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Abstract

State-of-the-art object detectors are usually trained on
public datasets. They often face substantial difficulties when
applied to a different domain, where the imaging condition
differs significantly and the corresponding annotated data
are unavailable (or expensive to acquire). A natural rem-
edy is to adapt the model by aligning the image representa-
tions on both domains. This can be achieved, for example,
by adversarial learning, and has been shown to be effective
in tasks like image classification. However, we found that
in object detection, the improvement obtained in this way is
quite limited. An important reason is that conventional do-
main adaptation methods strive to align images as a whole,
while object detection, by nature, focuses on local regions
that may contain objects of interest. Motivated by this, we
propose a novel approach to domain adaption for object de-
tection to handle the issues in “where to look” and “how to
align”. Our key idea is to mine the discriminative regions,
namely those that are directly pertinent to object detection,
and focus on aligning them across both domains. Experi-
ments show that the proposed method performs remarkably
better than existing methods with about 4% ~ 6% improve-
ment under various domain-shift scenarios while keeping
good scalability.

1. Introduction

Over the past several years, the advances in deep learn-
ing has significantly pushed forward the state of the art
in various tasks in computer vision, such as object de-
tection [3, 7, 14, 15, 18, 37, 34] and semantic segmen-
tation [27, 47]. Yet, it should be noted that such sig-
nificant progress relies, to a large extent, on large-scale
annotated training data. Whereas several public bench-
marks [6, |1, 30] have already existed, they can only cover a
very limited range of scenarios. In real-world deployment,
the changes in environmental conditions, e.g. imaging sen-
sors, weather, and illumination, can cause significant do-

Figure 1. We show two examples from the Cityscapes (a) and
Foggy-Cityscapes (b) dataset, respectively. It can be found that
there exists large domain gap between two images in appearance
distributions. The model trained on the Cityscapes dataset is di-
rectly applied on the Foggy-Cityscapes (from a — b), and it can
be observed that performance drop occurs (boxes with green color
mean correct results and red color denotes missing object).

main shift, and thus substantial performance degradation,
as shown in Fig 1.

A natural idea to tackle this issue is to obtain new train-
ing data as the domain shifts. Unfortunately, this approach
is not always feasible in practice, due to the huge cost
needed for large-scale annotation. The cost is especially
high for object detection or instance segmentation, as it re-
quires detailed annotation, e.g. bounding boxes or masks
on individual objects. An appealing alternative is unsuper-
vised domain adaptation, namely adapting a model trained
on standard datasets to a new domain (often referred to
as the target domain), but without annotating the target
data. A variety of methods have been developed along this
line, which have shown encouraging results on image clas-
sification [1, 12, 13, 16, 28, 43] and semantic segmenta-
tion [20, 39, 42, 46, 49]. However, how to effectively adapt
an object detector remains a widely open question.

In our initial attempts, we directly applied existing do-
main adaptation methods [10] to object detection (with
necessary technical adjustment), only to find very limited
performance gain (more details are showed in the experi-
ments). Our investigation into this issue reveals a key dif-
ference between image classification and object detection:
in the context of object detection, we usually see an image
of a complex scene, where the objects of interest only oc-
cupy a small region thereof. Hence, attention to such local
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regions is crucial to the success of object detection. To the
contrary, conventional domain adaptation methods typically
consider the input image as a whole when trying to bridge
the domain gap, while neglecting the local nature of object
detection. Consequently, their efforts to minimize the do-
main gap at the image level are met with fundamental dif-
ficulties (due to the significant variations in both structures
and appearance); yet on the other hand, the local objects are
not sufficiently attended.

