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Abstract

We propose a novel model to address the task of Visual

Dialog which exhibits complex dialog structures. To obtain

a reasonable answer based on the current question and the

dialog history, the underlying semantic dependencies be-

tween dialog entities are essential. In this paper, we explic-

itly formalize this task as inference in a graphical model

with partially observed nodes and unknown graph struc-

tures (relations in dialog). The given dialog entities are

viewed as the observed nodes. The answer to a given ques-

tion is represented by a node with missing value. We first

introduce an Expectation Maximization algorithm to infer

both the underlying dialog structures and the missing node

values (desired answers). Based on this, we proceed to pro-

pose a differentiable graph neural network (GNN) solution

that approximates this process. Experiment results on the

VisDial and VisDial-Q datasets show that our model out-

performs comparative methods. It is also observed that our

method can infer the underlying dialog structure for better

dialog reasoning.

1. Introduction

Visual Dialog has drawn increasing research interests at

the intersection of computer vision and natural language

processing. In such tasks, an image is given as context

input, associated with a summarizing caption and a dia-

log history of question-answer pairs. The goal is to an-

swer questions posed in natural language about images [9],

or recover a follow-up question based on the dialog his-

tory [22]. Despite its significance to artificial intelligence

and human-computer interaction, it poses a richer set of

challenges (see an example in Fig. 1) – requiring represent-

ing/understanding a series of multi-modal entities , and rea-

soning the rich semantic relations/structures among them.

An ideal inference algorithm should be able to find out the

∗Equal contribution.

Figure 1. An illustration of the visual dialog task. Left: context

image. Middle: image caption, dialog history, current query ques-

tion, and the predicted answer. Right: the underlying semantic

dependencies between nodes in the dialog (darker green links in-

dicate higher dependencies).

underlying semantic structure and give a reasonable answer

based on this structure.

Previous studies have explored this task through embed-

ding rich features from image representation learned from

convolutional neural networks and language (i.e., question-

answer pairs, caption) representations learned from re-

current sequential models. Their impressive results well

demonstrate the importance of mining and fusing multi-

modal information in this area. However, they largely ne-

glect the key role of the rich relational information in dia-

log. Although a few [67, 62] leveraged co-attention mech-

anisms to capture cross-modal correlations, their reasoning

ability is still quite limited. They typically concatenate the

multi-modal features together and directly project the con-

catenated feature into the answer feature space by a neu-

ral network. On one hand, their reasoning process does

not fully utilize the rich relational information in this task

due to their monolithic vector representations of dialog. On

the other hand, their feed-forward network designs fail to

deeply and iteratively mine and reason the information from

different dialog entities over the inherent dialog structures.

In this work, we consider the problem of recovering the

dialog structure and reasoning about the question/answer si-
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multaneously. We represent the dialog as a graph, where the

nodes are dialog entities and the edges are semantic depen-

dencies between nodes. Given the dialog history as input,

we have a partial observation of the graph. Then we formu-

late the problem as inferring about the values of unobserved

nodes (e.g., the queried answer) and the graph structure.

The challenge of the problem is that there is no label for

dialog structures. For each individual dialog, we need to re-

cover the underlying structure in an unsupervised manner.

The node values could then be inferred iteratively with the

graph structure: we can reason about the nodes based on

the graph structure, and further improve the structure based

on the node values. To tackle this challenge, the insight

is that a graph structure essentially specifies a joint prob-

ability distribution for all the nodes in the graph. There-

fore we can view the queried dialog entities as missing val-

ues in the data, the dialog structure as unknown parameters

of the distribution. Specifically, we encode the dialog as a

Markov Random Field (MRF) where some nodes are ob-

served, and the goal is to infer the edge weights between

nodes as well as the value of unobserved nodes. We for-

mulate a solution based on the Expectation-Maximization

(EM) algorithm, and provide a graph neural network (GNN)

approach to approximate this inference.

Our model provides a unified framework which is appli-

cable to diverse dialog settings (detailed in §4). Besides, it

provides extra post-hoc interpretability to show the dialog

structures through an implicit learning manner. We eval-

uate the performance of our method on VisDial v0.9 [9],

VisDial v1.0 [9] and VisDial-Q [22] datasets. The experi-

mental results prove that our model is able to automatically

parse the dialog structure and infer reasonable answer, and

further achieves promising performance.

