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Abstract

Recent efforts have shown the importance of context on

deep convolutional neural network based semantic segmen-

tation. Among others, the predicted segmentation map (p-

map) itself which encodes rich high-level semantic cues

(e.g. objects and layout) can be regarded as a promising

source of context. In this paper, we propose a dedicated

module, Context Net, to better explore the context informa-

tion in p-maps. Without introducing any new supervisions,

we formulate the context learning problem as a Markov De-

cision Process and optimize it using reinforcement learning

during which the p-map and Context Net are treated as en-

vironment and agent, respectively. Through adequate ex-

plorations, the Context Net selects the information which

has long-term benefit for segmentation inference. By in-

corporating the Context Net with a baseline segmentation

scheme, we then propose a Context-reinforced Semantic

Segmentation network (CiSS-Net), which is fully end-to-end

trainable. Experimental results show that the learned con-

text brings 3.9% absolute improvement on mIoU over the

baseline segmentation method, and the CiSS-Net achieves

the state-of-the-art segmentation performance on ADE20K,

PASCAL-Context and Cityscapes.

1. Introduction

Semantic image segmentation is a fundamental and chal-

lenging task in computer vision. It interprets an image by

assigning each pixel a semantic label. These semantic la-

bels provide high-level semantic information varying from

the layout of a scene to the category, location, and shape of

each individual object in an image, which makes semantic

image segmentation essential for many intelligent systems,

such as autonomous driving and image editing.

Context is known to be essential for semantic segmen-

tation [11]. Classifying a local region/pixel with regard to

its surroundings is super helpful for reducing local ambi-

guities. However, the fully convolutional network (FCN),
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Figure 1. Visualized segmentation results (also denoted as pre-

dicted segmentation maps (p-map)) and context maps in our CiSS-

Net. (a) Context maps at 3 steps. Here the white areas denote

uncertain regions that are excluded from valid contextual informa-

tion. The context map shown here upgrades gradually. (b) p-map

at 3 steps. The prediction improves gradually due to the context-

reinforced learning. It can be observed that reflection of trees in

the water which easily deceives the baseline algorithm is well han-

dled by our CiSS-Net based on the learned context.

which is the most popular baseline of current successful se-

mantic segmentation methods, lacks suitable strategies to

utilize global information about an image. In order to in-

clude more information, dilated/atrous convolutions are em-

ployed in FCN to expand the receptive field of convolutions

and enable dense predictions [5, 34, 4, 6]. Also, multi-

scale/multi-stage features are assembled to exploit informa-

tion from different scales/layers to improve the segmenta-

tion performance [21, 30, 16, 7, 13].

Recent efforts focus more on integrating global context

features in FCNs. Global average pooling is adopted to

pool a global context feature from one of the last few layers

of FCN, which is then fused with local features to provide
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global hints for segmentation [23]. Based on the atrous con-

volution, the atrous spatial pyramid pooling network [5] is

presented to capture multi-scale features by involving mul-

tiple parallel atrous filters at different rates. In addition to

the dilated FCN, PSPNet in [37] extends the pixel-level fea-

tures to the global pyramid pooled one which fuses fea-

tures under four different pyramid scales. In addition to

the multi-scale and multi-level features, Ding et al. intro-

duce a context contrasted local feature to highlight the dif-

ference between each local and global features and boost

the performance for inconspicuous objects[11]. In [35], a

context encoding module is presented to capture the order-

less correlations between scene context and probabilities of

categories in feature maps. Lin et al. [22] explicitly model

the patch-patch and patch-background contextual correla-

tions via trainable pairwise potential functions and multi-

scale sliding pooling. Huang et al. [15] introduce a extra

network into semantic segmentation based on scene simi-

larities to encode the global scene information followed by

an image retrieval module which captures non-parametric

prior information for the input image.

Besides aforementioned global/local context features

used in feature learning, we notice that the predicted seg-

mentation map (p-map, which refers to the intermediate

segmentation map as well as the final result) generated by

each semantic segmentation method already encodes rich

high-level semantic cues both locally (e.g., objects) and

globally (e.g., layouts) and can be another good candidate

for context. In addition, the dimension of p-maps usually

is much lower compared with that of feature maps in deep

networks, which could facilitate the exploration of context.