Motivated by these findings, we propose a new approach
to adapting object detectors. The basic idea is to reposition
the focus of the adaptation process, from global to local.
Specifically, we develop a new framework that consists of
two key components, region mining and region-level align-
ment, which respectively address the questions of “where
to look” and “how to align”. Here, region mining resorts
to a grouping strategy to identify the most important lo-
cal regions, so as to enhance the robustness against outliers
(which often arise in practice); while region-level alignment
first leverages the region proposal in the source domain to
reweigh the target region proposals, thus overcoming the
difficulty caused by the lack of target annotations, and then
performs the region-level domain alignment in an adversar-
ial manner. Overall, the cooperation of these two compo-
nents leads to an adaptation process that focuses on the re-
gions of interest, thus improving the effectiveness.

We tested the proposed method under various domain-
shift settings, including normal-to-foggy (Cityscapes
to Cityscapes-foggy), synthetic-to-real (Sim10k to
Cityscapes), and cross-camera (Kitti to Cityscapes). On
these experiments, the proposed method yields consid-
erable improvement over existing methods, about 4%
to 6% in mAP. We also extend the method to instance
segmentation, obtaining notable performance gain, which
further demonstrates its strong generalization capability
and scalability.

The contributions of this work mainly lie in three as-
pects: (1) Our studies reveal a crucial aspect to the success
of object detector adaptation, namely, the focus to local re-
gions when bridging domain gaps. (2) We develop a new
domain adaptation framework for object detection, which
repositions the focus of the adaptation process, through ef-
fective region mining and region-based domain alignment.
(3) We conduct extensive experiments to compare the pro-
posed methods with others on various settings, where it
yields notable performance gains not only in object detec-
tion but also in instance segmentation.

2. Related Work

Object Detection. Object detection has been a central
topic of computer vision. Following the lead of R-
CNN [15], a number of object detection frameworks based
on convolutional networks have been developed in recent

years, which significantly push forward the state of the art.
Whereas single-stage detectors have emerged as a popular
paradigm [26, 36], many top-performing frameworks still
adopt the proven two-stage pipeline, e.g. Fast R-CNN [14],
Faster R-CNN [37], and Mask R-CNN [ 18], etc.

However, even top-notched object detectors still face
signficant challenges when used in real-world settings. The
difficulties usually arise from the changes in environmental
conditions. For example, a state-of-the-art detector trained
on a public dataset often finds it difficult to work reli-
ably in an autonomous driving system where the weather
and imaging conditions can vary significantly — existing
datasets [6, 11, 22] can only provide limited coverage of
such cases. Whereas collecting more data under various
conditions can help, it is prohibitively expensive and labor-
demanding.

Domain Adaptation. Domain adaptation [2, 32], namely
the techniques to adapt a model to a new domain without
re-training from scratch, has received increasing attention
in recent years. It is often considered as a promising rem-
edy to tackle the difficulties caused by the lack of domain-
specific training data. For domain adaptation, a typical ap-
proach is to estimate the domain gap formalized in certain
ways and minimize it [12, 16, 28]. Some recent methods go
further along this line, using more effective ways to reduce
the domain gap, e.g. incorporating a domain classifier with
gradient reversal [9], or directly reverting the distribution
distances [33]. Other representative methods include sub-
space alignment [8], asymmetric kernel transforms [24],
tensor-based adaptation [29], and shared encoding for clas-
sification and reconstruction [13]. It is noteworthy that the
works mentioned above mainly devised on the task of im-
age classification and semantic segmentation. They simply
consider the entire image as a whole, while focusing on the
design of losses or metrics.

Domain Adaptation for Detection. Whereas there have
been extensive studies on the domain adaptation methods
for image classification and semantic segmentation, the
study on adapting object detectors is still at a relatively ear-
lier stage. That being said, several ideas have been explored
in existing attempts. Raj et al. [35] tried to adapt class-
specific R-CNN detectors by subspace alignment. Inoue
et al. [21] proposed a weakly-supervised object detection
framework, where domain transforms and the pseudo-label
technique are employed. Chen et al. [4] incorporated a gra-
dient reversal layer [9] into a Faster R-CNN framework in
order to reduce the domain gap.