2. Related Work

Image Captioning aims to annotate images with natural

language at the scene level automatically, which has been

a long-term active research area in computer vision com-

munity. Early work [46, 18] typically tackled this task as a

retrieval problem, i.e., finding the best fitting caption from

a set of predetermined caption templates. Modern meth-

ods [40, 25, 59] were mainly based on a CNN-RNN frame-

work, where the RNN leverages the CNN-representation of

an input image to output a word sequence as the caption.

In this way, they were freed from dependence of the pre-

defined, expression-limited caption candidate pool. After

that, some methods [63, 1, 35] tried to integrate the vanilla

CNN-RNN architecture with neural attention mechanisms,

like semantic attention [35], and bottom-up/top-down atten-

tion [1], to name a few representative ones. Another popular

trend [15, 47, 24, 5, 42, 37, 6] in this area focuses on im-

proving the discriminability of caption generations, such as

stylized image captioning [15, 6], personalized image cap-

tioning [47], and context-aware image captioning [24, 5].

Visual Question Answering focuses on providing a natu-

ral language answer given an image and a free-form, open-

ended question. It is a more recent (dated back to [39, 2])

and challenging task (need to access information from both

the question and image). With the availability of large-

scale datasets [49, 2, 16, 20, 23], numerous VQA models

were proposed to build multimodal representations upon

the CNN-RNN architecture [16, 49], and recently extended

with differentiable attentions [63, 36, 64, 66, 1, 38]. Rather

than above classification-based VQA models, there were

some other work [52, 21, 56, 3] leveraged answer repre-

sentations into the VQA reasoning, i.e., predicting whether

or not an image-question-answer triplet is correct. Teney et

al. [57] proposed to solve VQA with graph-structured rep-

resentations of both visual content and questions, showing

the advantages of graph neural network in such structure-

rich problems. Narasimhan et al. [44] applied graph convo-

lution networks for factual VQA. However, there are some

notable differences between our model and [57, 44] in the

fundamental idea and theoretical basis, besides the specific

tasks. First, we model the visual dialog task as a problem

of inference over a graph with partially observed data and

unknown dialog structures. This is one step further than

propagating information over a fixed graph structure. Sec-

ond, we emphasize both graph structure inference (in a un-

supervised manner) and unobserved node reasoning. Last,

the proposed model provides an end-to-end network archi-

tecture to approximate the EM solution and offers a new

glimpse into the visual dialog task.

Visual Dialog refers to the task of answering a sequence

of questions about an input image [9, 11]. It is the latest

vision-and-language problem, after the popularity of image

captioning and visual question answering. It requires to rea-

son about the image, the on-going question, as well as the

past dialog history. [9] and [11] represented two early at-

tempts towards this direction, but with different dialog set-

tings. In [9], a VisDial dataset is proposed and the ques-

tions in this dataset are free-form and may concern arbitrary

content of the images. Differently, in [11], a ‘Guess-What’

game is designed to identify a secret object through a series

of yes/no questions. Following [9], Lu et al. [34] introduced

a generator-discriminator architecture, where the generator

are improved using a perceptual loss from the pre-trained

discriminator. In [51], a neural attention mechanism, called

Attention Memory, is proposed to resolve the current refer-

ence in the dialog. Das et al. [10] then extended [9] with an

‘image guessing’ game, i.e., finding a desired image from a

lineup of images through multi-round dialog. Reinforce-

ment Learning (RL) was used to tackle this task. Later

methods to visual dialog include applying Parallel Atten-

tion to discover the object through dialog [67], learning a

conditional variational auto-encoder for generating entire
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sequences of dialog [41], unifying visual question genera-

tion and visual question answering in a dual learning frame-

work [22], combining RL and Generative Adversarial Net-

works (GANs) to generate more human-like answers [62].

In [22], a discriminative visual dialog model was proposed

and a new evaluation protocol was designed to test the ques-

tioner side of visual dialog. More recently, [28] used a neu-

ral module network to solve the problem of visual corefer-

ence resolution.

