els. Nevertheless, in PCB, directly partitioning the feature
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map of backbone networks into a fixed number of parts

strictly limits the capacities of further improving the per-

formance. It has at least two major drawbacks, but not lim-

ited to: 1) The overall performance seriously depends on

that a powerful and robust pedestrian detection model out-

puts a precise bounding box otherwise the parts cannot be

well-aligned. However, in most cases of challenging scenes,

current detection models are insufficient to do that. 2) The

global information, which is also a very significant cue for

recognition and identification, is completely ignored in this

model whilst global features are normally robust to the sub-

tle view changes and internal variations. Several examples

are illustrated in Fig. 1 to show that the parts of diverse

scales are equivalently important for matching.

Difficulties of multi-loss training: Recent studies [10,

9] demonstrate that multi-task learning has the capabilities

to achieve advanced performance by extracting appropriate

shared information between tasks. Without loss of general-

ity, the terms “loss” and “task” will be used alternatively. In

fact, many existing Re-ID methods [26] also benefit from

the multi-loss scheme to improve the performance. Gener-

ally, most multi-task methods choose to weight the losses

using balancing parameters which are fixed during entire

training process. 1) The performance highly relies on an

appropriate parameter but choosing an appropriate param-

eter is undoubtedly a labor-intensive and tricky work. 2)

The difficulties of different tasks actually change when the

models are updated gradually, resulting in really varied ap-

propriate parameters for different iterations. 3) More im-

portantly, sampling strategies for different losses are gener-

ally diverse due to the specific considerations. For example,

hard sample sampling for triplet loss would suppress the

role of another task of identification loss.

To address above problems, in this paper, we specifically

propose a novel coarse-to-fine pyramidal model based on

the feature map extracted by a backbone network for per-

son re-identification. First, the pyramid is actually a set of

3-dimensional sub-maps with a specific coarse-to-fine ar-

chitecture, in which each member captures the discrimina-

tive information of different spatial scales. Then, a convo-

lutional layer is used to reduce the dimension of features

for each separated branch in the pyramid. Third, for each

branch, the identification loss of a softmax function is inde-

pendently applied to a fully connected layer which consid-

ers the features as the input. Furthermore, the features of all

branches will be concatenated to form an identity represen-

tation, for which a triplet loss is defined to learn more dis-

criminative features. To smoothly integrate the two losses, a

dynamic training scheme with two sampling strategies is ex-

plored to optimize the parameters of deep neural networks.

Finally, the learned identity representation will be used for

person image matching, retrieval and re-identification.

In summary, the contribution of this paper is three-fold:

1) To relax the assumption of requiring a strong detection

model, we propose a novel coarse-to-fine pyramid model

that not only incorporates local and global information, but

also integrates the gradual cues between them. 2) To max-

imally take advantage of different losses, we explore a dy-

namic training scheme to seamlessly unify two losses and

extract appropriate shared information between them for

learning discriminative identity representation. 3) The pro-

posed method achieves the state-of-the-art results on the

three datasets and most significantly, our approach exceeds

the current best method by 9.5% on dataset CUHK03.

2. Related Work

Most existing Re-ID methods either consider the local

parts of person images or explore the global information.

Some methods [13, 26] aware of that integrating the local

and global features can improve the performance but the

information between them is also ignored. We observe that

those cues in the transition process are significant as well.

Part-based algorithms: By performing bilinear pool-

ing in a more local way, an embedding can be learned,

in which each pooling is confined to a predefined region

[25]. Inspired by attention models, in [16, 14, 21], the

attention-based deep neural networks are proposed to cap-

ture multiple attentions and select multi-scale attentive fea-

tures. Similarly, Zhao et al. [31] explore a deep neural

network method to jointly model body part extraction and

representation computation, and learn model parameters.

