
Adapting Object Detectors via Selective Cross-Domain Alignment

Xinge Zhu† Jiangmiao Pang§ Ceyuan Yang† Jianping Shi‡ Dahua Lin†

†The Chinese University of Hong Kong §Zhejiang University ‡SenseTime Research

{zx018,cyyang,dhlin}@ie.cuhk.edu.hk

pjm@zju.edu.cn, shijianping@sensetime.com

Abstract

State-of-the-art object detectors are usually trained on

public datasets. They often face substantial difficulties when

applied to a different domain, where the imaging condition

differs significantly and the corresponding annotated data

are unavailable (or expensive to acquire). A natural rem-

edy is to adapt the model by aligning the image representa-

tions on both domains. This can be achieved, for example,

by adversarial learning, and has been shown to be effective

in tasks like image classification. However, we found that

in object detection, the improvement obtained in this way is

quite limited. An important reason is that conventional do-

main adaptation methods strive to align images as a whole,

while object detection, by nature, focuses on local regions

that may contain objects of interest. Motivated by this, we

propose a novel approach to domain adaption for object de-

tection to handle the issues in “where to look” and “how to

align”. Our key idea is to mine the discriminative regions,

namely those that are directly pertinent to object detection,

and focus on aligning them across both domains. Experi-

ments show that the proposed method performs remarkably

better than existing methods with about 4% ∼ 6% improve-

ment under various domain-shift scenarios while keeping

good scalability.

1. Introduction

Over the past several years, the advances in deep learn-

ing has significantly pushed forward the state of the art

in various tasks in computer vision, such as object de-

tection [3, 7, 14, 15, 18, 37, 34] and semantic segmen-

tation [27, 47]. Yet, it should be noted that such sig-

nificant progress relies, to a large extent, on large-scale

annotated training data. Whereas several public bench-

marks [6, 11, 30] have already existed, they can only cover a

very limited range of scenarios. In real-world deployment,

the changes in environmental conditions, e.g. imaging sen-

sors, weather, and illumination, can cause significant do-

(a) (b)

Figure 1. We show two examples from the Cityscapes (a) and

Foggy-Cityscapes (b) dataset, respectively. It can be found that

there exists large domain gap between two images in appearance

distributions. The model trained on the Cityscapes dataset is di-

rectly applied on the Foggy-Cityscapes (from a → b), and it can

be observed that performance drop occurs (boxes with green color

mean correct results and red color denotes missing object).

main shift, and thus substantial performance degradation,

as shown in Fig 1.

A natural idea to tackle this issue is to obtain new train-

ing data as the domain shifts. Unfortunately, this approach

is not always feasible in practice, due to the huge cost

needed for large-scale annotation. The cost is especially

high for object detection or instance segmentation, as it re-

quires detailed annotation, e.g. bounding boxes or masks

on individual objects. An appealing alternative is unsuper-

vised domain adaptation, namely adapting a model trained

on standard datasets to a new domain (often referred to

as the target domain), but without annotating the target

data. A variety of methods have been developed along this

line, which have shown encouraging results on image clas-

sification [1, 12, 13, 16, 28, 43] and semantic segmenta-

tion [20, 39, 42, 46, 49]. However, how to effectively adapt

an object detector remains a widely open question.

In our initial attempts, we directly applied existing do-

main adaptation methods [10] to object detection (with

necessary technical adjustment), only to find very limited

performance gain (more details are showed in the experi-

ments). Our investigation into this issue reveals a key dif-

ference between image classification and object detection:

in the context of object detection, we usually see an image

of a complex scene, where the objects of interest only oc-

cupy a small region thereof. Hence, attention to such local
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regions is crucial to the success of object detection. To the

contrary, conventional domain adaptation methods typically

consider the input image as a whole when trying to bridge

the domain gap, while neglecting the local nature of object

detection. Consequently, their efforts to minimize the do-

main gap at the image level are met with fundamental dif-

ficulties (due to the significant variations in both structures

and appearance); yet on the other hand, the local objects are

not sufficiently attended.

Motivated by these findings, we propose a new approach

to adapting object detectors. The basic idea is to reposition

the focus of the adaptation process, from global to local.