Therefore, it is beneficial to incorporate such information

into feature learning. However, as illustrated in Fig.1 (b), a

p-map often contains lots of noises such as misclassified re-

gions and chaotic objects, which makes it very challenging

to use p-maps as context for semantic segmentation.

In fact, p-map has been used in previous works to re-

fine itself either by exploiting Conditional Random Field

(CRF) [19] on top of the p-map in a post-processing fashion

[4, 5, 32, 3], concatenating a trainable network to facilitate

end-to-end training [38, 24, 31], or incorporating a recurrent

architecture to enable coarse-to-fine refinement [36, 28, 17].

Different from these algorithms that set out to refine its ac-

curacy, we seek to fully explore the p-map to generate an-

other source of scene context that can be effectively com-

bined with the traditional features to further improve the

segmentation performance in a recursive manner.

More specifically, we propose a Context-reinforced Se-

mantic Segmentation Network (CiSS-Net) to explore the

high-level semantic context information in p-maps to fur-

ther enhance modern semantic segmentation methods. Our

CiSS-Net consists of two sub-networks, Context Net (C-

Net) which is a dedicated network to learn effective seman-

tic context from p-maps, and Segment Net (S-Net) which

embeds the learned context in the inference of FCN-based

segmentation. Since it is hard to tell which information

should be selected from p-maps as learned context, we

choose not to introduce any new supervisions on context.

Instead, we formulate the context learning problem as a

Markov Decision Process (MDP) and propose learning the

context via interactions between C-Net and S-Net. Natu-

rally, the optimization problem can be solved through deep

reinforcement learning (RL) by treating the p-maps as envi-

ronment and the C-Net as agent. As shown in Fig.1, thanks

to the exploration of long-term benefit during the context-

reinforced learning, the p-map improves step by step based

on the gradually upgraded context maps, and the challeng-

ing water area is well segmented by our CiSS-Net based on

the learned context.

In summary, our main contributions are three-fold:

• We propose exploring high-level semantic context

from p-maps by a dedicated network which will be

embedded in the inference of the FCN-based seman-

tic segmentation.

• Without any new supervisions, we formulate the con-

text learning problem as a MDP and propose learning

the context using reinforcement learning so that it has

long-term benefits on segmentation inference, by re-

ciprocally interacting with the segmentation network.

• We propose a fully end-to-end context-reinforced se-

mantic segmentation network that efficiently facili-

tates the above learning process and achieves state-

of-the-art performance on three popular segmentation

datasets.

2. Context-reinforced Semantic Segmentation

We propose a new framework, CiSS-Net, which recur-

sively extracts context from p-maps and then embeds it

to improve the segmentation performance. For better un-

derstanding, we first present the overall framework of the

CiSS-Net and then give detailed descriptions of the two

main modules, Context Net and Segment Net, respectively.

2.1. The Framework

The overall framework of our CiSS-Net is shown in

Fig.2. The CiSS-Net consists of two modules, Segment Net

(S-Net) and Context Net (C-Net). The S-Net is designed to

infer p-maps of input images given the additional context

maps generated by C-Net through exploring both the inputs

and outputs of S-Net. The S-Net and C-Net work interac-

tively for both segmentation and context learning. To be

more specific, the S-Net predicts a segmentation map based

on the input image features as well as the generated con-

text; the C-Net is then fed with both the p-map as well as
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Figure 2. Overview of our proposed Context-reinforced Semantic Segmentation Network. Our CiSS-Net has two sub-networks, Segment

Net and Context Net. These two sub-networks mutually benefit each other and work iteratively. The Segment Net takes the encoded context

maps as additional information to generate the segmentation prediction, while the prediction is then used as conditions for Context Net to

produce new context maps to further improve the segmentation prediction.

the input image features to generate new context. By prop-

erly defining the state, action and transition matrix, the con-

text can be explicitly learned through reinforcement learn-

ing towards improving the segmentation performance with-

out any extra supervision.

Before elaborating on each module, we first provide a

short list of notations used in the following description.

Given an input image I , we have

• Context map KI ∈ {0, 1, 2, ..., Nc}
H′

×W ′

, where Nc,

H ′ and W ′ are the number of classes, height and width

of KI , respectively.

• Domain features XI ∈ R
H′

×W ′
×C , where C is the

channel size of the feature map.