Based on a L2 distance, [13] formulates a method for joint

learning of local and global feature selection losses partic-

ularly designed person Re-ID. In [22], a pose-driven deep

convolutional model, which leverages the human part cues

to alleviate the pose variations, is designed to learn feature

extraction and matching models. Furthermore, both the fine

and coarse pose information of the person [19] are incor-

porated to learn a discriminative embedding. A part loss is

proposed in [29], which automatically detects human body

parts and computes the person classification loss on each

part separately. Chen et al. [4] develop a CNN-based ap-

pearance model to jointly learn scale-specific features and

maximize multiscale feature fusion selections. Several part

regions are first detected and then deep neural networks

are designed for representation learning on both the local

and global regions [27]. Part-based Convolutional Baseline

(PCB) [24] outputs a convolutional descriptor consisting of

several part-level features and then a refined part pooling

method is used to re-assign outliers in the parts. Based on

PCB, Multiple Granularity Network (MGN) [26] explores a

branch for global features and two branches for local repre-

sentations for person re-identificaiton.

Non part-based methods: Recently, a completely syn-

thetic dataset [1] and some adversarially occluded samples

[8] are constructed to train the re-identification model. In
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Figure 2. The architecture of our proposed pyramidal model for person re-identification. For better layout, only the spatial profile of the

member branch in the pyramid is shown, which is originally 3-dimensional tensors. We assume that the original feature map is divided into

6 basic sub-maps, while other number of sub-maps can be used as well. The branch always consists of several consecutive basic sub-maps

and the basic operation for each branch will be given in Fig. 3.

[23], singular vector decomposition is used to iteratively in-

tegrate the orthogonality constraint in CNN training for im-

age retrieval. A pedestrian alignment network [37] is built

to learn discriminative embedding and pedestrian alignment

without extra annotations. Geng et al. [6] propose a number

of deep transfer learning models to address the data sparsity

problem and transfer knowledge from auxiliary datasets. [7]

shows that a plain CNN with a triplet loss can outperform

most recent published methods by a large margin. Learn-

ing binary representation for fast matching [33, 32] is also

a promising direction of object re-identification. In [20], A

group-shuffling random walk network is proposed to refine

the probe-to-gallery affinities based on gallery-to-gallery

affinities. The “local similarity” metrics for image pairs are

learned with considering dependencies from all the images

in a group, forming “group similarities” in [3].

Multi-task learning: Self-paced learning [10] and focal

loss [15] both train models by diversely weighting the sam-

ples in different learning stages. Inspired by this, in [11],

a task-oriented regularizer is designed to jointly prioritize

both tasks and instances. The multiple loss functions [9]

are weighted by considering the uncertainty of tasks in both

classification and regression settings. Moreover, a routing

network consisting of two components is introduced to dy-

namically select different functions in response to the input

[18]. While, Chen et al. [5] propose a gradient normaliza-

tion algorithm that automatically balances training in deep

multitask models by dynamically tuning gradient magni-

tudes. We learn the embedding for person Re-ID by simul-

taneously minimizing a list-wise metric loss and a classifi-

cation loss with two types of sampling strategies.

3. The Proposed Method

3.1. Coarse­to­Fine Pyramidal Model

In this section, we propose a novel coarse-to-fine pyra-

midal model which can moderately relax the requirement

of detection model and smoothly incorporate the global in-

formation, simultaneously. It is worth noting that, not only

local and global information is integrated but the gradual

transition process between them is also incorporated.

3.1.1 Pyramidal Branches

Given a set of images X = {I1, · · · , IN} containing per-

sons captured by cameras in surveillance systems where

N is the number of images, the task of person Re-

IDentification (Re-ID) is to associate the images of the same

person at different times and locations. Our model is built

on a feature map M extracted by a backbone network BN .

Thus, we have a 3-dimensional tensor M = BN (I) of the

size C ×H ×W , where C is the number of encoded chan-

nels and W and H are the spatial width and height of the

tensor, respectively.