Graph Neural Networks [19, 50] draw a growing inter-

est in the machine learning and computer vision communi-

ties, with the goal of combining structural representation

of graph/graphical models with neural networks. There

are two main stream of approaches. One stream is to de-

sign neural network operations to directly operate on graph-

structured data [13, 45, 43, 53, 12, 27]. Another stream

is to build graphically structured neural networks to ap-

proximate the learning/inference process of graphical mod-

els [30, 55, 29, 14, 4, 17, 60, 8]. Our method falls into this

category. Some of these methods [30, 55, 4, 17, 26, 48] im-

plement every graph node as a small neural network and for-

mulate the interactions between nodes as a message propa-

gation process, which is designed to be end-to-end train-

able. Some others [65, 30, 33, 31, 8] tried to integrate CRFs

and neural networks in a fully differentiable framework,

which is quite meaningful for semantic segmentation.

In this work, for the first time, we generalize the task of

visual dialog to such a setting that we have partial observa-

tion of the nodes (i.e., image, caption and dialog history),

and the graph structure (relations in dialog) needs to be au-

tomatically inferred. In this setting, the answer is the es-

sentially unobserved node needs to be inferred based on the

dialog graph, where the graph structure describes the de-

pendencies among given dialog entities. We propose an es-

sential neural network approach as an approximation to the

EM solution of this problem. The proposed GNN is signifi-

cantly different from most previous GNNs, which consider

problems that the node features are observable, and usually

a graph structure is given.

3. Our Approach

We begin by describing the visual dialog task setup as

introduced by Das et al. [9]. Formally, a visual dialog agent

is given a dialog tuple D = {(I, C,Ht, Qt)} as input, in-

cluding an image I , a caption C, a dialog history till round

t−1, Ht = {(Qk, Ak), k = 1, · · · , t−1}, and the current

question Qt being asked at round t. The visual dialog agent

is required to return a response At to the question Qt, by

ranking a list of 100 candidate answers.

In our approach, we represent the entire dialog by a

graph, and we solve for the optimal queried answer by a

GNN as an approximate inference (see Fig. 2). In this

graph, the dialog entities Ht={(Qk, Ak), k=1, · · · , t−1},

Qt, and At are represented as nodes. The graph structure

(i.e., edges) represents the semantic dependencies between

those nodes. The joint distribution of all the question and

answer nodes are described by a Markov Random Field,

where the values for some nodes are observed (i.e., the his-

tory questions & answers, the current question). The node

value for the current answer is unknown, and the model

needs to infer its value as well as the graph structure en-

coded by the edge weights in this MRF.

The joint distribution in this MRF over all the nodes is

specified by its potential functions and the graph structure.

The potential functions can be learned in the training phase

to maximize the likelihood of the training data, and used for

inference in the testing phase. However, we cannot learn a

fixed graph structure for all dialogs since they are different

from dialog to dialog. For dialogs in both training and test-

ing, we need to automatically infer the semantic structures.

In addition, because there is no label (also is hard to ob-

tain) for such graph structures, our model needs to infer

them in an unsupervised manner. Viewing the input nodes

(i.e., the history questions & answers, the current question)

as observed data, the queried answer node as missing data,

we adopt an EM algorithm to recover both the distribution

parameter (the edge weights) and the missing data (the cur-

rent answer). In this algorithm, the edge weights and the

queried answer node are inferred to maximize the expected

log likelihood. Finally, we resemble this inference process

by a GNN approach, in which the node values and edge

weights are updated in an iterative fashion.

3.1. Dialog as Markov Random Field

We model a dialog as an MRF, in which the nodes rep-

resent questions and answers and the edges encode seman-

tic dependencies. Specifically, in a fully connected MRF

model, the joint probability of all the nodes v is:

p(v)=
1

Z
exp {−

∑
i
φu(vi)−

∑
(i,j)∈E

φp(vi, vj)}, (1)

where Z is a normalizing constant, φu(vi) is the unary

potential function, and φp(vi, vj) is the pairwise potential

function.

In our task, we want to learn a general potential function

for all dialogs. We also want to maintain soft relations be-

tween nodes (i.e., a connectivity between 0 and 1) instead of

just binary relations. Hence we generalize the above form

to an MRF with 0 ∼ 1 weighed edges:

p(v|W )=
1

Z
exp {−

∑
i
wiφu(vi)−

∑
i,j

wijφp(vi, vj)}

=
1

Z
exp {−Tr(WTΦ(v))},

(2)

where wi and wi,j are the weights that compose the edge

weight matrix W . Note that we write Φ(v) the potential ma-

trix as a compact form of all the potentials between nodes,

where Φi,i = φu(vi) and Φi,j = φp(vi, vj).
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Figure 2. The visual dialog is represented by a GNN, in which the dialog entities (i.e., caption, question & answer pairs, and the unobserved

queried answer) are represented by nodes (embeddings). The edges represent semantic dependencies between nodes. Some nodes’s values

are observed (i.e., nodes that represent the dialog history), and we need to infer the missing values for the unobserved node (i.e., the

queried answer) based on the underlying dialog structure. The forward pass of the network emulates an EM algorithm, in which the M-step

estimates the edge weights and E-step updates all hidden node states (embeddings) by neural message passing. After a few iterations, the

hidden state for the unobserved node (answer) contains the inferred embedding for the missing value.