It is worth noting that while the aforementioned efforts
have shown encouraging results, the improvement remains
limited. As mentioned, a common issue of these works is
that they mainly focus on bridging the whole-image repre-
sentations. This may not be very effective, considering the
local nature of object detection. Compared to these works,
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Figure 2. The pipeline of our framework. Two major components, i.e. “Where to Look™ and “How to Align” are illustrated with two dashed
rectangles. For the first component, an ROI-based grouping strategy is designed to mine the discriminative regions for two domains. We
display the grouping procedure with cluster number = 2 (Note that % and * denote the centroids of clusters). For the second one, our
model performs the adjusted region-level alignment using generators (G and G¢), discriminators (Ds and D;) and weighting estimator
(D). We use Faster R-CNN as the detection model (F) which consists of the backbone, RPN and head part. (Best viewed in color)

our proposed method differs essentially in that it reshapes
the focus of domain alignment, from global to local.
Domain Adaptation through Adversarial Learning.
Generative Adversarial Network (GAN) [17] has received
great attention in recent years. Inspired to this, some recent
works extend this new learning paradigm to domain adapta-
tion. In [1, 43], adversarial discriminators are incorporated
to mitigate the impact of domain gap. In [19, 25, 48, 45],
unsupervised style transforms are learned to close the gap in
appearance between the source and target domains. Other
efforts [5, 9, 20, 49, 41], instead focus on the learning of
domain-invariant features. In our work, we adopt adversar-
ial learning as the basic machinery for learning region-level
alignment. It is important to note that our framework does
not require additional annotations and the entire network
can be trained in an end-to-end fashion.

3. Methodology
3.1. Framework Overview

We consider a problem that involves two domains, a
source domain where annotated training data are available
and a target domain where we only have access to the im-
ages. Our task is to train a detector that can generalize well
to the target domain, utilizing the data in both domains.
Specifically, we desire to obtain a domain-invariant feature
representation that works equally well in both domains.

To this end, we propose a selective adaptation framework
based on region patches. The basic idea is to introduce an
additional module to reconstruct the image patches from the
features, and then align the reconstructed patches in both the
source and target domains. During the training this module
can guide the learning of features via back-propagation, re-
ducing the gap between domains. After training, the align-

ment module is no longer needed. Only the detection part
will be used for effective inference, while benefiting from
the learned domain-invariant features.

As mentioned, aligning the entire image is difficult, due
to large variations in background appearance and scene
structures. Our framework, instead, focuses on aligning
those local regions that contain objects of interest. As
shown in Figure 2, the framework consists of two key com-
ponents: (1) a region mining component to address the
question of “where to look”, selecting those important re-
gions by grouping the object proposals; and (2) a region-
level alignment component to address the question of “how
to align®, which learns to align the image patches recon-
structed from the features of the selected regions, via adver-
sarial learning. Particularly, for this component, two gen-
erators G4 and G, are respectively used to generate image
patches based on the features extracted from the source and
target regions, and then a set of discriminators are intro-
duced to bridge the gap between them. In what follows, we
will present these components in detail.

3.2. Region Mining

The region mining component first identifies important
regions that cover the objects of interest by grouping, and
then derives representations for these regions by reassigning
the Rol features accordingly.

Grouping. We desire to find those regions that cover ob-
jects of interest. A natural idea is to utilize the region pro-
posals derived from the RPN. However, we are still fac-
ing two challenges: (1) We wish to obtain regions of fixed
size, in order to make it convenient for further processing,
e.g. feeding them to the region alignment module. But the
region proposals can distribute arbitrarily over the image.
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(a)

(2) The region proposals from the RPN are often very noisy.
It is unnecessary to cover them all.