• P-map YI ∈ R
Ho

×W o

, where Ho and W o denote the

spatial resolution of a segmentation prediction.

• Pyramid Pooling Module (Encoder in the figure) Fe :
R

H′
×W ′

→ R
H′

×W ′
×Ce , where Ce is the channel size

of output.

• Encoded context map and p-map K
(e)
I , Y

(e)
I ∈

R
H′

×W ′
×Ce .

• Base Net F ba
s : RH′

×W ′
×C → R

Ho
×W o

×Nc and Bias

Net F bi
s : ReH

′
×W ′

×(C+Ce) → R
Ho

×W o
×Nc .

• Context Net Fk : RH′
×W ′

×(C+Ce) → R
Ho

×W o
×2.

• Policy QI ∈ R
Ho

×W o
×2.

2.2. Segment Net

As shown in Fig.2, the S-Net has two inputs, the con-

text map KI and domain features XI of the input image

I . The context map is a two-dimensional semantic map de-

rived from p-maps by the C-Net, which will be introduced

in details in subsection 2.3. As illustrated in Fig.1 (b), a

context map encodes certain semantic information, e.g. the

layout of a scene and category of objects, but with an extra

class ‘uncertain’. Regions assigned with ’uncertain’ will be

ignored in the S-Net during inference.

In order to efficiently take advantages of the context map

during the inference, we apply some special designs for the

S-Net. Since lots of low-level features, such as textures and

boundaries, will be extracted by the first several convolu-

tional layers, it is neither reasonable nor efficient to fuse the

high-level semantic context with those low-level features.

We thus adopt a pre-trained convolutional neural network

(CNN) to extract mid-level domain features XI instead of

using the raw image. A Pyramid Pooling Module Fe(·) [37]

as shown in Fig.3 (a) is also employed to encode context

map into multiple spatial levels, which reveal more global

information at each spatial position. Then the encoded con-

text map K
(e)
I = Fe(KI) is concatenated with XI and fed

into the S-Net.

Our S-Net Fs(XI ,K
(e)
I ) is composed of two sub-

networks, Base Net F ba
s and Bias Net F bi

s . It can be for-

mulated as

{

F ba
s (XI), if KI is None

F ba
s (XI)+F bi

s (XI⊕K
(e)
I ), otherwise

(1)

where ⊕ denotes concatenation operation and KI is None
refers that there is not context map provided. Therefore,

p-map YI is derived as YI = argmax(Fs(XI ,KI)). As

shown in Fig.2 and Eq. (1), the Base Net only processes XI

to infer a basic segmentation map, while the Bias Net is fed

with the context embedded feature XI⊕K
(e)
I to learn a con-

ditional mask for each class that reflects the per-class bias

based on the context map KI . The mask is then added to the

basic segmentation map (the tensor before Softmax activa-

tion) to further rectify the predictions. Inspired by the idea

of residual learning [14], this design helps to both reduce

the learning complexity and emphasize the role of context.

2.3. Context Net

The structure of C-Net is illustrated on the left side of

Fig. 2. Our C-Net also has two inputs, the domain fea-

tures XI and p-map YI generated by the S-Net. Learning
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Figure 3. Illustrations of (a) the architecture of Pyramid Pooling

Module (Grid rectangle blocks are spatial pooling layers with dif-

ferent pooling sizes and strides) and (b) the architecture of C-Net.

context KI on top of YI makes KI conditioned on YI , and

by treating the prediction YI as a state that will be updated

based on the content of the context KI , the context learn-

ing process in C-Net can be reformulated as a Markov de-

cision chain Y 0
I

K0
I==⇒ Y 1

I

K1
I==⇒ · · ·

K
N−1

I====⇒ Y N
I . This in-

dicates that KI can be learned to incrementally improve

the segmentation through reinforcement learning. Our C-

Net is instantiated with a five-layer CNN as illustrated in

Fig. 3 (b). The input of the C-Net is the concatenation of

the two signals XI and Y
(e)
I . The output of the C-Net Fk

is a policy map QI = Fk(XI ⊕ Y
(e)
I ), where the value

of Q(i, j, k) indicates the probability of taking action k at

position (i, j). We define k ∈ {0, 1}, where k = 1 de-

notes the action of adopting the prediction YI(i, j) as con-

text whereas k = 0 ignores the prediction. Then a binary

decision BI(i, j) ∼ QI(i, j) is sampled at each position

to generate the context map KI = (YI + 1) ◦ BI , where

◦ denotes the element-wise matrix multiplication. Conse-

quently, each value in KI signifies the corresponding index

of classes (indexed from one), except for the number ‘0’

that represents the class ‘uncertain’.