3.2. Inference with Partial Observation

Next we briefly review EM as a typical approach to do

inference with missing data. Suppose we have observed

data x and unobserved data z, whose joint distribution is

parametrized by θ. The goal is to infer the most likely pa-

rameter θ and random variable z. The EM algorithm opti-

mizes the expected log likelihood:

Q(θ, θold) =

∫
z

p(z|x, θold) log p(x, z|θ)dz. (3)

An EM algorithm is an iterative process of two steps:

expectation (E-step) and maximization (M-step). In the E-

step, the above expected likelihood is computed. In the M-

step, the parameter θ is optimized to maximize this objec-

tive:
θ = argmax

θ

Q(θ, θold). (4)

The EM iteration always increases the observed data

likelihood and terminates when a local minimum is found.

However, the expected log likelihood Eq. 3 is often in-

tractable. In the visual dialog task, to compute this quan-

tity we need to enumerate all possible answers to the cur-

rent question in the entire language space. In practice, we

can use an surrogate objective in the E-step, in which we

compute the plug-in approximation [58] by a maximum a

posteriori (MAP) estimate:

Q̃(θ, θold) = max
z

p(z|x, θold) log p(x, z|θ). (5)

Then in the M-step we update the θ according to this surro-

gate objective.

3.3. MRF with Partial Observations

In the visual dialog task, the question & answer history

and the current question is given, hence we know the val-

ues for those nodes in the MRF. The task is to find out the

missing value of the current answer node and the underlying

sementic structure. Suppose in an MRF, we observe some

nodes in the graph and we do not know the edge weights W .

Denote the observed nodes as x and the unobserved nodes

as z, where v = x∪z and x∩z = ∅. Here the weight ma-

trix W parametrizes the joint distribution of x and z, hence

it can be viewed as the θ in the previous section. To jointly

infer W the graph structure (e.g., the semantic dependen-

cies) and z the missing values (e.g., the queried answer),

we run an EM algorithm:

E-step: We compute z∗ = argmaxz p(z|x,W
old) to obtain

Q̃(θ, θold) in Eq. 5. This is achieved by a max-product loopy

belief propagation [61]. At every iteration, each node sends

a (different) message to each of its neighbors and receives a

message from each neighbor. After receiving message from

neighbors, the belief b(vi) for each node vi is updated by

the max-product update rule:

b(vi) = αφu(vi)
∏

vj∈N (vi)
mji(vi), (6)

where α is a normalizing constant, N (vi) denotes the

neighbor nodes of vi, and mji(vi) is the message from vj
to vi. The message is given by:

mji(vi) = max
vj

wij φp(vi, vj)
∏

vk∈N (vj)\vi
mkj(vj). (7)

where N (vj) \ vi indicates the all the neighboring nodes of

vj except vi.

M-step: Based on the estimated z
∗ in the E-step, we want

to find the edge weights that maximizes the objective Eq. 5:

W = argmax
W

Q̃(W,W
old)

= argmax
W

p(z∗|x,W old) log p(x, z∗|W )

= argmax
W

log p(x, z∗|W ).

(8)

The M-step together with E-step forms a coordinate de-

scent algorithm in the objective function Q̃(W,W old). This

algorithm contains two loops: an outer loop of inferring z

and θ alternatively, and an inner loop of inferring the miss-

ing values z by iterative belief propagation.
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Figure 3. A detailed illustration of our model. The left part shows feature extractions for each node, which serve as the initializations for

node hidden states. After a few EM iterations, we obtain the hidden state (embedding) for the unobserved node (the queried answer). To

choose the best answer from the pre-defined options, we use the dot product between the node and option embeddings as a similarity score.

The scores are turned into probabilities by softmax activation, and a cross entropy loss is computed to train the network.

