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Abstract

With the advent of deep learning, object detection drifted

from a bottom-up to a top-down recognition problem. State

of the art algorithms enumerate a near-exhaustive list of

object locations and classify each into: object or not. In

this paper, we show that bottom-up approaches still perform

competitively. We detect four extreme points (top-most, left-

most, bottom-most, right-most) and one center point of ob-

jects using a standard keypoint estimation network. We

group the five keypoints into a bounding box if they are

geometrically aligned. Object detection is then a purely

appearance-based keypoint estimation problem, without re-

gion classification or implicit feature learning. The pro-

posed method performs on-par with the state-of-the-art re-

gion based detection methods, with a bounding box AP of

43.7% on COCO test-dev. In addition, our estimated ex-

treme points directly span a coarse octagonal mask, with a

COCO Mask AP of 18.9%, much better than the Mask AP

of vanilla bounding boxes. Extreme point guided segmenta-

tion further improves this to 34.6% Mask AP.

1. Introduction

Top-down approaches have dominated object detection

for years. Prevalent detectors convert object detection into

rectangular region classification, by either explicitly crop-

ping the region [12] or region feature [11,41] (two-stage ob-

ject detection) or implicitly setting fix-sized anchors for re-

gion proxies [25,28,38] (one-stage object detection). How-

ever, top-down detection is not without limits. A rectan-

gular bounding box is not a natural object representation.

Most objects are not axis-aligned boxes, and fitting them

inside a box includes many distracting background pixels

(Figure. 1). In addition, top-down object detectors enumer-

ate a large number of possible box locations without truly

understanding the compositional visual grammars [9,13] of

objects themselves. This is computationally expensive. Fi-

nally, boxes are a bad proxy for the object themselves. They

convey little detailed object information, e.g., object shape

and pose.

Figure 1: We propose to detect objects by finding their ex-

treme points. They directly form a bounding box , but also

give a much tighter octagonal approximation of the object.

In this paper, we propose ExtremeNet, a bottom-up ob-

ject detection framework that detects four extreme points

(top-most, left-most, bottom-most, right-most) of an ob-

ject. We use a state-of-the-art keypoint estimation frame-

work [3, 5, 30, 31, 49] to find extreme points, by predicting

four multi-peak heatmaps for each object category. In ad-

dition, we use one heatmap per category predicting the ob-

ject center, as the average of two bounding box edges in

both the x and y dimension. We group extreme points into

objects with a purely geometry-based approach. We group

four extreme points, one from each map, if and only if their

geometric center is predicted in the center heatmap with a

score higher than a pre-defined threshold. We enumerate all

O(n4) combinations of extreme point prediction, and select

the valid ones. The number of extreme point prediction n
is usually quite small, for COCO [26] n  40, and a brute

force algorithm implemented on GPU is sufficient. Figure 2

shows an overview of the proposed method.

We are not the first to use deep keypoint prediction

for object detection. CornerNet [22] predicts two oppos-

ing corners of a bounding box. They group corner points

into bounding boxes using an associative embedding fea-

ture [30]. Our approach differs in two key aspects: key-
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Figure 2: Illustration of our object detection method. Our

network predicts four extreme point heatmaps (Top. We

shown the heatmap overlaid on the input image) and one

center heatmap (Bottom row left) for each category. We

enumerate the combinations of the peaks (Middle left) of

four extreme point heatmaps and compute the geometric

center of the composed bounding box (Middle right). A

bounding box is produced if and only if its geometric center

has a high response in the center heatmap (Bottom right).

point definition and grouping. A corner is another form of

bounding box, and suffers many of the issues top-down de-

tection suffers from. A corner often lies outside an object,

without strong appearance features. Extreme points, on the

other hand, lie on objects, are visually distinguishable, and

have consistent local appearance features. For example, the

top-most point of human is often the head, and the bottom-

most point of a car or airplane will be a wheel. This makes

the extreme point detection easier. The second difference to

CornerNet is the geometric grouping. Our detection frame-

work is fully appearance-based, without any implicit feature

learning. In our experiments, the appearance-based group-

ing works significantly better.