Specifically, we develop a new framework that consists of

two key components, region mining and region-level align-

ment, which respectively address the questions of “where

to look” and “how to align”. Here, region mining resorts

to a grouping strategy to identify the most important lo-

cal regions, so as to enhance the robustness against outliers

(which often arise in practice); while region-level alignment

first leverages the region proposal in the source domain to

reweigh the target region proposals, thus overcoming the

difficulty caused by the lack of target annotations, and then

performs the region-level domain alignment in an adversar-

ial manner. Overall, the cooperation of these two compo-

nents leads to an adaptation process that focuses on the re-

gions of interest, thus improving the effectiveness.

We tested the proposed method under various domain-

shift settings, including normal-to-foggy (Cityscapes

to Cityscapes-foggy), synthetic-to-real (Sim10k to

Cityscapes), and cross-camera (Kitti to Cityscapes). On

these experiments, the proposed method yields consid-

erable improvement over existing methods, about 4%
to 6% in mAP. We also extend the method to instance

segmentation, obtaining notable performance gain, which

further demonstrates its strong generalization capability

and scalability.

The contributions of this work mainly lie in three as-

pects: (1) Our studies reveal a crucial aspect to the success

of object detector adaptation, namely, the focus to local re-

gions when bridging domain gaps. (2) We develop a new

domain adaptation framework for object detection, which

repositions the focus of the adaptation process, through ef-

fective region mining and region-based domain alignment.

(3) We conduct extensive experiments to compare the pro-

posed methods with others on various settings, where it

yields notable performance gains not only in object detec-

tion but also in instance segmentation.

2. Related Work

Object Detection. Object detection has been a central

topic of computer vision. Following the lead of R-

CNN [15], a number of object detection frameworks based

on convolutional networks have been developed in recent

years, which significantly push forward the state of the art.

Whereas single-stage detectors have emerged as a popular

paradigm [26, 36], many top-performing frameworks still

adopt the proven two-stage pipeline, e.g. Fast R-CNN [14],

Faster R-CNN [37], and Mask R-CNN [18], etc.

However, even top-notched object detectors still face

signficant challenges when used in real-world settings. The

difficulties usually arise from the changes in environmental

conditions. For example, a state-of-the-art detector trained

on a public dataset often finds it difficult to work reli-

ably in an autonomous driving system where the weather

and imaging conditions can vary significantly – existing

datasets [6, 11, 22] can only provide limited coverage of

such cases. Whereas collecting more data under various

conditions can help, it is prohibitively expensive and labor-

demanding.

Domain Adaptation. Domain adaptation [2, 32], namely

the techniques to adapt a model to a new domain without

re-training from scratch, has received increasing attention

in recent years. It is often considered as a promising rem-

edy to tackle the difficulties caused by the lack of domain-

specific training data. For domain adaptation, a typical ap-

proach is to estimate the domain gap formalized in certain

ways and minimize it [12, 16, 28]. Some recent methods go

further along this line, using more effective ways to reduce

the domain gap, e.g. incorporating a domain classifier with

gradient reversal [9], or directly reverting the distribution

distances [33]. Other representative methods include sub-

space alignment [8], asymmetric kernel transforms [24],

tensor-based adaptation [29], and shared encoding for clas-

sification and reconstruction [13]. It is noteworthy that the

works mentioned above mainly devised on the task of im-

age classification and semantic segmentation. They simply

consider the entire image as a whole, while focusing on the

design of losses or metrics.

Domain Adaptation for Detection. Whereas there have

been extensive studies on the domain adaptation methods

for image classification and semantic segmentation, the

study on adapting object detectors is still at a relatively ear-

lier stage. That being said, several ideas have been explored

in existing attempts. Raj et al. [35] tried to adapt class-

specific R-CNN detectors by subspace alignment. Inoue

et al. [21] proposed a weakly-supervised object detection

framework, where domain transforms and the pseudo-label

technique are employed. Chen et al. [4] incorporated a gra-

dient reversal layer [9] into a Faster R-CNN framework in

order to reduce the domain gap.