Note that in the partial observed case, for the E-step we

fix the observed nodes vx ∈ x and only update the unob-

served nodes vz ∈ z. Hence we also only need to compute

messages from observed nodes to unobserved nodes. The

message passing and belief update process iterate until con-

vergence. When the iteration terminates, we obtain an MAP

estimate z
∗ for the missing values, conditioned on the ob-

served nodes x and current estimated edge weights W .

3.4. GNN with Partial Observations

We design a GNN for the visual dialog task guided by the

above formulations. The network is structured as an MRF,

in which the caption and each question/answer pair is rep-

resented as a node embedding, and the semantic relations

are represented by edges. The model contains three differ-

ent neural modules: message functions, update functions,

and link functions. These modules are called iteratively to

emulate the above EM algorithm.

E-step: We perform a neural message passing/belief prop-

agation [17] for an approximate inference of missing values

z
∗. This process emulates the belief propagation in the E-

step. For each node, we use an hidden state/embedding to

represent its value. During belief propagation, the observed

variables x and the edge weights W are fixed. The hidden

states of the unobserved nodes are iteratively updated by

communicating with other nodes. Specially, we use mes-

sage functions M(·) to summarize messages to nodes com-

ing from other nodes, and update functions U(·) to update

the hidden node states according to the incoming messages.

At each iteration step s, the update function computes a

new hidden state for a node after receiving incoming mes-

sages:

h
s
vi

= U(hs−1
vi

,m
s
vi
), (9)

where hs
v is the hidden state/embedding for node v. ms

v is

the summarized incoming message for node v at s-th itera-

tion. The messages are given by:

m
s
vi

=
∑

vj∈N (vi)
wijM(hs−1

vi
, h

s−1
vj

). (10)

The message passing phase runs for S iterations towards

convergence. At the first iteration, the node hidden states

h0
v are initialized by node features Fv .

M-step: Based on the updated hidden states of all the nodes

in the E-step, we update the edge weights W by link func-

tions. A link function L(·) estimates the connectivity wij

between two nodes vi and vj based on their current hidden

states:

wij = L(hvi , hvj ). (11)

3.5. Network Architecture

At each round of the dialog, we aim to answer the query

question based on the image, caption, and the question &

answer (QA) history. For dialog round t, we construct t+1
nodes in which one node represents the caption, t−1 nodes

represents the history of t−1 rounds of QAs, and one last

node represents the answer to the current query question.

The embedding for each node is initialized by fusing the im-

age feature and the language embedding of the correspond-

ing sentence(s). As shown in Fig. 3, for the caption node we

extract the language embedding of the caption, and fuse it

with the image feature as an initialization. For the last node

representing the queried answer, we use the corresponding

question embedding fused with the image feature to initial-

ize the hidden state. For the rest nodes, the hidden states

are initialized by fusing the QA embedding and the image

feature. The fusing of language embeddings and image fea-

tures are achieved by co-attention techniques [36], and more

details are introduced in §4. The goal of our approach is to

infer the hidden state of the queried answer by the emulated

EM algorithm.

After initializing the node hidden states with feature em-

beddings, we start the iterative inference by first estimating

the edge weights. The edge weights are estimated by Eq. 11,

where the link function is given by a dot product between

transformed hidden states:

wij = L(hvi , hvj ) = 〈fc(hvi), fc(hvj )〉 (12)

where 〈·, ·〉 denotes dot product, and fc(·) denotes multiple
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Algorithm 1 EM for Graph Neural Network

Input: Extracted features Fvx for observed nodes vx ∈ x

Output: Graph structure W , node embeddings hvz for

unobserved nodes vz∈z

1: /* Initialization */

2: for each observed node vx∈x do

3: Initialize hvx to be Fvx

4: end for

5: for each unobserved node vz∈z do

6: Initialize hvz to be the question embedding

7: end for

8: /* Expectation-Maximization: outer loop */

9: while not converged do

10: /* M-step */

11: for each node pair (vi, vj) do

12: wij = L(hvi , hvj ) = 〈fc(hvi), fc(hvj )〉
13: end for

14: /* E-step: inner loop for message passing */

15: for step s from 1 to S do

16: for each vz∈z do

17: /* Compute incoming message for vi */

18: ms
vz =

∑
vj∈N (vz)

wzjh
s−1
vj

19: /* Update embedding for unobserved vi */

20: hs
vz = U(hs−1

vz ,ms
vz ) = GRU(hs−1

vz ,ms
vz )

21: end for

22: end for

23: end while

fully connected layers with Rectified Linear Units (ReLU)

in between the layers.