Having both Eq. 1 and KI = (YI + 1) ◦ BI , we can

observe a mutual dependency between the predicted seg-

mentation map YI and context map KI . One can decouple

the dependency along the time domain as

Y
t+1
I = Fs(XI ,K

t
I)

K
t
I = (Y t

I + 1) ◦Bt

where B
t ∼ Fk(XI ⊕ Fe(Y

t
I )),

(2)

where t is the iteration index. The decoupled dependence

reveals that the YI and KI can be regarded as a state-action

pair. Therefore, an infinite-horizon discounted Markov de-

cision process (MDP) can be naturally defined with the tu-

ple (S,A, P, r, ρ0, γ), where S is a finite set of states defined

as S = {YI}, A is a finite set of actions defined as A =
{BI}, P : S× A× S → R is the transition probability dis-

tribution defined as P (st+1 = Fs(XI , (st+1)◦at)|st) = 1

(st ∈ S and at ∈ A), ρ0 : S → R is the probability distri-

bution for the initial state, γ ∈ [0, 1] is the discount factor

and r : S × A → R
H′

×W ′

is the reward function. Letting

πFk
denote the probability distribution over the outputs of

the C-Net and η(Fk) denote the expected discount reward

under C-Net Fk, we have

η(Fk) = Es0,a0,...

[

∞
∑

t=0

γ
t
rt

]

, where

s0 ∼ ρ0, at ∼ πFk
(at|st), st+1 ∼ P (st+1|st).

(3)

The behavior of the C-Net can be aligned to the reward

function r by maximizing the expected future discount re-

ward η(Fk). In order to enable the context to incrementally

improve the segmentation, we compute rt(i, j), i.e., the re-

ward on spatial location (i, j) at time step t as

1

ChCw

∑

i′,j′

M(Y t
I (i

′
, j

′), Y t+1
I (i′, j′), LI(i

′
, j

′))

+ β1✶LI (i,j)(K
t
I(i, j)) + β2✶0(K

t
I(i, j)).

(4)

The reward function has three terms. The first term M() is

a measurement function that calculates how much improve-

ment is made from Y t
I to Y t+1

I for a given location, where

i′ ∈ [i− Ch/2, i+ Ch/2], j
′ ∈ [j − Cw/2, j + Cw/2] and

Ch/Cw denotes the height/width of the region considered in

the reward computing for the action at position (i, j). This

is used to encourage the generated context map to improve

the segmentation performance. More specifically, given the

LI(i
′, j′), i.e. the ground-truth at location i′, j′, M() first

computes the correctness of the prediction at time t and t+1
respectively. There are four different cases, i.e. Y t

I (i
′, j′) is

correct/incorrect → Y t+1
I (i′, j′) is correct/incorrect. We as-

sign a reward 1 to the case ‘incorrect → correct’, -1 to the

case ‘correct → incorrect’, 0 to the case ‘incorrect → in-

correct’ and 0.5 to the case ‘correct → correct’. Because

the value of Kt
I at position (i, j) actually takes effect on a

Ch × Cw rectangle region of Y t+1
I (depends on the recep-

tive field of the C-Net), the scores computed by M() are

averaged in the target region. We simply ignore the associ-

ated regions that go beyond the boundary of the image. The

second and third terms ✶LI(i,j)(K
t
I(i, j)) and ✶0(K

t
I(i, j))

are indicator functions that assign a smaller positive rewards

β1 and β2 for the correct context (the semantic information

that is consistent with the ground-truth) and ‘uncertain’ re-

spectively, since effective context is always supposed to be

correct information.

2.4. Contextreinforced Segmentation

We employ the asynchronous advantage actor-critic al-

gorithm [26] to optimize the MDP presented in the previous

section, and the following standard definitions are used for

the value function VFk
, the state-action value function QFk
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and the advantage function AFK

VFk
(st) = Eat,st+1...

[

∞
∑

l=0

γ
l
rt+l

]

QFk
(st, at) = Est+1,at+1...