It is worth noting that while the aforementioned efforts

have shown encouraging results, the improvement remains

limited. As mentioned, a common issue of these works is

that they mainly focus on bridging the whole-image repre-

sentations. This may not be very effective, considering the

local nature of object detection. Compared to these works,
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Figure 2. The pipeline of our framework. Two major components, i.e. “Where to Look” and “How to Align” are illustrated with two dashed

rectangles. For the first component, an ROI-based grouping strategy is designed to mine the discriminative regions for two domains. We

display the grouping procedure with cluster number = 2 (Note that ⋆ and ⋆ denote the centroids of clusters). For the second one, our

model performs the adjusted region-level alignment using generators (Gs and Gt), discriminators (Ds and Dt) and weighting estimator

(Dw). We use Faster R-CNN as the detection model (F) which consists of the backbone, RPN and head part. (Best viewed in color)

our proposed method differs essentially in that it reshapes

the focus of domain alignment, from global to local.

Domain Adaptation through Adversarial Learning.

Generative Adversarial Network (GAN) [17] has received

great attention in recent years. Inspired to this, some recent

works extend this new learning paradigm to domain adapta-

tion. In [1, 43], adversarial discriminators are incorporated

to mitigate the impact of domain gap. In [19, 25, 48, 45],

unsupervised style transforms are learned to close the gap in

appearance between the source and target domains. Other

efforts [5, 9, 20, 49, 41], instead focus on the learning of

domain-invariant features. In our work, we adopt adversar-

ial learning as the basic machinery for learning region-level

alignment. It is important to note that our framework does

not require additional annotations and the entire network

can be trained in an end-to-end fashion.

3. Methodology

3.1. Framework Overview

We consider a problem that involves two domains, a

source domain where annotated training data are available

and a target domain where we only have access to the im-

ages. Our task is to train a detector that can generalize well

to the target domain, utilizing the data in both domains.

Specifically, we desire to obtain a domain-invariant feature

representation that works equally well in both domains.

To this end, we propose a selective adaptation framework

based on region patches. The basic idea is to introduce an

additional module to reconstruct the image patches from the

features, and then align the reconstructed patches in both the

source and target domains. During the training this module

can guide the learning of features via back-propagation, re-

ducing the gap between domains. After training, the align-

ment module is no longer needed. Only the detection part

will be used for effective inference, while benefiting from

the learned domain-invariant features.

As mentioned, aligning the entire image is difficult, due

to large variations in background appearance and scene

structures. Our framework, instead, focuses on aligning

those local regions that contain objects of interest. As

shown in Figure 2, the framework consists of two key com-

ponents: (1) a region mining component to address the

question of “where to look”, selecting those important re-

gions by grouping the object proposals; and (2) a region-

level alignment component to address the question of “how

to align“, which learns to align the image patches recon-

structed from the features of the selected regions, via adver-

sarial learning. Particularly, for this component, two gen-

erators Gs and Gt are respectively used to generate image

patches based on the features extracted from the source and

target regions, and then a set of discriminators are intro-

duced to bridge the gap between them. In what follows, we

will present these components in detail.

3.2. Region Mining

The region mining component first identifies important

regions that cover the objects of interest by grouping, and

then derives representations for these regions by reassigning

the RoI features accordingly.

Grouping. We desire to find those regions that cover ob-

jects of interest. A natural idea is to utilize the region pro-

posals derived from the RPN. However, we are still fac-

ing two challenges: (1) We wish to obtain regions of fixed

size, in order to make it convenient for further processing,

e.g. feeding them to the region alignment module. But the

region proposals can distribute arbitrarily over the image.
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Figure 3. We show the workflow of the grouping scheme and weighting estimator. Image (a) → (b) is the grouping operation, in which

yellow rectangles are the region proposals and red squares denote the discriminative regions. ⋆ is the centroid of cluster (denoted by Ψ)

and also the center of discriminative region. (b) → (c) is the process of weighting estimation. The green numbers denote the scores of

discriminative regions from target domain. (Best viewed in color)

(2) The region proposals from the RPN are often very noisy.

It is unnecessary to cover them all.

We tackle this problem by a simple centroid-based

grouping scheme. Specifically, after the RPN, we get Nreg

region proposals in the form of {cx, cy, w, h}, where cx
and cy are the center coordinates, w the width, and h the

height. By applying K-means clustering to the center co-

ordinates, we can obtain K clusters, whose means can be

considered as the centroids of the grouped regions. Note

that in our framework, we fix the size of each region. Hence,

given the centroids (from K-means), we automatically have

the regions. Figure 3((a)→(b)) shows an example of re-

gion grouping with K = 4. We can find that the grouping

scheme above can identify those regions that cover signif-

icant objects, while being resilient to the presence of false

proposals.