Our idea is motivated by Papadopoulos et al. [33], who

proposed to annotate bounding boxes by clicking the four

extreme points. This annotation is roughly four times faster

to collect and provides richer information than bounding

boxes. Extreme points also have a close connection to ob-

ject masks. Directly connecting the inflated extreme points

offers a more fine-grained object mask than the bounding

box. In our experiment, we show that fitting a simple oc-

tagon to the extreme points yields a good object mask es-

timation. Our method can be further combined with Deep

Extreme Cut (DEXTR) [29], which turns extreme point an-

notations into a segmentation mask for the indicated object.

Directly feeding our extreme point predictions as guidance

to DEXTR [29] leads to close to state-of-the-art instance

segmentation results.

Our proposed method achieves a bounding box AP of

43.7% on COCO test-dev, out-performing all reported one-

stage object detectors [22, 25, 40, 52] and on-par with so-

phisticated two-stage detectors. A Pascal VOC [8, 14]

pre-trained DEXTR [29] model yields a Mask AP of

34.6%, without using any COCO mask annotations. Code

is available at https://github.com/xingyizhou/

ExtremeNet.

2. Related Work

Two-stage object detectors Region-CNN family [11,

12, 15, 16, 41] considers object detection as two sequential

problems: first propose a (large) set of category-agnostic

bounding box candidates, crop them, and use an image

classification module to classify the cropped region or re-

gion feature. R-CNN [12] uses selective search [47] to

generate region proposals and feeds them to an ImageNet

classification network. SPP [16] and Fast RCNN [11] first

feed an image through a convolutional network and crop

an intermediate feature map to reduce computation. Faster

RCNN [41] further replaces region proposals [47] with a

Region Proposal Network. The detection-by-classification

idea is intuitive and keeps the best performance so far [6, 7,

19, 20, 24, 27, 37, 45, 46, 54].

Our method does not require region proposal or region

classification. We argue that a region is not a necessary

component in object detection. Representing an object by

four extreme points is also effective and provides as much

information as bounding boxes.

One-stage object detector One-stage object detec-

tors [22, 25, 28, 38, 39, 42, 48] do not have a region crop-

ping module. They can be considered as category-specific

region or anchor proposal networks and directly assign a

class label to each positive anchor. SSD [10,28] uses differ-

ent scale anchors in different network layers. YOLOv2 [39]

learns anchor shape priors. RetinaNet [25] proposes a focal

loss to balance the training contribution between positive

and negative anchors. RefineDet [52] learns to early reject

negative anchors. Well-designed single-stage object detec-

tors achieve very close performance with two-stage ones at

higher efficiency.

Our method falls in the one-stage detector category.

However, instead of setting anchors in an O(h2w2) space,

we detects five individual parts (four extreme points and one

center) of a bounding box in O(hw) space. Instead of set-

ting default scales or aspect-ratios as anchors at each pixel

location, we only predict the probability for that location be-

ing a keypoint. Our center map can also be seen as a scale

and aspect ratio agnostic region proposal network without

bounding box regression.

Deformable Part Model As a bottom-up object detec-
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Figure 3: Illustration of our framework. Our network takes an image as input and produces four C-channel heatmaps, one C-

channel heatmap, and four 2-channel category-agnostic offset map. The heatmaps are trained by weighted pixel-wise logistic

regression, where the weight is used to reduce false-positive penalty near the ground truth location. And the offset map is

trained with Smooth L1 loss applied at ground truth peak locations.

tion method, our idea of grouping center and extreme points

is related to Deformable Part Model [9]. Our center point

detector functions similarly with the root filter in DPM [9],

and our four extreme points can be considered as a univer-

sal part decomposition for all categories. Instead of learning

the part configuration, our predicted center and four extreme

points have a fixed geometry structure. And we use a state-

of-the-art keypoint detection network instead of low-level

image filters for part detection.