First, we divide the feature map into n number of parts

according to the spatial height axis and thus each basic part

has the size of C × (H/n) × W . Suppose that H can be

divisible by n. Thus, our pyramidal model is constructed

according to the following rules: 1) In the bottom level (l =
1) of the pyramid, there are n number of branches in which

one corresponds to a basic part. 2) The branches in higher

level has one more adjacent basic part than that of previous

lower level. 3) The sliding step for all levels is set to one. It

means the number of branches in the current level is just one

less than that of previous level. 4) In the top level (l = n)

of the pyramid, there is only one branch which is just the

original feature map M . Therefore, we assume that P{l, k}
is the kth sub-map in the lth level of the pyramid model P

defined as:

P = {M(1 : C, st : ed, 1 : W ) : (1)

st = (k − 1) ∗H/n+ 1,

ed = (k − 1) ∗H/n+ l ∗H/n,

l = 1, · · · , n, k = 1, · · · , n− l + 1},
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where 1 : C means that all elements from index 1 to index

C are selected. Obviously, P is a set of 3-dimensional sub-

maps with a specific coarse-to-fine architecture, in which

each member captures the discriminative information of dif-

ferent spatial scales. Moreover, the pyramidal model con-

tains both the global feature map M ∈ P and the part-based

model: PCB. While, it is easy to know that there are totally∑n

l=1
l number of components in P and the lth level has

n − l + 1 number of components, where the level index

is in a fine-to-coarse fashion. The details of the proposed

architecture are shown in Fig. 2.

3.1.2 Basic Operations

For each branch P{l, k} in pyramid P, first, a global max-

imum pooling (GMP) and a global average pooling (GAP)

is separately executed to capture the statistical properties

of different channels in the sub-maps. Then, the two sta-

tistical variables are added to form a vector with the same

size of encoded channels. Third, a convolutional layer fol-

lowed by a batch normalization and a ReLU activation is

explored to reduce the dimension and produce a feature vec-

tor x(l, k) ∈ RD for the re-identification task. Simply, we

denote x(l, k) = BO(P{l, k}). Fourth, to make the fea-

ture vector capable of sufficient discriminativity, a softmax

based IDentification loss (ID loss) will be used for a fully

connected layer which considers the feature map as the in-

put. At the same time, a triplet loss will be imposed on a

vector x = (x(1, 1)T , · · · , x(n, 1)T )T which concatenates

all the feature vectors of different branches in the pyramid

P. The basic operations for each branch will be executed

independently with respect to different components in the

pyramid. Finally, all the parameters will be learned by si-

multaneously minimizing the two losses in a dynamic way.

A branch example consisting of two consecutive basic parts

is illustrated in Fig. 3.

If assume that f(·) refers to all the operations in the em-

bedding including BN , P and BOs, we can denote the fea-

ture as x = f(I) simply. In the inference stage, the re-

identification task will be achieved by ranking the distances

{d(x, xi) : x = f(I), Ii ∈ G} between a query I and a

gallery G.

3.2. Multi­Loss Dynamic Training

Recent studies demonstrate that multi-task learning has

the capabilities to achieve advanced performance by ex-

tracting appropriate shared information between tasks. The

potential reason is that multiple tasks can benefit from each

other by exploring the relatedness, leading to boosted gen-

eralization performance.
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Figure 3. The illustration of basic operations for a branch consist-

ing of two consecutive basic sub-maps, including a global max-

imum pooling, a global average pooling, a convolutional filter,

a batch normalization, a ReLu activation and a linear fully con-

nected layer. These operations for different branches will be exe-

cuted independently and the features of all branches will be finally

concatenated for the triplet loss.

3.2.1 Two Tasks

To learn the discriminative features, we adopt two related

tasks but emphasizing different aspects to learn the parame-

ters of the embedding f , including an identification loss and

a triplet loss. The first one is point-wise classification loss

while the second one is for list-wise metric learning.

Identification loss: Generally, the identification loss is

the same as the classification loss defined as:

Lid =
1

Nid

∑

i

∑

k,l

S((W kl
c )Txi(l, k)) (2)

=
1

Nid

∑

i

∑

k,l

− log
(W kl

c )Txi(l, k)∑
j(W

kl
j )Txi(l, k)

,

where Nid is the number of used images, c denotes the cor-

responding identity of the input image Ii, S is the softmax

function and W kl
c is the weight matrix of the fully con-

nected layer for cth identity in the (l, k) branch.