Using M(hs−1
vi

, hs−1
vj

) = hs−1
vj

as the message function,

the summarized message from all neighbor nodes is com-

putes as ms
vi

=
∑

vj∈N (vi)
wijh

s−1
vj

. To stabilize the train-

ing of the update function, we normalize the sum of weights

for edges coming into one node to 1 by a softmax function.

Then the node hidden state is update by a Gated Recurrent

Unit (GRU) [7]:

h
s
vi

= U(hs−1
vi

,m
s
vi
) = GRU(hs−1

vi
,m

s
vi
). (13)

Here the GRU is chosen for two reasons. First, Eq. 13 has a

natural recurrent form. GRU is one type of Recurrent Neu-

ral Networks (RNN) that known to be more computationally

efficient than Long short-term memory (LSTM). Second, Li

et al. [29] has shown that GRU performs well in GNNs as

update functions.

The algorithm stops after several iterations of the outer

loop for EM, in which the edge weights W and the node

hidden states hv are updated alternatively. Inside each it-

eration, an inner loop is performed to update the node hid-

den states. The inner loop emulates the E-step, where a

belief propagation is performed. The algorithm is illus-

trated in Alg. 1. For the visual dialog task, the set of un-

observed nodes include only the node that represents the

current queried answer.

Finally, we regard the hidden state of the last node as the

embedding of the queried answer. To choose one answer

from the pre-defined options provided by the dataset, we

compute 〈hv, ho〉 where hv is the node hidden state from the

last node and ho is the language embedding for an option. A

softmax activation function is applied to those dot products,

and a multi-class cross entropy loss is computed to train the

GNN.

4. Experiments

4.1. Performance on VisDial v0.9 [9]

Dataset: We first evaluate the proposed approach on Vis-

Dial v0.9 [9], which was collected via two Amazon Me-

chanical Turk (AMT) subjects chatting about an image. The

first person is allowed to see only the image caption, and

instructed to ask questions about the hidden image to better

understand the scene. The second worker has access to both

image and caption, and is asked to answer the first person’s

questions. Both are encouraged to talk in a natural manner.

Their conversation is ended after 10 rounds of question an-

swering. VisDial v0.9 contains a total of 1,232,870 dialog

question-answer pairs on MSCOCO images [32]. It is split

into 80K for train, 3K for val and 40K as the test, in

a manner consistent with [9].

Evaluation Protocol: We follow [9] to evaluate individ-

ual responses at each round (t=1, 2, · · · , 10) in a retrieval

setup. Specifically, at test time, every question is coupled

with a list of 100 candidate answer options, which a VisDial

model is asked to return a sorting of the candidate answers.

The model is evaluated on standard retrieval metrics [9]:

Recall@1, Recall@5, Recall@10, Mean Reciprocal Rank

(MRR), and Mean Rank of human response. Lower value

for MR and higher values for all the other metrics are desir-

able.

Data Preparation: To pre-process the data, we first resize

each image into 224×224 resolution, and use the output of

the last pooling layer (pool5) of VGG-19 [54] as the im-

age feature (512×7×7). For the text data, i.e., caption,

questions and answers, we convert digits to words, and re-

move contractions, before tokenizing. The captions, ques-

tions, answers longer than 40, 20, 20 words respectively are

truncated. All the texts in the experiment are lowercased.

Each word is then turned into a vector representation with

a look-up table, whose entries are 300-d vectors learned

along other parameters during training. Thus for caption,

each question and answer, we have the sequences of word

embedding with size of 40×300, 20×300, and 20×300, re-

spectively. The embedding of the caption, question or an-

swer, is passed through a two-layered LSTM with 512 hid-

den states and the output state is used as our final text em-

beddings. We use the same LSTM and word embedding

matrix across question, history, caption and options.