Feature Reassignment. Given the selected regions, we

derive the feature representations thereof by reassigning the

RoI features according to the grouping results. Specifically,

each region is associated with a subset of region proposals

assigned to the corresponding K-means cluster. By stack-

ing the corresponding RoI features, we can obtain a matrix

Θk ∈ R
mk×d to represent the k-th region, where mk is the

number of region proposals assigned to the k-th cluster, and

d is the feature dimension.

This representation is inconvenient to work with, as the

number mk can vary. It is desirable to fix the number of

features. For this purpose, we adopt a simple select-or-copy

scheme. Given a pre-defined number m, if mk is greater

than m, we retain only the top-m features; if mk is less than

m, we simply make copies of the assigned features until we

get enough. In this way, we can derive a fixed number of

features Θ̂k ∈ R
m×d to represent each region.

3.3. Adjusted Region­level Alignment

After deriving the important regions and their feature

representations, we align target regions to the source dis-

tributions in an adversarial manner. We first describe the

region-level adversarial alignment scheme, then introduce

the weighting estimator to perform the adjusted region-level

alignment, in order to achieve robust adaptation. Finally, we

integrate different components to form a total objective.

Region-Level Adversarial Alignment. Following the

conventional practice of adversarial domain adaptation [10,

25, 39], we attach two generators Gs and Gt to reconstruct

the mined K regions based on the cluster-wise feature rep-

resentations Θ̂. We also introduce two discriminators Ds

and Dt to distinguish the real and fake inputs and impose

the domain alignment constraints. The standard joint ob-

jective Ladv is shown as following, which combines both

within-domain and cross-domain losses, as

Ladv(F, G,D) = Ladv,Ds
+ Ladv,Dt

+ Ladv,Gs

+ Ladv,Gt
+ Ladv,F.

(1)

Each term follows a standard adversarial formulation as:

Ladv(Θ̂,P;G,D) = E[logD(P)] + E[log(1−D(G(Θ̂)))],

(2)

where P denotes the real image regions obtained based on

the clustering centers Ψ.

Specifically, for discriminators Ds and Dt, within-

domain losses, Ladv,Ds
and Ladv,Dt

, aim to classify the

real input as real (or fake input as fake). For generators Gs

and Gt, Ladv,Gs
and Ladv,Gt

classify the fake input as real

within one domain. For detection model F, Ls
adv,F performs

the cross-domain function by classifying the fake source in-

put as real target (i.e., feeding the target discriminator with

fake source, and similar operation for Lt
adv,F), which im-

poses the alignment constraint on detection model. By

reshaping the focus of adaptation, from global to local, it

is more effective to achieve the domain alignment without

the difficulties in global statistics, such as significant differ-

ences in structures and field of view.

Weighting Estimator Dw. Since there is no ground truth

bounding box on the target domain, the region proposals

extracted from RPN on target image often fail to cover the

objects of interest, especially in the early stage. For exam-

ple, the recall on target domain is only 35% ∼ 45% for the
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first 10 epoch. Hence, it is important to emphasize those tar-

get regions that are truly relevant to the region-level align-

ment. To this end, we can resort to the ground-truth bound-

ing boxes in the source domain, which can provide useful

references to guide the focus in the target domain.

Based on these findings, we introduce the estimator to
weigh the target regions according to how closely they
match the source ones. We train the estimator to discrim-
inate representations between source region proposals (la-
beled as 1) and target proposals (labeled as 0), and the bi-
nary cross-entropy loss is used as the objective function.

Lw(Θ̂s, Θ̂t;Dw) = E[log(Dw(Θ̂s))]+

E[log(1−Dw(Θ̂t))],
(3)

where Θ̂s and Θ̂t denote the clustered region representa-
tions of source domain and target domain after reassign-
ment, respectively. Here, the scores from Dw are good in-
dicators on how well a target region match the source. We
turn these scores into weights for target regions, by apply-
ing the sigmoid activation function to the output of estima-

tor Dw(Θ̂t) ∈ R
K×m (all notations are followed in Sec-

tion 3.2) and taking the average, thus obtaining the weight-
ing score Wt ∈ R

K . We show the workflow of similarity
estimation in Figure 3((b)→(c)). It can be observed that the
higher score indicates that the target region is more likely
to contain objects of interest and more similar to the distri-
bution of the source patches. Since Wt assign weights for
target regions, it applies to the terms involving target do-
main only:

Wt · Ladv(F, G,D) = Ladv,Ds
+WtLadv,Dt

+ Ladv,Gs

+WtLadv,Gt
+ Ls

adv,F +WtL
t
adv,F.