Grouping in bottom-up human pose estimation De-

termining which keypoints are from the same person is an

important component in bottom-up multi-person pose esti-

mation. There are multiple solutions: Newell et al. [30]

proposes to learn an associative feature for each keypoint,

which is trained using an embedding loss. Cao et al. [3]

learns an affinity field which resembles the edge between

connected keypoints. Papandreous et al. [34] learns the dis-

placement to the parent joint on the human skeleton tree, as

a 2-d feature for each keypoint. Nie et al. [32] also learn a

feature as the offset with respect to the object center.

In contrast to all the above methods, our center grouping

is pure appearance-based and is easy to learn, by exploiting

the geometric structure of extreme points and their center.

Implicit keypoint detection Prevalent keypoint detec-

tion methods work on well-defined semantic keypoints, e.g.,

human joints. StarMap [53] mixes all types of keypoints

using a single heatmap for general keypoint detection. Our

extreme and center points are a kind of such general implicit

keypoints, but with more explicit geometry property.

3. Preliminaries

Extreme and center points Let (x(tl), y(tl), x(br), y(br))
denote the four sides of a bounding box. To anno-

tate a bounding box, a user commonly clicks on the

top-left (x(tl), y(tl)) and bottom-right (x(br), y(br)) cor-

ners. As both points regularly lie outside an object, these

clicks are often inaccuracy and need to be adjusted a few

times. The whole process takes 34.5 seconds on av-

erage [44]. Papadopoulos et al. [33] propose to anno-

tate the bounding box by clicking the four extreme points

(x(t), y(t)), (x(l), y(l)), (x(b), y(b)), (x(r), y(r)), where the

box is (x(l), y(t), x(r), y(b)). An extreme point is a point

(x(a), y(a)) such that no other point (x, y) on the object lies

further along one of the four cardinal directions a: top, bot-

tom, left, right. Extreme click annotation time is 7.2 sec-

onds on average [33]. The resulting annotation is on-par

with the more time-consuming box annotation. Here, we

use the extreme click annotations directly and bypass the

bounding box. We additionally use the center point of each

object as (x
(l)+x(r)

2 , y(t)+y(b)

2 ).

Keypoint detection Keypoint estimation, e.g., human

joint estimation [3,5,15,30,49] or chair corner point estima-

tion [36,53], commonly uses a fully convolutional encoder-

decoder network to predict a multi-channel heatmap for

each type of keypoint (e.g., one heatmap for human head,

another heatmap for human wrist). The network is trained

in a fully supervised way, with either an L2 loss to a ren-

dered Gaussian map [3,5,30,49] or with a per-pixel logistic

regression loss [22, 34, 35]. State-of-the-art keypoint esti-

mation networks, e.g., 104-layer HourglassNet [22, 31], are

trained in a fully convolutional manner. They regress to a

heatmap Ŷ 2 (0, 1)H×W of width W and height H for

each output channel. The training is guided by a multi-peak

Gaussian heatmap Y 2 (0, 1)H×W , where each keypoint

defines the mean of a Gaussian Kernel. The standard devia-

tion is either fixed, or set proportional to the object size [22].

The Gaussian heatmap serves as the regression target in the

L2 loss case or as the weight map to reduce penalty near a

positive location in the logistic regression case [22].
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CornerNet CornerNet [22] uses keypoint estimation with

an HourglassNet [31] as an object detector. They predict

two sets of heatmaps for the opposing corners of the box.

In order to balance the positive and negative locations they

use a modified focal loss [25] for training:

Ldet=�
1

N

HX

i=1

WX

j=1

(1� Ŷij)
α log(Ŷij) if Yij=1

(1�Yij)
β(Ŷij)

α log(1�Ŷij) o.w.
, (1)

where ↵ and � are hyper-parameters and fixed to ↵ = 2 and

� = 4 during training. N is the number of objects in the

image.

For sub-pixel accuracy of extreme points, CornerNet

additionally regresses to category-agnostic keypoint offset

∆
(a) for each corner. This regression recovers part of the

information lost in the down-sampling of the hourglass net-

work. The offset map is trained with smooth L1 Loss [11]

SL1 on ground truth extreme point locations:

Loff =
1

N

NX

k=1

SL1(∆
(a), ~x/s� b~x/sc), (2)

where s is the down-sampling factor (s = 4 for Hourglass-

Net), ~x is the coordinate of the keypoint.