Implementation Details: We use 2 layers of fully con-

nected layer in Eq. 12. The update function U(·) in Eq. 13
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Methods MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

LF [9] 0.5807 43.82 74.68 84.07 5.78

HRE [9] 0.5846 44.67 74.50 84.22 5.72

HREA [9] 0.5868 44.82 74.81 84.36 5.66

MN [9] 0.5965 45.55 76.22 85.37 5.46

SAN-QI [64] 0.5764 43.44 74.26 83.72 5.88

HieCoAtt-QI [36] 0.5788 43.51 74.49 83.96 5.84

AMEM [51] 0.6160 47.74 78.04 86.84 4.99

HCIAE-NP-ATT [34] 0.6222 48.48 78.75 87.59 4.81

SF [22] 0.6242 48.55 78.96 87.75 4.70

SCA [62] 0.6398 50.29 80.71 88.81 4.47

Ours 0.6285 48.95 79.65 88.36 4.57

Table 1. Quantitative evaluation of discriminative methods on

test-standard split of VisDial v0.9 [9]. Our model outperforms

most competitors. See §4.1 for more details.

is implemented as a one-layer GRU with 512 hidden states.

We use a single Titan Xp GPU to train the network with a

batch size of 32. In the experiments, we use the Adam op-

timizer with a base learning rate of 1e-3 further decreasing

to 5e-5. The training converges after ∼5 epochs.

Quantitative Results: We compare our method with

several state-of-the-art discriminative dialog models, i.e.,

LF [9], HRE [9], HREA [9], MN [9], SAN-QI [64],

HieCoAtt-QI [36], AMEM [51], HCIAE-NP-ATT [34],

SF [22], and SCA [62]. Table 1 summarizes the quantita-

tive results of above competitors and our model. Our model

consistently outperforms most approaches, highlighting the

importance of understanding the dependencies in visual dia-

log. Specifically, our R@k (k = 1, 5, 10) is at least 0.4 point

higher than SF. Our method only performs slightly worse

than SCA, which adopts adversarial learning techniques.

Qualitative Results: Fig. 4 shows some qualitative results

of our model. We summarize three key observations: (i) We

compare our machine selected answer with human answer

and show that our model is capable of selecting meaningful

yet different answers compared with the ground-truth an-

swer. (ii) We present our inferred dialog structure accord-

ing to the edge weight between each pair of nodes. We show

that the edge weight is relatively high when the correlation

between the node pairs is strong. (iii) Table 1 and Fig. 4 il-

lustrate the interpretable and grounded nature of our model.

As seen, the suggested model successfully captures the re-

lations in dialog and attend to dialog fragments which are

relevant to current question.

4.2. Performance on VisDial v1.0 [9]

Dataset: Then we test our model on the newest version

of VisDial dataset [9]: VisDial v1.0, which is collected in

a similar way of VisDial v0.9. For VisDial v1.0, all the

VisDial v0.9 (i.e., 1,232,870 dialog question-answer pairs

on MSCOCO images [32]) is used for train, extra 20,640

and 8,000 dialog question-answer pairs are used for val

and test, respectively.

Evaluation Protocol: In addition to the five evaluation

Methods MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑

LF [9] 0.5542 40.95 72.45 82.83 5.95 0.4531

HRE [9] 0.5416 39.93 70.45 81.50 6.41 0.4546

MN [9] 0.5549 40.98 72.30 83.30 5.92 0.4750

LF-Att [9] 0.5707 42.08 74.82 85.05 5.41 0.4976

MN-Att [9] 0.5690 42.42 74.00 84.35 5.59 0.4958

Ours 0.6137 47.33 77.98 87.83 4.57 0.5282

Table 2. Quantitative evaluation of discriminative methods on

test-standard split of VisDial v1.0 [9]. Our model outperforms

all other models across all metrics. See §4.2 for more details.

metrics (i.e., Recall@1, Recall@5, Recall@10, MRR, and

Mean Rank of human response) used in VisDial v0.9,

an extra metric, Normalized Discounted Cumulative Gain

(NDCG), is involved for a more comprehensive quantitative

performance study. Higher value for NDCG is better.

Quantitative Results: Five discriminative dialog models

(i.e., LF [9], HRE [9], MN [9], LF-Att [9], MN-Att [9])

were included in our experiments. Table 2 presents the over-

all quantitative comparison results. As seen, the suggested

model consistently gaining promising results.

4.3. Performance on VisDialQ Dataset [9, 22]

Dataset: VisDial Dataset [9] provides a solid foundation for

assessing the performance of a visual dialog system answer-

ing questions. To test the questioner side of visual dialog,

Jain et al. [22] further propose a VisDial-Q dataset, which

is built upon VisDial v0.9 [9]. The dataset splitting is the

same as VisDial v0.9.