(4)

Here, we the notation Wt · Ladv to provide a simple refer-

ence to the expression on the right hand side.

Total Objective Function. By incorporating the weight-
ing score Wt, the total optimization of adjusted adversarial
alignment can be formulated as:

min
F,G,Dw

max
D

Ldec(F) +Wt · Ladv(F, G,D) + Lw(Dw), (5)

where Ldec is the loss for detection task, i.e., Ldec = Lcls+
Lloc. Lcls is the cross-entropy loss and Lloc denotes the

smooth L1 loss. With the constraint of adjusted region-level

adversarial alignment, the training process will encourage

domain-invariant features through back-propagation.

3.4. Network Optimization

Our full objective is to update the four components, in-

cluding the detection model F, the generators Gs and Gt,

the discriminators Ds and Dt, and the estimator Dw. Inher-

iting the standard procedure of GAN [17], we alternate the

optimization between four steps: 1) update Ds and Dt; 2)

update Dw; 3) update Gs and Gt; 4) update F.

K m region-size

Type1 2 256 512×512

Type2 4 128 256×256

Type3 8 64 128×128

Table 1. Three sets of grouping parameters.

Update Discriminators Ds and Dt. We train these dis-

criminators to distinguish between the real regions and the

reconstructed ones. For the target image, the score Wt

is used to weigh target regions. The loss for this step is

LD = Ladv,Ds
+WtLadv,Dt

.

Update the Weighting Estimator Dw. We train the

weighting estimator Dw to measure the contributions of dif-

ferent target regions. The loss is given by Eq.(3).

Update Generators Gs and Gt. The goal of this step is to

encourage realistic output from the generators. The loss for

this step is LG = Ladv,Gs
+WtLadv,Gt

.

Update the Detection part F. We aim to close the gap

between the distributions in the source and target domains,

while maintaining the detection performance. Hence, the

overall loss is the combination of two parts, i.e. detection

loss and adversarial loss. Note that this adversarial loss is

to perform the cross-domain function. The overall loss is

formulated as LF = Ls
dec,F + λ(Ls

adv,F +WtL
t
adv,F).

3.5. Implementation Details

Detection Model. We follow the detection model used

in [4] that adopts Faster R-CNN [37] with the VGG16 [40]

architecture.

Grouping Strategy and Centroid-based Reassign-

ment. For this part, there are several pre-defined

grouping parameters to determine the clustering. In our

implementation, three sets of parameters are designed to

verify the effect of grouping strategy, which are chosen by

cross-validation and shown in Table 1. For example, Type1

denotes that the number of cluster (K) is 2; the number of

proposals in one cluster (m) is 256; the reconstructed two

region patches have size of 512 × 512 (all notations are

followed in Section 3.2).

Generators, Discriminators and Estimator. For the gen-

erators, it consists of bilinear upsampling and convolu-

tional layers, following with instance normalization [44]

and leaky ReLU activation [31]. The layer number varies

with the size of reconstructed patch image. Similarly, we

also use the convolutional layer with kernel size 3 × 3 and

stride 2, with leaky ReLU activation to form the discrim-

inators. For the weighting estimator, we follow the com-

ponents in the discriminator. To train the generators, we

use the Adam optimizer [23] with learning rate of 1e-4 and

momentums set as 0.9 and 0.99. For learning the discrim-

inators, we use the SGD with the learning rate of 1e-4 and
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Methods person rider car truck bus train motorbike bicycle mAP

Source-only 29.7 32.2 44.6 16.2 27.0 9.1 20.7 29.7 26.2

Chen et al. [4] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

Ours-Type1(K=2;m=256;512×512) 33.6 37.5 47.8 23.1 39.2 15.2 29.3 34.7 32.6

Ours-Type2(K=4;m=128;256×256) 33.9 39.7 49.7 21.3 39.4 21.9 27.6 34.6 33.5

Ours-Type3(K=8;m=64;128×128) 33.5 38 48.5 26.5 39 23.3 28 33.6 33.8

Table 2. Results of domain adaptation for object detection from Cityscapes to Foggy-Cityscapes (normal → foggy).