CornerNet then groups opposing corners into detection

using an associative embedding [30]. Our extreme point

estimation uses the CornerNet architecture and loss, but not

the associative embedding.

Deep Extreme Cut Deep Extreme Cut (DEXTR) [29] is

an extreme point guided image segmentation method. It

takes four extreme points and the cropped image region sur-

rounding the bounding box spanned by the extreme points

as input. From this it produces a category-agnostic fore-

ground segmentation of the indicated object using the se-

mantic segmentation network of Chen et al. [4]. The net-

work learns to generate the segmentation mask that matches

the input extreme point.

4. ExtremeNet for Object detection

ExtremeNet uses an HourglassNet [31] to detect five

keypoints per class (four extreme points, and one center).

We follow the training setup, loss and offset prediction of

CornerNet [22]. The offset prediction is category-agnostic,

but extreme-point specific. There is no offset prediction for

the center map. The output of our network is thus 5 ⇥ C
heatmaps and 4⇥ 2 offset maps, where C is the number of

classes (C = 80 for MS COCO [26]). Figure 3 shows an

overview. Once the extreme points are extracted, we group

them into detections in a purely geometric manner.

Algorithm 1: Center Grouping

Input : Center and Extremepoint heatmaps of an image for one

category: Ŷ (c), Ŷ (t), Ŷ (l), Ŷ (b), Ŷ (r) ∈ (0, 1)H×W

Center and peak selection thresholds: τc and τp

Output: Bounding box with score

// Convert heatmaps into coordinates of keypoints.

// T ,L,B,R are sets of points.

T ← ExtractPeak(Ŷ (t), τp)

L ← ExtractPeak(Ŷ (l), τp)

B ← ExtractPeak(Ŷ (b), τp)

R ← ExtractPeak(Ŷ (r), τp)
for t ∈ T , l ∈ L, b ∈ B, r ∈ R do

// If the bounding box is valid

if ty ≤ ly , ry ≤ by and lx ≤ tx, bx ≤ rx then
// compute geometry center

cx ← (lx + rx)/2
cy ← (ty + by)/2
// If the center is detected

if Ŷ
(c)
cx,cy ≥ τc then

Add Bounding box (lx, ty , rx, by) with score

(Ŷ
(t)
tx,ty

+ Ŷ
(l)
lx,ly

+ Ŷ
(b)
bx,by

+ Ŷ
(r)
rx,ry + Ŷ

(c)
cx,cy )/5.

end

end

end

4.1. Center Grouping

Extreme points lie on different sides of an object. This

complicates grouping. For example, an associative embed-

ding [30] might not have a global enough view to group

these keypoints. Here, we take a different approach that ex-

ploits the spread out nature of extreme points.

The input to our grouping algorithm is five heatmaps per

class: one center heatmap Ŷ (c) 2 (0, 1)H×W and four ex-

treme heatmaps Ŷ (t), Ŷ (l), Ŷ (b), Ŷ (r) 2 (0, 1)H×W for the

top, left, bottom, right, respectively. Given a heatmap, we

extract the corresponding keypoints by detecting all peaks.

A peak is any pixel location with a value greater than ⌧p,

that is locally maximal in a 3 ⇥ 3 window surrounding the

pixel. We name this procedure as ExtrectPeak.

Given four extreme points t, b, r, l extracted from

heatmaps Ŷ (t), Ŷ (l), Ŷ (b), Ŷ (r), we compute their geomet-

ric center c = ( lx+tx
2 ,

ty+by
2 ). If this center is predicted

with a high response in the center map Ŷ (c), we commit the

extreme points as a valid detection: Ŷ
(c)
cx,cy � ⌧c for a thresh-

old ⌧c. We then enumerate over all quadruples of keypoints

t, b, r, l in a brute force manner. We extract detections for

each class independently. Algorithm 1 summarizes this pro-

cedure. We set ⌧p = 0.1 and ⌧c = 0.1 in all experiments.