Triplet loss: Given a triplet of samples (I, Ip, In) where

I and Ip are of the same identity whilst I and In are the

images for different identities, the aim of embedding is to

learn a new feature space in which the distance between the

sample pair I and Ip will be smaller than that between the

pair I and Ip. Intuitively, a triplet loss can be defined as:

Ltp =
1

Ntp

∑

I,Ip,In

[d(f(I), f(Ip)) (3)

−d(f(I), f(In)) + δ]+,

where δ is a margin hyper-parameter to control the dis-

tance differences, Ntp is the number of available triplets and

[·]+ = max(·, 0) is the hinge loss.

3.2.2 Dynamic Training

The above two tasks are not novel and popularly used in

various applications. While, how to integrate them is still
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Figure 4. Dynamic training for two related tasks with two sam-

pling strategies (i.e., ID-balanced hard triplet and randomized).

an open problem. Actually, from the general perspective,

most multi-task methods normally weight the tasks using

balancing parameters and treat some tasks as the regular-

ization items. In the learning stage, the balancing parame-

ters are fixed during entire training process. 1) The perfor-

mance strictly lies in an appropriate parameter but choosing

an appropriate parameter is undoubtedly a labor-intensive

and tricky work. 2) The difficulty of different tasks actually

changes when the models are updated gradually, resulting in

really varied appropriate parameters for different iterations.

Furthermore, from the view of the re-identification task,

to some extent, the two tasks are also conflicting when they

are directly combined. On the one hand, effective triplets

are rare, if the general random mini-batch sampling is used,

making that the triplet loss contributes little in the learning

procedure. This is because the number of identities is large

but the number of images for each identity is small. On

the other hand, to avoid the problem, we propose an ID-

balanced sampling strategy to make sure triplets do exist

in the mini-batches. However, this strategy suppresses the

identification loss since fewer identities can be used in each

mini-batch. Due to the sampling bias, it is possible that

some images cannot be used all the time. Therefore, directly

arithmetic weighting the losses would be very simple but

obviously result in many difficulties in optimization.

Sampling: To solve the problem, alternatively, we

choose to dynamically minimize the two losses incorporat-

ing two sampling methods accordingly: random sampling

and ID-balanced hard triplet sampling. Random sampling

is easy to be implemented while ID-balanced hard triplet

sampling is implemented according to the following steps.

To build the effective triplets, we randomly select 8 num-

ber of identities for each mini-batch, in which 8 images

of each identity are randomly chosen. Hence, this strategy

definitely enables to use the hard positive/negative mining

based on the largest intra-class (identity) distance and the

smallest inter-class distance. However, the samples for dif-

ferent identities are unbalanced and those whose number of

images is less than 8 will never be used.

Dynamic weighting: For each loss, we define a perfor-

mance measure to estimate the likelihood of a loss reduc-

tion. Suppose Lt
τ be the average loss in the current training

iteration τ for the task t ∈ {id, tp}. Thus, we can calculate

ktτ to be an exponential moving average according to:

ktτ = αLt
τ + (1− α)ktτ−1, (4)

where α ∈ [0, 1] is a discount factor and kt−1 = Lt
0. Based

on the quantity ktτ , we defined a probability to describe the

likelihood of a loss reduction as:

ptτ =
min{ktτ , k

t
τ−1}

ktτ−1

. (5)

In case of loss increasing occasionally, the function min is

used to normalize ptτ to be 1. Obviously, ptτ = 1 means

the current optimization step didn’t reduce the loss yet. The

larger the value, the greater the probability that the opti-

mization of the task t steps into a local minimum. Similar

to the Focal Loss which down-weights easier samples and

concentrates on hard samples, we define a measure (FL(·))
to weight the losses:

FL(ptτ , γ) = −(1− ptτ )
γ log(ptτ ), (6)

where γ is used to control the focusing intensity. FL(ptτ , γ)
is designed to weight tasks and choose the desire loss to be

optimized. Thus, the overall objective can be rewritten as:

L =
∑

t∈{id,tp}

FL(ptτ , γ)L
t
τ . (7)

Due to the different sampling strategies, we opti-

mize the ID loss in Eq. 2 with randomly selected

mini-batches, when FL(pidτ , γ) dominates the two tasks

(FL(ptpτ , γ)/FL(pidτ , γ) < δ). Thus, we start our dynamic

optimization system from simply minimizing the ID loss.

Actually, FL(pidτ , γ) always dominates in the early opti-

mization since each step can greatly reduce the ID loss.

Moreover, because the model is currently in an imma-

ture status, all samples are equally difficult so that hard

sampling-based triplet loss cannot play essential role for our

optimization. This is similar to the scheme of self-paced

(curriculum learning) leaning [10] in which easier samples

are first trained and hard samples are considered later while

here dynamically optimizing the two tasks plays the same

role. In this case, the both losses Lt
τ : t ∈ {id, tp} in the

objective Eq. 7 will be calculated.

When FL(ptpτ , γ) dominates in the optimization, the

overall objective 7 considering both Eq. 2 and 3 will be

directly optimized because ID-balanced sampling will not

influence the use of ID loss. This optimization success-

fully avoids the tortuous parameter tuning and seamlessly

incorporates the ideas of both ID-balanced hard triplet sam-

pling and curriculum learning to further improve the perfor-

mance. The flowchart of dynamic training is illustrated in

Fig. 4 and details of training are given in Algorithm 1.
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Algorithm 1 Multi-Loss Dynamic Training

Input: Dataset X , pretrained backbone network BN and hyper-

parameters (n, α, δ, γ,D).
Output: The embedding function x = f(I).
Initialization:

Initiate the network parameters except for the backbone.

Set pidτ = 0 and ptpτ = 1.

for τ = 1, · · · , Nτ

Calculate FL(ptpτ , γ) and FL(pidτ , γ).

if FL(ptpτ , γ)/FL(pidτ , γ) < δ
Perform random mini-batch sampling.

Forward though BN and construct the pyramid P.

Apply batch-normalization and calculate x = fτ (I).
Optimize the objective in Eq. 2.

else

Perform ID-balanced hard triplet sampling.

Forward though BN and construct the pyramid P.

Apply batch-normalization and calculate x = fτ (I).
Optimize the objective in Eq. 7.

end if

Backpropagate the gradients and update the parameters.

end for

4. Experiment

To verify the proposed method, we test it on three pop-

ular used person re-identification datasets: Market-1501

[34], DukeMTMC-reID [17] and CUHK03 [12].

4.1. Experimental Setting

Implementation details: All images are resized into a

resolution of 384 × 128 which is the same as that of PCB.

The ResNet model with the pretrained parameters on Ima-

geNet is considered as the backbone network in our system.

For the feature map, the number of encoded channels is

2048 while the feature will be reduced to a 128-dimensional

vector using a convolutoinal layer. We set the number of

basic parts to 6 so there are 21 branches in the pyramid

according to construction rules. The margin in the triplet

loss is 1.4 in all our experiments. We select a mini-batch

of 64 images for each iteration. Stochastic gradient descent

(SGD) with two sampling strategies is used in our optimiza-

tion, where the momentum and the weight decay factor is

set to 0.9 and 0.0005, respectively. Totally, the proposed

model will be trained 120 epochs. As for the learning rate,

the initial learning rate is set to 0.01 while the learning rate

will be dropped by half every 10 epochs from epoch 60 to

epoch 90. While, for the dynamic training, we set the pa-

rameters δ = 0.16, α = 0.25 and γ = 2, according to the

suggestions in [15]. All the experiments in this paper will

follow the same setting.