[

∞
∑

l=0

γ
l
rt+l

]

AFk
(s, a) = QFk

(s, a)− VFk
(s), where

at ∼ πFk
(at|st), st+1 ∼ P (st+1|st).

(5)

where the value function VFk
is estimated by a CNN F v

k (st)
that shares the same weights as C-Net Fk except for the

last layer as shown in Fig.3 (b), and the advantage function

AFk
(st, at) is estimated by

∑k−1
l=0 γlrt+l+ γkVFk

(st+k)−
VFk

(st). The parameters of the C-Net Fk and the value

function F v
k are updated as

θk = θk +∇θ log [πFk
(at|st; θk)]A(at, st)

θv = θv +
∂(R− F v

k (st; θv))
2

∂θv
, where

R =

T−1
∑

l=0

γ
l
rt+l + γ

k
VFk

(st+k).

(6)

Note that Eq.(5) and Eq.(6) together only enforce context

to be beneficial to a fixed S-Net Fs (i.e. fixed the transition

probability distribution in Eq.(3) and Eq.(5)) by maximiz-

ing η(Fk) alone, and could lead to only numerical improve-

ments to p-maps rather than selecting genuinely effective

context. To tackle this problem, we update the two net-

works simultaneously and encourage more exploration of

the C-Net. By doing so, the S-Net is promised to experience

adequately different context configurations during training

and thus prevents the local optimum. The final loss of the

scheme is formulated as

Loss = Lossp + Lossv + λ1Losss + λ2Losse, (7)

where LossP = log [πFk
(at|st; θk)]A(at, st) and Lossv =

(R − F v
k (st; θv))

2 are the policy loss and value loss and

the update rules are defined in Eq.(6). Losss is the

cross-entropy loss of the segment prediction and Losse =
πFk

˙logπFk
is the entropy regularization term of Fk to en-

courage adequate exploration.

3. Experiments

3.1. Datasets and Experimental Settings

ADE20K [39] provides more than 20K scene-centric im-

ages fully annotated with objects and object parts. It is di-

vided into three subsets containing 20,210, 2,000, and 3,000

images for training, validation and testing, respectively. It

has up to 150 classes with 1,038 different image-level labels

including both objects and stuffs. Evaluations on ADE20K

are made on both pixel-wise accuracy (pixAcc) and mean

of the class-wise intersection over union (mIoU).

Cityscapes [8] contains 5,000 frames with pixel-level

annotation and 20,000 weakly annotated images recorded

in street scenes from 50 cities. It involves 19 categories

of both objects and stuffs. The data split follows 2,975

for training, 500 for validation and 1,525 for testing. We
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Step Context Cityscapes(%) Ade20K(%)

0 no 77.59 40.97

2 yes 79.21 42.56

4 yes 79.29 42.63

6 yes 79.29 42.66

Table 1. mIoU of CiSS-Net on test set of Cityscapes and validation

set of Ade20K at iteration steps 0, 2, 4, and 6.

γ
Cityscapes Ade20K

IoUcls iIoUcls mIoU pixAcc

0.1 78.31% 54.39% 41.53% 78.76%

0.3 78.45% 54.61% 41.80% 79.47%

0.9 78.94% 54.97% 42.42% 80.51%

Table 2. Segmentation results (single scale) of our CiSS-Net on

the validation sets of Cityscapes and Ade20K with different γ.

only use the fully annotated data for training to stimu-

late the context learning in our CiSS-Net. We use the

Cityscapes official server to evaluate the performance on

both class-wise/category-wise intersection over union (IoU

class/category) and instance-level intersection-over-union

(iIoU class/category).

Pascal Context [27] provides 4998 fully annotated im-

ages for training and 5105 images for testing, which are

re-annotated from Pascal VOC. We use the most commonly

used 60 classes (59 classes plus the “background” class) in

our evaluation. The performance is evaluated on both global

pixel accuracy (GPA) and mIoU.

3.2. Implementation Details

Fig. 3 (b) shows the architecture of the C-Net. We

generate domain features XI using the first four blocks of

PSPNet [37] pre-trained on the three datasets (PSPNet-101

for Cityscapes and PSPNet-50 for both Ade20K and Pascal

Context). In our S-Net, the Base Net has two convolutional

layers of which the channel, stride and kernel sizes are 512,

1 and 3, respectively; the Bias Net uses the same architec-

ture as the C-Net except that the last convolutional layer is

modified to fit the input/output dimension. Group Normal-

ization [33] is used as the normalization layer. The channel

size in each group is 16.