We tackle this problem by a simple centroid-based
grouping scheme. Specifically, after the RPN, we get V.4
region proposals in the form of {c,,c,, w,h}, where ¢,
and ¢, are the center coordinates, w the width, and h the
height. By applying K-means clustering to the center co-
ordinates, we can obtain K clusters, whose means can be
considered as the centroids of the grouped regions. Note
that in our framework, we fix the size of each region. Hence,
given the centroids (from K-means), we automatically have
the regions. Figure 3((a)—(b)) shows an example of re-
gion grouping with K = 4. We can find that the grouping
scheme above can identify those regions that cover signif-
icant objects, while being resilient to the presence of false
proposals.

Feature Reassignment. Given the selected regions, we
derive the feature representations thereof by reassigning the
Rol features according to the grouping results. Specifically,
each region is associated with a subset of region proposals
assigned to the corresponding K-means cluster. By stack-
ing the corresponding Rol features, we can obtain a matrix
O € R™x*4 o represent the k-th region, where my, is the
number of region proposals assigned to the k-th cluster, and
d is the feature dimension.

This representation is inconvenient to work with, as the
number my, can vary. It is desirable to fix the number of
features. For this purpose, we adopt a simple select-or-copy
scheme. Given a pre-defined number m, if my, is greater
than m, we retain only the top-m features; if my, is less than
m, we simply make copies of the assigned features until we
get enough. In this way, we can derive a fixed number of
features O, € R™*4 to represent each region.

3.3. Adjusted Region-level Alignment

After deriving the important regions and their feature
representations, we align target regions to the source dis-
tributions in an adversarial manner. We first describe the
region-level adversarial alignment scheme, then introduce
the weighting estimator to perform the adjusted region-level

()

Figure 3. We show the workflow of the grouping scheme and weighting estimator. Image (a) — (b) is the grouping operation, in which
yellow rectangles are the region proposals and red squares denote the discriminative regions. % is the centroid of cluster (denoted by W)
and also the center of discriminative region. (b) — (c) is the process of weighting estimation. The green numbers denote the scores of
discriminative regions from target domain. (Best viewed in color)

alignment, in order to achieve robust adaptation. Finally, we
integrate different components to form a total objective.

Region-Level Adversarial Alignment. Following the
conventional practice of adversarial domain adaptation [ 10,
25, 39], we attach two generators G and G to reconstruct
the mined K regions based on the cluster-wise feature rep-
resentations ©. We also introduce two discriminators Dy
and Dy to distinguish the real and fake inputs and impose
the domain alignment constraints. The standard joint ob-
jective L,4, is shown as following, which combines both
within-domain and cross-domain losses, as

Eadv (]F7 G: D) = Eadv,Ds + Eadv,Dt + LadU,Gs

(1)
+ ['adv,G't + ['adv,]F~

Each term follows a standard adversarial formulation as:

Lad0(©,P; G, D) = Ellog D(P)] + E[log(1 — D(G(6)))]
2)

where P denotes the real image regions obtained based on
the clustering centers W.

Specifically, for discriminators Ds and Dy, within-
domain losses, Lq4y,p, and Lgqv,p,, aim to classify the
real input as real (or fake input as fake). For generators G5
and Gy, Ladw,c, and Lgqy, ¢, classify the fake input as real
within one domain. For detection model I, L7 ;,  performs
the cross-domain function by classifying the fake source in-
put as real target (i.e., feeding the target discriminator with
fake source, and similar operation for Efl dU’F), which im-
poses the alignment constraint on detection model. By
reshaping the focus of adaptation, from global to local, it
is more effective to achieve the domain alignment without
the difficulties in global statistics, such as significant differ-
ences in structures and field of view.

Weighting Estimator D,,. Since there is no ground truth
bounding box on the target domain, the region proposals
extracted from RPN on target image often fail to cover the
objects of interest, especially in the early stage. For exam-
ple, the recall on target domain is only 35% ~ 45% for the
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first 10 epoch. Hence, it is important to emphasize those tar-
get regions that are truly relevant to the region-level align-
ment. To this end, we can resort to the ground-truth bound-
ing boxes in the source domain, which can provide useful
references to guide the focus in the target domain.