This brute force grouping algorithm has a runtime

of O(n4), where n is the number of extracted extreme

points for each cardinal direction. Supplementary material

presents a O(n2) algorithm that is faster on paper. How-

ever, then it is harder to accelerate on a GPU and slower in

practice for the MS COCO dataset, where n  40.
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(a) Original heatmap. (b) After edge aggregation.

Figure 4: Illustration of the purpose of edge aggregation.

In the case of multiple points being the extreme point on

one edge, our model predicts a segment of low confident

responses (a). Edge aggregation enhances the confidence of

the middle pixel (b).

4.2. Ghost box suppression

Center grouping may give a high-confidence false-

positive detection for three equally spaced colinear objects

of the same size. The center object has two choices here,

commit to the correct small box, or predict a much larger

box containing the extreme points of its neighbors. We

call these false-positive detections “ghost” boxes. As we’ll

show in our experiments, these ghost boxes are infrequent,

but nonetheless a consistent error mode of our grouping.

We present a simple post-processing step to remove

ghost boxes. By definition a ghost box contains many other

smaller detections. To discourage ghost boxes, we use a

form of soft non-maxima suppression [1]. If the sum of

scores of all boxes contained in a certain bounding box ex-

ceeds 3 times of the score of itself, we divide its score by

2. This non-maxima suppression is similar to the standard

overlap-based non-maxima suppression, but penalizes po-

tential ghost boxes instead of multiple overlapping boxes.

4.3. Edge aggregation

Extreme points are not always uniquely defined. If verti-

cal or horizontal edges of an object form the extreme points

(e.g., the top of a car) any point along that edge might be

considered an extreme point. As a result, our network pro-

duces a weak response along any aligned edges of the ob-

ject, instead of a single strong peak response. This weak

response has two issues: First, the weaker response might

be below our peak selection threshold ⌧p, and we will miss

the extreme point entirely. Second, even if we detect the

keypoint, its score will be lower than a slightly rotated ob-

ject with a strong peak response.

We use edge aggregation to address this issue. For each

extreme point, extracted as a local maximum, we aggre-

gate its score in either the vertical direction, for left and

right extreme points, or the horizontal direction, for top

and bottom keypoints. We aggregate all monotonically de-

creasing scores, and stop the aggregation at a local mini-

mum along the aggregation direction. Specifically, let m

be an extreme point and N
(m)
i = Ŷmx+i,my

be the vertical

or horizontal line segment at that point. Let i0 < 0 and

0 < i1 be the two closest local minima N
(m)
i0−1 > N

(m)
i0

and N
(m)
i1

< N
(m)
i1+1. Edge aggregation updates the key-

point score as Ỹm = Ŷm + �aggr

Pi1
i=i0

N
(m)
i , where

�aggr is the aggregation weight. In our experiments, we

set �aggr = 0.1. See Fig. 4 for en example.

4.4. Extreme Instance Segmentation

Extreme points carry considerable more information

about an object, than a simple bounding box, with at least

twice as many annotated values (8 vs 4). We propose a sim-

ple method to approximate the object mask using extreme

points by creating an octagon whose edges are centered on

the extreme points. Specifically, for an extreme point, we

extend it in both directions on its corresponding edge to a

segment of 1/4 of the entire edge length. The segment is

truncated when it meets a corner. We then connect the end

points of the four segments to form the octagon. See Figure

1 for an example.

To further refine the bounding box segmentation, we use

Deep Extreme Cut (DEXTR) [29], a deep network trained

to convert the manually provided extreme points into in-

stance segmentation mask. In this work, we simply re-

place the manual input of DEXTR [29] with our extreme

point prediction, to perform a 2-stage instance segmenta-

tion. Specifically, for each of our predicted bounding box

, we crop the bounding box region, render a Gaussian map

with our predicted extreme point, and then feed the concate-

nated image to the pre-trained DEXTR model. DEXTR [29]

is class-agnostic, thus we directly use the detected class and

score of ExtremeNet. No further post-processing is used.