The CiSS-Net is implemented with Tensorflow and six-

teen Nvidia M40 GPUs. The batch size on each gpu is

2. The Dropout ratio is 0.1 and random mirroring as well

as random resizing by a factor between 0.5 and 2.0 are

adopted. On ADE20K, we randomly crop a 473 × 473 re-

gion in an image and employ Stochastic Gradient Descent

(SGD) to train the network with initial learning rates of

2×10−3 for Base Net and 2×10−4 for both Bias Net and C-

Net. We randomly crop a 713× 713 region on CityScapes,

and we employ SGD to train the network with initial learn-

ing rates of 5 × 10−4 for Base Net and 5 × 10−5 for Bias

Net and C-Net on both Cityscapes and Pascal Context.

λ2
Cityscapes Ade20K

IoUcls iIoUcls mIoU pixAcc

0.001 77.23% 53.62% 41.31% 78.68%

0.005 78.59% 54.47% 41.90% 79.52%

0.01 78.44% 54.38% 42.19% 80.07%

0.02 78.94% 54.97% 42.42% 80.51%

0.05 79.10% 55.04% 42.56% 80.77%

Table 3. Segmentation results (single scale) with different values

of λ2 on validation sets of Cityscapes and Ade20K.

3.3. Hyperparameters

We analyze two important hyper-parameters, γ in Eq.

(3) and λ2 in Eq. (7), in our CiSS-Net. The parameter γ
rewards long-term benefits and λ2 effects the degree of ex-

ploration in the context-reinforced learning in the CiSS-Net.

In all the following tests, parameters β1 and β2 in Eq. (4)

are set to 0.4 and 0.2, respectively; λ1 = 1.0 in Eq. (7) .

Table 2 exhibits the results with different values of γ.

The result improves consistently with the increase of γ. It

demonstrates that the long-term benefit in context learning

plays an important role in our CiSS-Net. We thus set γ =
0.9 to encourage long-term benefits.

Table 3 gives the sensitivity analysis on λ2. It shows that

the performance of our CiSS-Net improves when λ2 runs

from 0.001 to 0.05 while the training does not converge well

when λ2 > 0.15. This suggests that a suitable amount of

exploration is crucial for the learning of effective context.

In our CiSS-Net, we set λ2 = 0.05 to make a trade-off

between convergence and exploration.

3.4. Ablation Study

In the ablation study, we first investigate the necessity of

the RL-based learnable module for context generation and

then discuss the effect of the number of iterations in RL on

the performance of our CiSS-Net.

RL strategy. There are alternative ways to make use

of the context information in p-maps under the framework

of our CiSS-Net. As listed in Table 4, ‘Baseline’ denotes

the approach without the learned context, i.e., no context

map is fed to the S-Net in our CiSS-Net; ‘Baseline+p-map’

shows the performance when the p-map is directly used as

input to the S-Net as context, which is even lower than that

of ‘Baseline’; ‘Baseline+gated(p-map)*’ approximates the

performance of using a gate function to generate context,

where the approximation is made by assigning a very small

number 0.001 to λ2 in the RL to greatly suppress the ex-

ploration. Among all the methods, our CiSS-Net with RL-

based context learning achieves the best performance.

Furthermore, different from the RNN-based attempts

which take complete p-maps as inputs [24, 17, 38, 36], we

seek to explore the p-map to generate another source of

scene context that can be effectively combined with tradi-

tional features. Table 5 further signifies the benefits of us-
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Method Cityscapes(%) Ade20K(%)

Baseline 76.36 40.97

Baseline+p-map 75.19 39.44

Baseline+gated(p-map) ∗ 77.23 41.31

CiSS-Net 79.10 42.56

Table 4. Evaluation on the RL strategy in our CiSS-Net on the

validation sets of Cityscapes and Ade20K. Four alternative ap-

proaches are tested, i.e. the baseline method, the baseline method

fed directly with p-map, the baseline method with a gated p-map

and the CiSS-Net. ∗ indicates that we use the RL approach with

λ2 = 0.001 as a approximation to the gate function.