Methods car AP

Source-only 33.96

Chen et al. [4] 38.97

Ours-Type1(K=2;m=256;512×512) 41.97

Ours-Type2(K=4;m=128;256×256) 42.70

Ours-Type3(K=8;m=64;128×128) 43.02

Table 3. Results of detection adaptation from synthetic data to real-

world data.

the weight decay of 5×1e-4.

4. Experiments

In this section, we first provide the detailed experimen-

tal setup, then evaluate our adaptation framework on ob-

ject detection under various settings, including normal-to-

foggy, synthetic-to-real and cross-camera adaptation. Fur-

thermore, extensive ablation studies are conducted to val-

idate each component. In the end, we extend our method

to the instance segmentation task to verify its scalability

among region based tasks.

4.1. Experimental Setup

Our experimental setting on detection adaptation follows

the setup in [4]. Several datasets are used in our experi-

ments, including Cityscapes dataset [6], Foggy-Cityscapes

dataset [38], KITTI [11] and SIM-10k dataset [22]. Dur-

ing training, images and annotations (bounding boxes and

object categories) are provided for source domain, and only

images are available for target domain. We resize the image

to the shorter side of 512 pixels, and use the batch size = 1

(i.e., one source image and one target image) to fit the GPU

memory. We set the total training epoch as 25 and λ = 0.1
and warmup strategy is used during training. For all the ex-

periments, we report mean average precisions (mAP) with

a threshold of 0.5 to evaluate different methods.

4.2. Domain Adaptation for Detection

In this section, we compare our method with the state-

of-the-art domain adaptation for detection [4]. Note that

other related works, are either with weakly supervised set-

tings [21] or with class-specific settings [35], and cannot be

directly compared.

Methods car AP

Source-only 37.4

Chen et al. [4] 38.5

Ours-Type2(K=4;m=128;256×256) 41.9

Ours-Type3(K=8;m=64;128×128) 42.5

Table 4. Results of cross camera adaptation from Kitti dataset to

Cityscapes dataset.

Normal to Foggy. In this experiment, we use the

Cityscapes dataset as our source domain, and all images

and annotations in Cityscapes are used. Foggy-Cityscapes

dataset is compatible with the Cityscapes among the anno-

tations and data split. We use the training set of Foggy-

Cityscapes as the target domain (only images), and report

the results on the validation set of Foggy-Cityscapes. Note

that we follow [4] to utilize the rectangle of instance mask

in Cityscapes as the ground truth bounding boxes.

The results are reported in Table 2. Eight categories are

used in the evaluation. Source-only denotes that the method

is trained only using source images without domain adapta-

tion. We report three variants of our framework described in

Table 1, in which we apply three different sets of grouping

hyper-parameters. From the table, it can be observed that

all our methods outperform the existing method [4] with

a large margin (i.e., about 6% performance gain), which

demonstrates the region-level adaptation could improve the

detection performance under different weather conditions.

Synthetic to Real. Another domain-shift scenario is from

synthetic data to real-world image. Due to the huge cost of

human labeling, synthetic data offers an alternative. How-

ever, the model trained on synthetic data often suffers a sig-

nificant drop on real-world data. Hence, domain adapta-

tion from synthetic to real-world is desired and we conduct

adaptation experiment under this setting to investigate the

effectiveness of our method. In our implementation, SIM-

10k dataset is used as the synthetic dataset, in which bound-

ing boxes of category Car are provided and total 10,000

images are used in the training stage. The target domain

is Cityscapes and we use its validation set for evaluation.

Note that because only category car is used in the training,

the evaluation of Cityscapes also performs on the car.

The results of different methods are reported in Table 3.