Based on these findings, we introduce the estimator to
weigh the target regions according to how closely they
match the source ones. We train the estimator to discrim-
inate representations between source region proposals (la-
beled as 1) and target proposals (labeled as 0), and the bi-
nary cross-entropy loss is used as the objective function.

L,(05,04; Dy) = Eflog(Dw(05))]+ 3)
Eflog(1 — Dw(©:))],

where O, and ©, denote the clustered region representa-

tions of source domain and target domain after reassign-
ment, respectively. Here, the scores from D,, are good in-
dicators on how well a target region match the source. We
turn these scores into weights for target regions, by apply-
ing the sigmoid activation function to the output of estima-
tor Dw((;)t) e REXm (all notations are followed in Sec-
tion 3.2) and taking the average, thus obtaining the weight-
ing score W; € RX. We show the workflow of similarity
estimation in Figure 3((b)—(c)). It can be observed that the
higher score indicates that the target region is more likely
to contain objects of interest and more similar to the distri-
bution of the source patches. Since W, assign weights for
target regions, it applies to the terms involving target do-
main only:

Wt . »Cadv (]F7 G; D) = »Cadv,Ds + Wt[:adv,Dt + Cadv,G,g

s @
+ Wtﬁadv,Gt + 'C;zdv,JF + Wt‘cfzd'u,]l“'

Here, we the notation W, - L4, to provide a simple refer-
ence to the expression on the right hand side.

Total Objective Function. By incorporating the weight-
ing score W, the total optimization of adjusted adversarial
alignment can be formulated as:

Ergigﬂ} max Lace(F) + Wt - Laaw(F, G, D) + Lu(Dw), (5)
where L .. is the loss for detection task, i.e., Lgee = Lejs+
Lioe- Leis 1s the cross-entropy loss and L£;,. denotes the
smooth L1 loss. With the constraint of adjusted region-level
adversarial alignment, the training process will encourage
domain-invariant features through back-propagation.

3.4. Network Optimization

Our full objective is to update the four components, in-
cluding the detection model F, the generators G and Gy,
the discriminators D and Dy, and the estimator D,,. Inher-
iting the standard procedure of GAN [17], we alternate the
optimization between four steps: 1) update Dy and D,; 2)
update D,,; 3) update G5 and Gy; 4) update F.

K| m region-size
Typel | 2 | 256 512x512
Type2 | 4 | 128 256x256
Type3 | 8 | 64 128128

Table 1. Three sets of grouping parameters.

Update Discriminators D, and D;. We train these dis-
criminators to distinguish between the real regions and the
reconstructed ones. For the target image, the score W*
is used to weigh target regions. The loss for this step is
Lp = Eadv,Ds + Wtﬁadv,Dt'

Update the Weighting Estimator D,. We train the
weighting estimator D,, to measure the contributions of dif-
ferent target regions. The loss is given by Eq.(3).

Update Generators G; and ;. The goal of this step is to
encourage realistic output from the generators. The loss for
this step is Lg = EadeS + Wt'cadv,G'y

Update the Detection part F. We aim to close the gap
between the distributions in the source and target domains,
while maintaining the detection performance. Hence, the
overall loss is the combination of two parts, i.e. detection
loss and adversarial loss. Note that this adversarial loss is
to perform the cross-domain function. The overall loss is
formulated as Ly = L. 5 + AL g, 5 + WiLl g 7)-

3.5. Implementation Details

Detection Model. We follow the detection model used
in [4] that adopts Faster R-CNN [37] with the VGG16 [40]
architecture.

Grouping Strategy and Centroid-based Reassign-
ment. For this part, there are several pre-defined
grouping parameters to determine the clustering. In our
implementation, three sets of parameters are designed to
verify the effect of grouping strategy, which are chosen by
cross-validation and shown in Table 1. For example, Typel
denotes that the number of cluster (K) is 2; the number of
proposals in one cluster (m) is 256; the reconstructed two
region patches have size of 512 x 512 (all notations are
followed in Section 3.2).