[24] [17] [38] [36] w/o RL Ours

City. 66.8 - 62.5 76.2∗ 75.2∗ 79.2∗

Ade. - 34.6∗ - 42.6∗ 39.4† 42.6†

Table 5. mIoU performance of CiSS-Net and other RNN-based

methods. w/o RL is our method using complete p-maps. ∗/† de-

note results achieved based on ResNet101/50

ing our design of context learning to facilitate the p-maps as

context. It demonstrates that our proposed RL-based con-

text learning can effectively utilize the context information

in p-maps to boost the performance of our CiSS-Net.

Iteration steps. Table.1 shows the performance of our

CiSS-Net with regard to the iteration index t as denoted in

Eq. (2). Note that the context map K0
I is set to all-zero

and no context information from p-map is involved in the

Segment-Net when t = 0. It can be observed that the per-

formance improves noticeably by utilizing the learned con-

text. Similar to many iterative optimization processes, the

improvement becomes marginal as the iteration continues.

Accordingly, we choose t = 2 in the following tests to bal-

ance the performance and time complexity of inference.

We also visualize the predicted segmentation maps at

t = 0 and t = 2 in Fig. 4, respectively. It can be ob-

served that the CiSS-Net is able to correct mis-segmented

objects/regions as the learned context gets involved into

the segmentation inference. For example, the CiSS-Net

achieves much better segmentation results on the pot, plant,

lamp and desk in the first row; the fence, light in the second

row; and the car, sidewalk, streetlight in the third row, rather

than only refining object boundaries.

3.5. Comparison with the stateoftheart

We further evaluate the performance of our CiSS-Net by

comparisons with the state-of-the-art semantic segmenta-

tion methods. In the following, the results of the Ciss-Net

are given at t = 2 so that the inference time of our CiSS-Net

is competitive to the comparison methods.

ADE20K Table 6 shows the comparison results on

the validation set of ADE20K. ADE20K is a challeng-

ing dataset with complicated scenes and diverse objects.

Results show that our CiSS-Net is able to benefit from

the learned context and achieves the highest performance

Method Backbone mIoU pixAcc

SegNet [1] 21.64 71.00

FCN [25] 29.39 71.32

DilatedNet [34] 32.31 73.55

Cascaded-SegNet [39] 27.51 71.83

Cascaded-DilatedNet [39] 34.90 74.52

RefineNet [21] Res101 40.2 -

PSPNet [37] Res101 41.96 80.64

GRN+LRN(single model) [36] Res101 42.60 -

DSSPN-Softmax [20] Res101 42.03 80.81

Global-Context [15] Res101 38.37 77.76

PSPNet [37] Res50 41.68 80.04

EncNet [35] Res50 41.11 79.73

CiSS-Net (Ours) Res50 42.56 80.77

Table 6. Segmentation results on the validation set of ADE20K.

Our CiSS-Net achieves the best performance among algorithms

with the same backbone ResNet-50. It also obtains competitive

or even better performance in comparison to algorithms with the

much complicated backbone ResNet-101.

Method Backbone GPA mIoU

O2P [2] - - 18.1

CFM [10] - - 34.4

BoxSup [9] VGG16 - 40.5

Context-CRF [22] VGG16 71.5 43.3

FCN [25] FCN-8s 67.5 39.1

CRF-RNN [38] FCN-8s - 39.3

RefineNet [21] Res101 - 47.1

Context-Contrasted [11] Res101 78.4 51.6

Context-Contrasted (CCL) [11] Res101 76.6 48.3

Global-Context [15] Res101 73.8 46.5

PSPNet† [37] Res101 76.0 47.8

Context-Contrasted [11] Res50 - 48.1

Context-Contrasted (CCL) [11] Res50 - 46.3

CiSS-Net (Ours) Res50 76.5 48.7

Table 7. Segmentation results on Pascal Context. Our CiSS-Net

achieves the state-of-the-art performance.† indicates the perfor-

mance is reported in [11].

(42.56%/80.77% mIoU/pixACC) among the algorithms

with the same backbone, ResNet-50. Moreover, our CiSS-

Net with ResNet-50 also outperforms algorithms with much

complicated backbones, e.g. ResNet-100.

Cityscapes Table 8 shows comparison results on the test

set of Cityscapes. In this test, only the 5,000 finely anno-

tated images in Cityscapes are involved in the training of

CiSS-Net for fair comparison. Among all the compared al-

gorithms, our CiSS-Net performs the best.