Evaluation metrics: To compare the re-identification

performance of the proposed method with the existing ad-

vanced methods, we adopt the Cumulative Matching Char-

acteristics (CMC) at rank-1, rank-5 and rank-10, and mean

Average Precision (mAP) on all the datasets. It is worth not-

ing that all our results are obtained in a single-query setting

and, more importantly, re-ranking algorithm is not used to

improve the mAP in all experiments.

4.2. Datasets

Market-1501: In this dataset, 32, 668 images of 1, 501
identities with annotated bounding boxes detected using

the pedestrian detector of Deformable Part Model (DPM)

are collected. View overlapping exists among different

cameras, including 5 high-resolution cameras, and a low-

resolution camera. Following the setting of PCB, we divide

the dataset into a training set with 12, 936 images of 751
persons and a testing set of 750 persons containing 3, 368
query images and 19, 732 gallery images.

DukeMTMC-reID: Following the protocol [36] of

the Market-1501 dataset, this dataset is a subset of the

DukeMTMC dataset specifically collected for person re-

identification. In this dataset, 1, 404 identities appears in

more than two cameras while 408 (distractor) identities ap-

pears in only one camera. We divide the dataset into a train-

ing set of 16, 522 images with 702 identities and a testing

set which consists of 2, 228 query images of the other 702
identities and 17, 661 gallery images of 702 identities plus

408 distractor identities.

CUHK03: We follow the new protocol [38] similar to

that of Market-1501, which splits the CUHK03 dataset into

training set of 767 identities and testing set of 700 identi-

ties. From each camera, one image is selected as the query

for each identity and the rest of images are used to con-

struct the gallery set. This dataset has two ways of annotat-

ing bounding box including labelled by human or detected

by a detector. The labelled dataset includes 7, 368 train-

ing, 1, 400 query and 5, 328 gallery images while detected

dataset consists of 7, 365 training, 1, 400 query and 5, 332
gallery images.

4.3. Comparison with State­of­the­Art Methods

In this section, we compare the proposed method called

“Pyramid-ours” with 26 state-of-the-art methods, most of

which is proposed in the last year, on the three datasets

including Market-1501, DukeMTMC-reID and CUHK03.

For the comparison of each dataset, we detail the following.

Market-1501: For this dataset, we divide the compared

methods into two groups: including part-based and global

methods, and the comparisons are given in Tab. 1. The

results clearly show that local-based methods generally get

better evaluation scores than that of these methods extract-

ing global features only. The PCB is a convolutional base-

line that motivates our approach, but we have improved per-

formance by 10.8% and 3.4% on metrics mAP and rank 1,

respectively. MGN considers multiple branches as well but

ignores the gradual cues between global and local informa-

tion. Our method achieves the same result with MGN on
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Method mAP rank 1 rank 5 rank 10

Pyramid-ours 88.2 95.7 98.4 99.0

MGN [26] 86.9 95.7 - -

PCB+RPP [24] 81.6 93.8 97.5 98.5

PCB [24] 77.4 92.3 97.2 98.2

GLAD* [27] 73.9 89.9 - -

MultiScale [4] 73.1 88.9 - -

PartLoss [29] 69.3 88.2 - -

PDC* [22] 63.4 84.4 92.7 94.9

MultiLoss [13] 64.4 83.9 - -

PAR [31] 63.4 81.0 92.0 94.7

HydraPlus [16] - 76.9 91.3 94.5

MultiRegion [25] 41.2 66.4 85.0 90.2

DML [30] 68.8 87.7 - -

Triplet Loss [7] 69.1 84.9 94.2 -

Transfer [6] 65.5 83.7 - -

PAN [37] 63.4 82.8 - -

SVDNet [23] 62.1 82.3 92.3 95.2

SOMAnet [1] 47.9 73.9 - -

Table 1. Comparison results (%) on Market-1501 dataset at 4 eval-

uation metrics: mAP, rank 1, rank 5 and rank 10 where the bold

font denotes the best method. “*” denotes that the method needs

auxiliary part labels. We divide other compared methods into

two groups: the methods exploring part-based features and the

methods extracting global features. Our proposed pyramid model

achieves the best results on all the 4 evaluation metrics.