5. Experiments

We evaluate our method on the popular MS COCO

dataset [26]. COCO contains rich bounding box and in-

stance segmentation annotations for 80 categories. We train

on the train2017 split, which contains 118k images and

860k annotated objects. We perform all ablation studies on

val2017 split, with 5k images and 36k objects, and compare

to prior work on the test-dev split with contains 20k im-

ages The main evaluation metric is average precision over

a dense set of fixed recall threshold We show average pre-

cision at IOU threshold 0.5 (AP50), 0.75 (AP75), and aver-

aged over all thresholds between 0.5 and 1 (AP ). We also

report AP for small, median and large objects (APS , APM ,

APL). The test evaluation is done on the official evaluation

server. Qualitative results are shown in Table. 4 and can be

found more in the supplementary material.
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5.1. Extreme point annotations

There are no direct extreme point annotation in the

COCO [26]. However, there are complete annotations for

object segmentation masks. We thus find extreme points as

extrema in the polygonal mask annotations. In cases where

an edge is parallel to an axis or within a 3
�

angle, we place

the extreme point at the center of the edge. Although our

training data is derived from the more expensive segmenta-

tion annotation, the extreme point data itself is 4⇥ cheaper

to collect than the standard bounding box [33].

5.2. Training details

Our implementation is based on the public implemen-

tation of CornerNet [22]. We strictly follow CornerNets

hyper-parameters: we set the input resolution to 511⇥ 511
and output resolution to 128⇥128. Data augmentation con-

sists of flipping, random scaling between 0.6 and 1.3, ran-

dom cropping, and random color jittering. The network is

optimized with Adam [21] with learning rate 2.5e�4. Cor-

nerNet [22] was originally trained on 10 GPUs for 500k iter-

ations, and an equivalent of over 140 GPU days. Due to lim-

ited GPU resources, the self-comparison experiments (Ta-

ble. 1) are finetuned from a pre-trained CornerNet model

with randomly initialized head layers on 5 GPUs for 250k
iterations with a batch size of 24. Learning rate is dropped

10⇥ at the 200k iteration. The state-of-the-art comparison

experiment is trained from scratch on 5 GPUs for 500k it-

erations with learning rate dropped at the 450k iteration.

5.3. Testing details

For each input image, our network produces four

C-channel heatmaps for extreme points, one C-channel

heatmap for center points, and four 2-channel offset maps.

We apply edge aggregation (Section. 4.3) to each extreme

point heatmap, and multiply the center heatmap by 2 to cor-

rect for the overall scale change. We then apply the cen-

ter grouping algorithm (Section. 4.1) to the heatmaps. At

most 40 top points are extracted in ExtrectPeak to keep the

enumerating efficiency. The predicted bounding box coor-

dinates are refined by adding an offset at the corresponding

location of offsetmaps.

Following CornerNet [22], we keep the original image

resolution instead of resizing it to a fixed size. We use flip

augmentation for testing. In our main comparison, we use

additional 5⇥ multi-scale (0.5, 0.75, 1, 1.25, 1.5) augmen-

tation. Finally, Soft-NMS [1] filters all augmented detection

results. Testing on one image takes 322ms (3.1FPS), with

168ms on network forwarding, 130ms on decoding and rest

time on image pre- and post-processing (NMS).

5.4. Ablation studies

Center Grouping vs. Associative Embedding Our Ex-

tremeNet can also be trained with an Associative Embed-

AP AP50 AP75 APS APM APL

40.3 55.1 43.7 21.6 44.0 56.1

w/ multi-scale testing 43.3 59.6 46.8 25.7 46.6 59.4

w/o Center grouping 38.2 53.8 40.4 20.6 41.5 52.9

w/o Edge aggregation 39.6 54.7 43.0 22.0 43.0 54.1

w/o Ghost removal 40.0 54.7 43.3 21.6 44.2 54.1

w/ gt center 48.6 62.1 53.9 26.3 53.7 66.7

w/ gt extreme 56.3 67.2 60.0 40.9 62.0s 64.0

w/ gt extreme + center 79.8 94.5 86.2 65.5 88.7 95.5

w/ gt ex. + ct. + offset 86.0 94.0 91.3 73.4 95.7 98.4

Table 1: Ablation study and error analysis on COCO

val2017. We show AP(%) after removing each component

or replacing it with its ground truth.