It can be observed that all three variants of the proposed
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Variants mAP

Source-only 26.2

Ours-Type2 w/o Generators 32.8

Ours w/o Discriminators 27.9

Ours w/o Estimator 32.3

Ours-Type2(K=4;m=128;256×256) 33.5

Ours-Type3(K=8;m=64;128×128) 33.8

Table 5. Ablation studies for different components.

method achieve the much better performance than the exist-

ing methods, which consistently validates that our region-

level adaptation framework does reduce the domain shift.

More specifically, our method with Type3 (8 clusters) ob-

tains +4% performance gain compared with the state-of-the

art model [4], and +9% gain compared with our baseline

method (i.e., Source-only).

Cross Camera Adaptation. Different camera setups

widely exist in autonomous driving dataset. We thus per-

form the cross camera adaptation from Kitti dataset to

Cityscapes dataset. Since the image size in Kitti dataset

is 1250 × 375, inconsistent with Cityscapes dataset, we re-

size the image from Cityscapes so that the shorter length is

375 pixels long. Due to the shorter size 375, Ours-Type1

variant (region-size of 512 × 512 is larger than 375) is not

conducted on this adaptation experiment. For the evalua-

tion, we only report the common category, car, among two

datasets. The results are reported in Table 4. It can be

observed that our proposed methods consistently achieve

better performance over other baselines. Specifically, our

methods obtain a performance gain of about 4% than [4].

4.3. Ablation Studies

In this section, we perform the thorough ablation exper-

iments to investigate the effect of different components in

our method, the effect of region-level alignment and the ef-

fect of the designed ROI-based grouping strategy. These

experiments demonstrate different contributions of compo-

nents and provide more insights of our proposed method.

Effect of Different Components. In this part, we design

several variants of our model to validate the contributions of

different components. These variants are shown as follows:

• Ours w/o Generators; we remove generators and per-

form adversarial alignment in region feature level.

• Ours w/o Discriminators; we perform the adaptation

by jointly training the detectors and reconstructing

region-level RGB images.

• Ours w/o Weighting Estimator: Weighting estimator is

removed, thus all target regions are treated equally.

The results are reported in Table 5. All experiments

are conducted on the adaptation from Cityscapes to Foggy-

Methods mAP

Source-only 26.2

Ours-Global(1024×512) 29.8

Ours-Type1(K=2;m=256;512×512) 32.6

Ours-Type2(K=4;m=128;256×256) 33.5

Ours-Type3(K=8;m=64;128×128) 33.8

Table 6. Ablation studies for image-level v.s. region-level adapta-

tion. Ours-Global denotes the image-level adaptation.

Fixed-Location Strategy ROI-based Grouping Strategy 

Figure 4. We show two examples from the fixed-location strategy

and the ROI-based grouping strategy, respectively. We display two

types of strategies with cluster number K = 2 (top two figures) and

K = 4 (bottom two figures).

Cityscapes. We use the Type2 to setup the grouping strat-

egy. It can be observed that removing the discriminators

(Ours w/o Discriminators) gets much worse compared with

our full model, which indicates the discriminators do help

align the distributions. The performance of Ours-Type2 w/o

Generators (mAP=32.8%) demonstrates that the feature-

level alignment of patches also achieves the adaptation,

while reconstruction of the regions further makes it learn the

structural information of image patches and aids the align-

ment. The designed Weighting estimator also yields an im-

provement, which validates our conjecture that biased pro-

posals might introduce incorrect guidance and the estimator

could alleviate this impact.

Image-level v.s. Region-level. To verify the effectiveness

of the region-level adaptation, we compare our region-level

alignment to the whole-image alignment. In this experi-

ment, we design the variant of Ours-Global, which utilizes

the features extracted from the backbone network to recon-

struct the whole image and perform the domain adversarial

alignment on the image level. The ablation is conducted

on the experiment from Cityscapes to Foggy-Cityscapes.

We report the results in Table 6. It can be found that our

region-level adaptation methods (Type1, Type2 and Type3)

do achieve the better performance and yield an improve-

ment of about 4% over the image-level adaptation method.

The results demonstrate that our region-level alignment bet-

ter matches the nature of detection task and is more effective

than global statistics alignment for the detection adaptation.
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Methods K m size mAP

Source-only - - - 26.2

Ours-Fixed1 2 256 512 × 512 31.5

Ours-Type1 2 256 512 × 512 32.6

Ours-Fixed2 4 128 512 × 256 30.4

Ours-Type2 4 128 256 × 256 33.5

Table 7. Experimental results of different strategies. Ours-Fixed1

and Fixed2 are the methods using the fixed location strategy.