Generators, Discriminators and Estimator. For the gen-
erators, it consists of bilinear upsampling and convolu-
tional layers, following with instance normalization [44]
and leaky ReLU activation [31]. The layer number varies
with the size of reconstructed patch image. Similarly, we
also use the convolutional layer with kernel size 3 x 3 and
stride 2, with leaky ReLU activation to form the discrim-
inators. For the weighting estimator, we follow the com-
ponents in the discriminator. To train the generators, we
use the Adam optimizer [23] with learning rate of le-4 and
momentums set as 0.9 and 0.99. For learning the discrim-
inators, we use the SGD with the learning rate of le-4 and
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Methods ‘ person rider car truck bus train motorbike bicycle mAP
Source-only 29.7 322 446 162 270 9.1 20.7 29.7 26.2
Chen et al. [4] 25.0 31.0 405 221 353 202 20.0 27.1 27.6
Ours-Typel (K=2;m=256;512x512) 33.6 375 47.8 231 392 152 29.3 34.7 32.6
Ours-Type2(K=4;m=128;256x256) 33.9 39.7 49.7 213 394 219 27.6 34.6 33.5
Ours-Type3(K=8;m=64;128 x 128) 33.5 38 485 265 39 233 28 33.6 33.8
Table 2. Results of domain adaptation for object detection from Cityscapes to Foggy-Cityscapes (normal — foggy).
Methods \ car AP Methods \ car AP
Source-only 33.96 Source-only 374
Chen et al. [4] 38.97 Chen et al. [4] 38.5
Ours-Typel(K=2;m=256;512x512) 41.97 Ours-Type2(K=4;m=128;256x256) 41.9
Ours-Type2(K=4;m=128;256x256) 42.70 Ours-Type3 (K =8;m=64;128 x 128) 42.5
Ours-Type3(K=8;m=64;128 x 128) 43.02 Table 4. Results of cross camera adaptation from Kitti dataset to

Table 3. Results of detection adaptation from synthetic data to real-
world data.

the weight decay of 5x le-4.

4. Experiments

In this section, we first provide the detailed experimen-
tal setup, then evaluate our adaptation framework on ob-
ject detection under various settings, including normal-to-
foggy, synthetic-to-real and cross-camera adaptation. Fur-
thermore, extensive ablation studies are conducted to val-
idate each component. In the end, we extend our method
to the instance segmentation task to verify its scalability
among region based tasks.

4.1. Experimental Setup

Our experimental setting on detection adaptation follows
the setup in [4]. Several datasets are used in our experi-
ments, including Cityscapes dataset [0], Foggy-Cityscapes
dataset [38], KITTI [11] and SIM-10k dataset [22]. Dur-
ing training, images and annotations (bounding boxes and
object categories) are provided for source domain, and only
images are available for target domain. We resize the image
to the shorter side of 512 pixels, and use the batch size = 1
(i.e., one source image and one target image) to fit the GPU
memory. We set the total training epoch as 25 and A = 0.1
and warmup strategy is used during training. For all the ex-
periments, we report mean average precisions (mAP) with
a threshold of 0.5 to evaluate different methods.

4.2. Domain Adaptation for Detection

In this section, we compare our method with the state-
of-the-art domain adaptation for detection [4]. Note that
other related works, are either with weakly supervised set-
tings [2 1] or with class-specific settings [35], and cannot be
directly compared.

Cityscapes dataset.

Normal to Foggy. In this experiment, we use the
Cityscapes dataset as our source domain, and all images
and annotations in Cityscapes are used. Foggy-Cityscapes
dataset is compatible with the Cityscapes among the anno-
tations and data split. We use the training set of Foggy-
Cityscapes as the target domain (only images), and report
the results on the validation set of Foggy-Cityscapes. Note
that we follow [4] to utilize the rectangle of instance mask
in Cityscapes as the ground truth bounding boxes.