Pascal Context In Table 7, we evaluate the performance

of our CiSS-Net on Pascal Context without utilizing ad-

ditional data. This table shows that the CiSS-Net outper-

forms state-of-the-art methods with the same backbone and

is comparable with those works with deeper backbone.
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Method IoUcla. IoUcat.

SegNet [1] 57.0 79.1

CRF-RNN [38] 62.5 82.7

FCN [25] 65.3 85.7

DPN [24] 66.8 86.0

DilatedNet [34] 67.1 86.5

LRR [12] 69.7 88.2

DeepLab [5] 70.4 86.4

Context-CRF [22] 71.6 87.3

RefineNet [21] 73.6 87.9

FRRN [29] 71.8 88.9

GRN+LRN(single model) [36] 76.2 -

DSSPN(Universal) [20] 76.6 89.6

DepthAware [18] 78.2 89.7

PSPNet [37] 78.4 90.6

CiSS-Net (Ours) 79.2 90.7

Table 8. Segmentation results on Cityscapes. Our CiSS-Net

achieves the best performance by using only the fully annotated

images in training.
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Figure 5. Visualization of the context maps generated at step 2.

The white color indicates the uncertain regions generated by the

C-Net. It can be observed that the context tends to progressively

perceive regions/objects with high reliability while ignoring those

with large ambiguity, e.g. the details and the far end of the street

in the second and last columns, as context information.

3.6. Discussion on the Learned Context

First of all, the learned context map is not composed of

high-confidence pixels of p-maps. The information in the

learned context map is selected to have long-term benefits to

the segmentation. Taking Fig. 1 as an example, the region

containing the reflection of trees with a higher probability

(0.993) is ignored while the water region along the left edge

with a lower probability (0.870) is selected in step 1 by our

C-Net. More examples can be found in Fig. 5, e.g. the

right-most grasses (probability=0.929) rather than the left

most board (0.976) in the 4th image is selected as context.

Second, we observe that most of the contextual informa-

tion provided by the context map is background objects and

stuff, such as the floor, wall and cabinet in the (a) and (c)

in Fig. 5, instead of regions/objects with large ambiguity,

such as the details and end of the street in the (b) and (d) in

Fig. 5. We believe that this kind of contextual information

contains the overall layout of the scene that has rich seman-

tic cues, constraints and even location priors of the current

image. Thus it is very beneficial for the predictions of other

items in the scene. It also echoes the first term of the reward

function in Eq. (4) which encourages the pursuit of context

that improves segmentation predictions.

Third, we notice that our RL-based context learning au-

tomatically provides a unique information, the ‘uncertain

class’. This information can be very helpful in identify-

ing the ‘hard’ examples or high ambiguity regions in se-

mantic segmentation, as illustrated by the white regions in

Fig. 5. One the other hand, we also find that the uncer-

tain regions contain lots of boundaries and small objects.

It indicates that the learned context may lack enough sup-

port for these regions. The iIoU performance on Cityscapes

that puts more weight on small objects also supports our ob-

servations, where the class-level and category-level iIoU of

our methods are 55.6% and 78.0%, respectively, which are

a little bit lower than the best ones 56.7%/78.6% (full ta-

ble is provided in supplementary materials). Therefore, we

will focus more on enhancing the performance of our CiSS-

Net on boundaries and small objects, e.g. by introducing

boundary refinement ideas and mining hard examples from

the ‘uncertain class’ to the context learning, in future work.

4. Conclusion

In this paper, we propose using the p-maps as another

source of the scene context in addition to the traditional con-

textual features. The context that has long-term benefits for

the segmentation inference is selectively and adaptively ex-

tracted from p-maps via a dedicated module, Context Net,

by reciprocally interacting with the segmentation network.

By formulating the above process as MDP, we optimize

the Context Net through reinforcement learning without in-

troducing any extra supervision, and we further propose a

fully end-to-end context-reinforced semantic segmentation

network to efficiently facilitate such learning process. Nu-

merical and visualization results demonstrate the benefits

brought by the proposed context-reinforced scheme. In the

future, we will make effort on enhancing the performance

of our CiSS-Net for small object and explore the potential

of the context-reinforced concept for other cognition tasks.
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