Fixed Location Strategy v.s. ROI-based Grouping Strat-

egy. In this experiment, we perform an ablation study for

investigating the effect of the designed ROI-based grouping

strategy. Since our grouping strategy aims to dynamically

mine the regions which are more likely to contain the ob-

jects of interest, to verify its effectiveness, we design a fixed

location strategy, which extracts the regions from fixed lo-

cations without considering the guidance of the region pro-

posals, as the competitor.

We show examples of the fixed location strategy on the

left part of Figure 4, and the right part is the example of

the ROI-based grouping strategy. More specifically, the re-

gions used in the fixed location strategy are uniformly di-

vided. For the feature representations of region proposals

(i.e., features before ROI-Pooling.), we also split them into

several parts based on the center coordinates of region pro-

posals, i.e., if the center is located on the left region, then its

feature will be applied to the reconstruction of left part. The

detailed setting of fixed location strategy one (named Ours-

Fixed1) is K=2, m=256 and region-size of 512 × 512, and

Ours-Fixed2 is K=4, m=128 and region-size of 512 × 256

(Note that we follow the notations in Table 1). As shown in

Figure 4, in the fixed location strategies, all patches make

up the whole image in order to cover all possible objects.

The results are reported in Table 7. It can be observed

that under the same setting of cluster (Our-Fixed1 v.s. Our-

Type1 and Our-Fixed2 v.s. Our-Type2), our grouping strat-

egy achieves better performance compared to the fixed loca-

tion strategy. Specifically, our ROI-based grouping strategy

yields an improvement of 3% using Ours-Type2 compared

with Ours-Fixed2, which demonstrates that the fixed loca-

tion strategy may introduce erroneous bias during adapta-

tion because it already contains significantly different field

of view, while our grouping strategy is able to focus on the

desired regions under the guidance of region proposals.

4.4. Domain Adaptation for Instance Segmentation

In this section, we conduct the proposed domain adapta-

tion framework on instance segmentation task to verify the

scalability of our model. Since the instance segmentation is

a region based task (the ground-truth bounding box is given

during training), it is also a good choice to investigate the

effectiveness of the region-level adaptation.

In our implementation, we extend the proposed adapta-

Methods K mAP (Box) mAP (Mask)

Faster R-CNN [37] - 26.2 -

Source-only - 32.8 26.6

Ours-Type1 2 37.1 30.8

Ours-Type2 4 38.4 31.4

Ours-Type3 8 37.5 30.9

Table 8. Experimental results of the domain adaptation for in-

stance segmentation. The adaptation is from Cityscapes to Foggy-

Cityscapes. Faster R-CNN is trained on source domain with the

ground truth bounding box only, thus we just report the mAP of

bounding box.

tion framework to the instance segmentation task by adding

the mask branch and ROI-Align described in Mask R-

CNN [18]. For the adaptation part, we inherit the setting

in Table 1 for the grouping strategy. The adaptation experi-

ment from Cityscapes to Foggy-Cityscapes is conducted be-

cause these datasets contain both bounding boxes and mask

annotations for the instance segmentation task. We evaluate

the performance on the validation set of Foggy-Cityscapes

and report the mAP with a threshold of 0.5.

We report the results in Table 8. By comparing the Faster

R-CNN with Source-only, it can be found that introducing

the mask branch improves the mAP of bounding box. In ad-

dition, our adaptation framework further yields an improve-

ment of 5.6% on mAP (Box) and 4.8% on mAP (Mask) over

the Source-only method. Moreover, all three variants of our

method consistently achieve much better results, which in-

dicates the effectiveness of the region-level adaptation in the

region based task and its good scalability.

5. Conclusion

In this paper, we have proposed a region-level adaptation

framework for object detection. We follow the local nature

of detection to reposition the focus of adaptation process,

from global to local. Two key components, region min-

ing and adjusted region-level alignment, are designed to ad-

dress the questions of “where to look” and “how to align”,

effectively and robustly. We conduct extensive experiments

and ablation studies, which demonstrate our model achieves

state-of-the-art on various domain-shift settings and keeps

good scalability on other region-based task, such as instance

segmentation.
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