The results are reported in Table 2. Eight categories are
used in the evaluation. Source-only denotes that the method
is trained only using source images without domain adapta-
tion. We report three variants of our framework described in
Table 1, in which we apply three different sets of grouping
hyper-parameters. From the table, it can be observed that
all our methods outperform the existing method [4] with
a large margin (i.e., about 6% performance gain), which
demonstrates the region-level adaptation could improve the
detection performance under different weather conditions.

Synthetic to Real. Another domain-shift scenario is from
synthetic data to real-world image. Due to the huge cost of
human labeling, synthetic data offers an alternative. How-
ever, the model trained on synthetic data often suffers a sig-
nificant drop on real-world data. Hence, domain adapta-
tion from synthetic to real-world is desired and we conduct
adaptation experiment under this setting to investigate the
effectiveness of our method. In our implementation, SIM-
10k dataset is used as the synthetic dataset, in which bound-
ing boxes of category Car are provided and total 10,000
images are used in the training stage. The target domain
is Cityscapes and we use its validation set for evaluation.
Note that because only category car is used in the training,
the evaluation of Cityscapes also performs on the car.

The results of different methods are reported in Table 3.
It can be observed that all three variants of the proposed
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Variants mAP

Source-only 26.2
Ours-Type2 w/o Generators 32.8
Ours w/o Discriminators 27.9

Ours w/o Estimator 32.3
Ours-Type2(K=4;m=128;256x256) 33.5
Ours-Type3(K=8;m=64;128 x128) 33.8

Table 5. Ablation studies for different components.

method achieve the much better performance than the exist-
ing methods, which consistently validates that our region-
level adaptation framework does reduce the domain shift.
More specifically, our method with Type3 (8 clusters) ob-
tains +4% performance gain compared with the state-of-the
art model [4], and +9% gain compared with our baseline
method (i.e., Source-only).

Cross Camera Adaptation. Different camera setups
widely exist in autonomous driving dataset. We thus per-
form the cross camera adaptation from Kitti dataset to
Cityscapes dataset. Since the image size in Kitti dataset
is 1250 x 375, inconsistent with Cityscapes dataset, we re-
size the image from Cityscapes so that the shorter length is
375 pixels long. Due to the shorter size 375, Ours-Typel
variant (region-size of 512 x 512 is larger than 375) is not
conducted on this adaptation experiment. For the evalua-
tion, we only report the common category, car, among two
datasets. The results are reported in Table 4. It can be
observed that our proposed methods consistently achieve
better performance over other baselines. Specifically, our
methods obtain a performance gain of about 4% than [4].

4.3. Ablation Studies

In this section, we perform the thorough ablation exper-
iments to investigate the effect of different components in
our method, the effect of region-level alignment and the ef-
fect of the designed ROI-based grouping strategy. These
experiments demonstrate different contributions of compo-
nents and provide more insights of our proposed method.

Effect of Different Components. In this part, we design
several variants of our model to validate the contributions of
different components. These variants are shown as follows:

e Ours w/o Generators; we remove generators and per-
form adversarial alignment in region feature level.

e Ours w/o Discriminators; we perform the adaptation
by jointly training the detectors and reconstructing
region-level RGB images.

e Ours w/o Weighting Estimator: Weighting estimator is
removed, thus all target regions are treated equally.

The results are reported in Table 5. All experiments
are conducted on the adaptation from Cityscapes to Foggy-

Methods ‘ mAP

Source-only 26.2
Ours-Global (1024 x512) 29.8
Ours-Type 1 (K=2;m=256;512x512) 32.6
Ours-Type2(K=4;m=128;256x256) 33.5
Ours-Type3(K=8;m=64;128 x 128) 33.8

Table 6. Ablation studies for image-level v.s. region-level adapta-
tion. Ours-Global denotes the image-level adaptation.