Evaluation Protocol: VisDial-Q dataset is companied with

a retrieval based ‘VisDial-Q evaluation protocol’, analo-

gous to the ‘VisDial evaluation protocol’ in VisDial dataset

detailed before. A visual dialog system is required to

choose one out of 100 next questions for a given question-

answer pair. Similar methodology in [9] is adopted to col-

lect the 100 follow-up question candidates. Therefore, the

metrics described in § 4.1: Recall@k, MRR, and Mean

Rank, are also used for quantitative evaluation.

Data Preparation: We use the same text embedding tech-

niques as we used for §4.1. Different from VisDial task, the

first round of QA pair is given to predict next round of ques-

tion. Thus the maximum round of dialog in the VisDial-Q

task is set as 9. Similar as we illustrate in §3.5, we construct

t+1 node with caption and previous history as the first t

nodes and the expected question as the last node. We ini-

tialize our question node with language embedding of the

caption and set the language embedding of corresponding

sentence as the embedding of the rest of nodes.

Quantitative Results: We follow the same protocol de-

scribed in [22] to evaluate our model. Table 3 shows the

quantitative results for comparative methods and our ab-

lative model variants. The ablative models include i) our

model with constant graph (all edge weights are 1), and ii)

our model without the EM iterations. Our full model with
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Figure 4. Qualitative results of our model on VisDial v0.9 [9], comparing to human ground-truth answer. The last column presents the

visual dialog structures inferred by our model, where the more darker green links indicate higher relations (predicted by link functions).

Methods MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

SF-QI [22] 0.3021 17.38 42.32 57.16 14.03

SF-QIH [22] 0.4060 26.76 55.17 70.39 9.32

Ours (w/o iter) 0.3977 25.69 54.52 70.33 9.38

Ours (const. graph) 0.4025 26.08 55.30 70.83 9.24

Ours (full, 3 iter) 0.4126 27.15 56.47 71.97 8.86

Table 3. Quantitative evaluation on VisDial-Q dataset [9, 22]

with VisDial-Q evaluation protocol. See §4.3 for more details.

3 EM iterations outperforms the comparative method in all

evaluation metrics. Particularly, we can see that our model

with constant graph has a similar performance to the com-

parative method. This shows the effectiveness of our EM-

based inference process. Experiment results on this dataset

also shows the generality of our approach: it can infer the

underlying dialog structure and reason accordingly about

unobserved nodes (next question or current answer).

4.4. Diagnostic Experiments

To assess the effect of some essential component of our

model, we implement and test several variants: (i) constant

graph that fixes edge weight between each pair of nodes to

be 1; (ii) graph without EM iteration; and (iii) graph with

n EM iterations. Table 4 shows the quantitative evaluations

of these model variants on VisDial v0.9 [9]. We summa-

rize our observations here: (a) model without EM iterations

performs the worst among all variants. This shows the im-

portance of iteratively updating the node embeddings. (b)

In our experiments, message passing with 3 iterations shows

the best performance of our proposed model. (c) model us-

ing constant graph (3 iterations) performs better than worse

than the model without EM iterations, since it allows iter-

Methods MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

Ours (3 iter). 0.6285 48.95 79.65 88.36 4.57

const. graph. 0.6197 47.91 78.99 87.77 4.74

w/o iter. 0.6162 46.73 78.41 87.26 4.84

2 iter. 0.6213 48.18 78.97 87.81 4.75

4 iter. 0.6237 48.41 79.20 87.95 4.68

Table 4. Ablation study of the key components of our methods

on VisDial v0.9 dataset [9]. See §4.4 for more details.

ative updates of node embeddings. However, it is outper-

formed by other iterative models with a dynamic structure,

since all incoming messages are treated equally. This shows

the importance of edge weights: they filter out misleading

messages while allowing information flow.

5. Conclusion

In this paper, we develop a novel model for the visual di-

alog task. The backbone of this model is a GNN, in which

each node represents a dialog entity and the edge weights

represent the semantic dependencies between nodes. An

EM-style inference algorithm is proposed for this GNN to

estimate the latent relations between nodes and the missing

values of unobserved nodes. Experiments are performed on

the VisDial and VisDial-Q dataset. Results show that our

method is able to find and utilize underlying dialog struc-

tures for dialog inference in both tasks, demonstrating the

generality and effectiveness of our method.
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