Method mAP rank 1

Pyramid-ours 79.0 89.0

MGN [26] 78.4 88.7

SVDNet [23] 56.8 76.7

AOS [8] 62.1 79.2

HA-CNN [14] 63.8 80.5

GSRW [20] 66.4 80.7

DuATM [21] 64.6 81.8

PCB+RPP [24] 69.2 83.3

PSE+ECN [19] 75.7 84.5

DNN-CRF [3] 69.5 84.9

GP-reid [28] 72.8 85.2

Table 2. Comparison results (%) on DukeMTMC-reID dataset.

The results of our proposed pyramid model at rank 5 and rank

10 are 94.7% and 96.3%, respectively, which achieve the state-of-

the-art.

Method
Labelled Detected

mAP rank 1 mAP rank 1

Pyramid-ours 76.9 78.9 74.8 78.9

MGN [26] 67.4 68.0 66.0 68.0

PCB+RPP [24] - - 57.5 63.7

MLFN [2] 49.2 54.7 47.8 52.8

HA-CNN [14] 41.0 44.4 38.6 41.7

SVDNet [23] 37.8 40.9 37.3 41.5

PAN [37] 35.0 36.9 34 36.3

IDE [35] 21.0 22.2 19.7 21.3

Table 3. Comparison results (%) on CUHK03 dataset using the

new protocol in [38]. For the labelled set, the results of our model

at rank 5 and rank 10 are 91.0% and 94.4%, respectively, while

they are 90.7% and 94.5% for the detected dataset. This dataset is

the most difficult one by comparing the average performance of all

methods. The proposed pyramid model outperforms all the other

state-of-the-art methods with large margins.

metric rank 1 but exceeds it 1.3% on metric mAP. In com-

parison, the performances of other algorithms are similar

with each other on metric rank 10 but all of them are much

worse on metrics mAP and rank 1 than ours.

DukeMTMC-reID: From Tab. 2, we can see that our

method also achieves the best results on this dataset at both

metrics mAP and rank 1. Among the compared methods,

MGN is the closest method to our method score, but still be-

low 0.6% mAP score. PSE+ECN which is a method using

a pose-sensitive embedding and the re-ranking procedure

also performs worse than ours (75.7% vs. 79.0%). Simi-

lar to the comparison on Market-1501 dataset, our pyramid

model exceeds PCB+RPP 9.8% and 5.7% at metrics mAP

and rank 1, respectively. We provide the achievements of

our method at metrics rank 5 (94.7% ) and rank 10 (96.3%
) for comparison in the future.

CUHK03: This dataset is the most challenging dataset

under the new protocol and the bounding boxes are anno-

tated using two ways. While, from Tab. 3, we can see that

our proposed approach has achieved the most outstanding

results for these two annotation ways. On this datasst, the

pyramid model outperforms all other methods at least 8.8%
and 10.9%, respectively.

Furthermore, on Market-1501 dataset, we compare our

model with PCB using the same sampling strategy and some

retrieved examples are shown in Fig. 5. We can see that

the PCB cannot respond well to the challenge of inaccurate

bounding boxes. Taking the first query as an example, our

model is able to find three images of the same identity in the

top 11 results whilst PCB could not search anyone. While,

from the second query, we can see that the lower-body parts

(blue eclipse) of retrieved images match to the upper-body

part of query, due to the imprecise detection.

In summary, our proposed pyramid using the novel

multi-loss dynamic training can always be superior to all

other existing advanced methods, no matter which evalua-

tion metric is used. Through the comparative experiment on

the three datasets, it is easy to know that CUHK03 dataset

with the new protocol would be the most challenging one

because all methods make worse results on it. However, our

method can consistently outperform all other algorithms by

a large margin. Therefore, we can conclude that our method

particularly specializes in challenging problems.