ding [30] similar to CornerNet [22], instead of our geomet-

ric center point grouping. We tried this idea and replaced

the center map with a four-channel associative embedding

feature map trained with a Hinge Loss [22]. Table 1 shows

the result. We observe a 2.1% AP drop when using the as-

sociative embedding. While associative embeddings work

well for human pose estimation and CornerNet, our extreme

points lie on the very side of objects. Learning the identity

and appearance of entire objects from the vantage point of

its extreme points might simply be too hard. While it might

work well for small objects, where the entire object easily

fits into the effective receptive field of a keypoint, it fails

for medium and large objects as shown in Table 1. Further-

more, extreme points often lie at the intersection between

overlapping objects, which further confuses the identity fea-

ture. Our geometric grouping method gracefully deals with

these issues, as it only needs to reason about appearance.

Edge aggregation Edge aggregation (Section 4.3) gives a

decent AP improvement of 0.7%. It proofs more effective

for larger objects, that are more likely to have a long axis

aligned edges without a single well defined extreme point.

Removing edge aggregation improves the decoding time to

76ms and overall speed to 4.1 FPS.

Ghost box suppression Our simple ghost bounding box

suppression (Section 4.2) yields 0.3% AP improvement.

This suggests that ghost boxes are not a significant practi-

cal issue in MS COCO. A more sophisticated false-positive

removal algorithm, e.g., learn NMS [18], might yield a

slightly better result.

Error Analysis To better understand where the error

comes from and how well each of our components is
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Backbone Input resolution AP AP50 AP75 APS APM APL

Two-stage detectors

Faster R-CNN w/ FPN [24] ResNet-101 1000⇥ 600 36.2 59.1 39.0 18.2 39.0 48.2

Deformable-CNN [7] Inception-ResNet 1000⇥ 600 37.5 58.0 - 19.4 40.1 52.5

Deep Regionlets [51] ResNet-101 1000⇥ 600 39.3 59.8 - 21.7 43.7 50.9

Mask R-CNN [15] ResNeXt-101 1333⇥ 800 39.8 62.3 43.4 22.1 43.2 51.2

LH R-CNN [23] ResNet-101 1000⇥ 600 41.5 - - 25.2 45.3 53.1

Cascade R-CNN [2] ResNet-101 1333⇥ 800 42.8 62.1 46.3 23.7 45.5 55.2

D-RFCN + SNIP [43] DPN-98 1333⇥ 800 45.7 67.3 51.1 29.3 48.8 57.1

PANet [27] ResNeXt-101 1000⇥ 600 47.4 67.2 51.8 30.1 51.7 60.0

One-stage detectors

YOLOv2 [39] DarkNet-19 544⇥ 544 21.6 44.0 19.2 5.0 22.4 35.5

YOLOv3 [40] DarkNet-53 608⇥ 608 33.0 57.9 34.4 18.3 35.4 41.9

SSD [28] ResNet-101 513⇥ 513 31.2 50.4 33.3 10.2 34.5 49.8

DSSD [10] ResNet-101 513⇥ 513 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet [25] ResNet-101 1333⇥ 800 39.1 59.1 42.3 21.8 42.7 50.2

RefineDet (SS) [52] ResNet-101 512⇥ 512 36.4 57.5 39.5 16.6 39.9 51.4

RefineDet (MS) [52] ResNet-101 512⇥ 512 41.8 62.9 45.7 25.6 45.1 54.1

CornerNet (SS) [22] Hourglass-104 511⇥ 511 40.5 56.5 43.1 19.4 42.7 53.9

CornerNet (MS) [22] Hourglass-104 511⇥ 511 42.1 57.8 45.3 20.8 44.8 56.7

ExtremeNet (SS) Hourglass-104 511⇥ 511 40.2 55.5 43.2 20.4 43.2 53.1

ExtremeNet (MS) Hourglass-104 511⇥ 511 43.7 60.5 47.0 24.1 46.9 57.6

Table 2: State-of-the-art comparison on COCO test-dev. SS/ MS are short for single-scale/ multi-scale tesing, respectively.