4.4. Component Analysis

To further investigate every component in the pyramid

model, we conduct comprehensive ablation studies on the

performance of different sub-models. The results at the

metrics: mAP, rank 1, rank 5 and rank 10 are shown in Tab.

4 and each result is obtained with only one setting changed

and the rest being the same as the default.

First, we merely use the part of branches in the pyramid

to test the function. In the term “Pyramid-000001”, the left
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Query Top 11 retrieved images

Figure 5. Examples of retrieved images by two methods: Pyramid-

ours and PCB, in case of the imprecise detection. For each query,

the images in first row are returned by our proposed method while

the images in second row are searched by PCB. The green/red rect-

angles indicate that images have the same/different identities as the

query and the blue eclipse marks the similar contexts.

number denotes whether the branches in low level are used

or not while the rightest number is for the global branch. For

example, “Pyramid-000001” means only the global branch

in the highest level of the pyramid is used. From this table,

we can obtain: 1) The local branches in the lower levels

play more important roles than that of the global branches

(84.9% vs. 82.1%). 2) The more branches we use, the better

the performance. 3) The only global branch plus the pro-

posed dynamic training strategy can achieve better results

than that of PCA+RPP. It clearly shows the dynamic train-

ing strategy is able to improve the capacities of the model.

Second, the features of different dimensions are also an-

alyzed. Compared to the default dimension 128, the fea-

tures of dimension 64 and 256 both achieve worse results.

It shows that the redundant information plays negative influ-

ence to the performance while too short feature cannot pro-

vide sufficient discriminative cues. In summary, the perfor-

mance is relatively (≤ 1.3%) stable with the change of the

feature dimension. While, in the case of resource-limited

application, 64-dimensional feature is a more acceptable

choice.

Finally, we fix the dynamic balance parameter to 0 and

alternately execute the two sampling strategies to train the

identification loss. It means that the triplet loss will never be

used in this experiment. In one step, mini-batch is selected

using random sampling while ID-balance hard sampling is

adopted in the next step. We can see that the overall per-

formance is a little bit lower than that of the default setting

of our proposed model but still much higher than that of

Model mAP Rank 1 Rank 5 Rank 10

Pyramid-000001 82.1 92.8 97.3 98.2

Pyramid-100000 84.9 93.9 97.6 98.5

Pyramid-001111 86.7 94.8 98.4 98.8

Pyramid-110011 87.2 95.0 98.1 98.8

Pyramid-111100 87.5 94.8 98.3 98.9

Feature-64 86.9 94.5 97.8 98.6

Feature-256 87.8 95.3 98.2 98.9

No triplet loss 86.5 93.8 97.5 98.4

Pyramid-ours 88.2 95.7 98.4 99.0

PCB+RPP [24] 81.6 93.8 97.5 98.5

Table 4. Results (%) of sub-models on Market-1501 dataset. In

the term “Pyramid-000001”, ‘0’ means the corresponding level of

pyramid is not used while ‘1’ means that is used. “Feature-64”

denotes the dimension of features for each branch is set 64. “No

triplet loss” refers to that only identification loss is optimized.

PCB-RPP. It demonstrates the new pyramid model and the

dynamic sampling strategy contribute most for the perfor-

mance improvement.

5. Conclusion

In this paper, we construct a coarse-to-fine pyramid

model for person re-identification via a novel dynamic train-

ing scheme. Our model relaxes the requirement of detection

models and thus achieves advanced results on benchmark.

Specially, our model outperforms the existing best method

by a large margin on CUHK03 dataset which is the most

challenging dataset under the new protocol of [38]. It is

worth noting that all our results are achieved in a single-

query setting without using any re-ranking algorithms. In

the future, it will be interesting to jointly learn the detection

and re-identification models in an integrated framework.

The two tasks are highly related and Re-ID models can be

improved by means of attention maps in the detection mod-

els. Moreover, the middle layer features in the backbone can

be incorporated into the proposed pyramid model as well to

further improve the Re-ID performance.
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