It shows that our ExtremeNet in on-par with state-of-the-art region-based object detectors.

trained, we provide error analysis by replacing each out-

put component with its ground truth. Table 1 shows the

result. A ground truth center heatmap alone does not in-

crease AP much. This indicates that our center heatmap is

trained quite well, and shows that the implicit object cen-

ter is learnable. Replacing the extreme point heatmap with

ground truth gives 16.3% AP improvement. When replac-

ing both extreme point heatmap and center heatmap, the re-

sult comes to 79.8%, much higher than replacing one of

them. This is due to that our center grouping is very strict

in the keypoint location and a high performance requires to

improve both extreme point heatmap and center heatmap.

Adding the ground truth offsets further increases the AP to

AP AP50 AP75 APS APM APL

BBox 12.1 34.9 6.2 8.2 12.7 16.9

Ours octagon 18.9 44.5 13.7 10.4 20.4 28.3

Ours+DEXTR [29] 34.6 54.9 36.6 16.6 36.5 52.0

Mask RCNN-50 [15] 34.0 55.5 36.1 14.4 36.7 51.9

Mask RCNN-101 [15] 37.5 60.6 39.9 17.7 41.0 55.4

Table 3: Instance segmentation evaluation on COCO

val2017. The results are shown in Mask AP.

86.0%. The rest error is from the ghost box (Section 4.2).

5.5. State-of-the-art comparisons

Table 2 compares ExtremeNet to other state-of-the-art

methods on COCO test-dev. Our model with multi-scale

testing achieves an AP of 43.7, outperforming all reported

one-stage object detectors and on-par with popular two-

stage detectors. Notable, it performs 1.6% higher than Cor-

nerNet, which shows the advantage of detecting extreme

and center points over detecting corners with associative

features. In single scale setting, our performance is 0.3%
AP below CornerNet [22]. However, our method has higher

AP for small and median objects than CornerNet, which is

known to be more challenging. For larger objects our cen-

ter response map might not be accurate enough to perform

well, as a few pixel shift might make the difference between

a detection and a false-negative. Further, note that we used

the half number of GPUs to train our model.

5.6. Instance Segmentation

Finally, we compare our instance segmentation results

with/ without DEXTR [29] to other baselines in Table 3.

As a dummy baseline, we directly assign all pixels inside

the rectangular bounding box as the segmentation mask.
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Extreme point heatmap Center heatmap Octagon mask Extreme points+DEXTR [29]

Table 4: Qualitative results on COCO val2017. First and second column: our predicted (combined four) extreme point

heatmap and center heatmap, respectively. We show them overlaid on the input image. We show heatmaps of different

categories in different colors. Third column: our predicted bounding box and the octagon mask formed by extreme points.

Fourth column: resulting masks of feeding our extreme point predictions to DEXTR [29].

The result on our best-model (with 43.3% bounding box

AP) is 12.1% Mask AP. The simple octagon mask (Section.

4.4) based on our predicted extreme points gets a mask AP

of 18.9%, much better than the bounding box baseline. This

shows that this simple octagon mask can give a relatively

reasonable object mask without additional cost. Note that

directly using the quadrangle of the four extreme points

yields a too-small mask, with a lower IoU.

When combined with DEXTR [29], our method achieves

a mask AP of 34.6% on COCO val2017. To put this result

in a context, the state-of-the-art Mask RCNN [15] gets a

mask AP of 37.5% with ResNeXt-101-FPN [24, 50] back-

bone and 34.0% AP with Res50-FPN. Considering the fact

that our model has not been trained on the COCO segmen-

tation annotation, or any class specific segmentations at all,

our result which is on-par with Res50 [17] and 2.9% AP

below ResNeXt-101 is very competitive.

6. Conclusion

In conclusion, we present a novel object detection frame-

work based on bottom-up extreme points estimation. Our

framework extracts four extreme points and groups them

in a purely geometric manner. The presented framework

yields state-of-the-art detection results and produces com-

petitive instance segmentation results on MSCOCO, with-

out seeing any COCO training instance segmentations.
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