S|

Fixed-Location Strategy
Figure 4. We show two examples from the fixed-location strategy
and the ROI-based grouping strategy, respectively. We display two
types of strategies with cluster number K = 2 (top two figures) and
K =4 (bottom two figures).

ROI-based Grouping Strategy

Cityscapes. We use the Type2 to setup the grouping strat-
egy. It can be observed that removing the discriminators
(Ours w/o Discriminators) gets much worse compared with
our full model, which indicates the discriminators do help
align the distributions. The performance of Ours-Type2 w/o
Generators (mAP=32.8%) demonstrates that the feature-
level alignment of patches also achieves the adaptation,
while reconstruction of the regions further makes it learn the
structural information of image patches and aids the align-
ment. The designed Weighting estimator also yields an im-
provement, which validates our conjecture that biased pro-
posals might introduce incorrect guidance and the estimator
could alleviate this impact.

Image-level v.s. Region-level. To verify the effectiveness
of the region-level adaptation, we compare our region-level
alignment to the whole-image alignment. In this experi-
ment, we design the variant of Ours-Global, which utilizes
the features extracted from the backbone network to recon-
struct the whole image and perform the domain adversarial
alignment on the image level. The ablation is conducted
on the experiment from Cityscapes to Foggy-Cityscapes.
We report the results in Table 6. It can be found that our
region-level adaptation methods (Typel, Type2 and Type3)
do achieve the better performance and yield an improve-
ment of about 4% over the image-level adaptation method.
The results demonstrate that our region-level alignment bet-
ter matches the nature of detection task and is more effective
than global statistics alignment for the detection adaptation.
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Methods K m size mAP Methods | K| mAP®Box) | mAP (Mask)
Source-only - - - 26.2 Faster R-CNN [37] | - 26.2 -
Ours-Fixed1 2 256 512 x 512 315 Source-only - 32.8 26.6
Ours-Typel 2 256 512 x 512 32.6 Ours-Typel 2 37.1 30.8
Ours-Fixed2 4 128 512 x 256 304 Ours-Type2 4 38.4 314
Ours-Type2 4 128 256 x 256 335 Ours-Type3 8 375 30.9

Table 7. Experimental results of different strategies. Ours-Fixed1
and Fixed?2 are the methods using the fixed location strategy.

Fixed Location Strategy v.s. ROI-based Grouping Strat-
egy. In this experiment, we perform an ablation study for
investigating the effect of the designed ROI-based grouping
strategy. Since our grouping strategy aims to dynamically
mine the regions which are more likely to contain the ob-
jects of interest, to verify its effectiveness, we design a fixed
location strategy, which extracts the regions from fixed lo-
cations without considering the guidance of the region pro-
posals, as the competitor.

We show examples of the fixed location strategy on the
left part of Figure 4, and the right part is the example of
the ROI-based grouping strategy. More specifically, the re-
gions used in the fixed location strategy are uniformly di-
vided. For the feature representations of region proposals
(i.e., features before ROI-Pooling.), we also split them into
several parts based on the center coordinates of region pro-
posals, i.e., if the center is located on the left region, then its
feature will be applied to the reconstruction of left part. The
detailed setting of fixed location strategy one (named Ours-
Fixed1) is K=2, m=256 and region-size of 512 x 512, and
Ours-Fixed?2 is K=4, m=128 and region-size of 512 x 256
(Note that we follow the notations in Table 1). As shown in
Figure 4, in the fixed location strategies, all patches make
up the whole image in order to cover all possible objects.

The results are reported in Table 7. It can be observed
that under the same setting of cluster (Our-Fixed1 v.s. Our-
Typel and Our-Fixed2 v.s. Our-Type2), our grouping strat-
egy achieves better performance compared to the fixed loca-
tion strategy. Specifically, our ROI-based grouping strategy
yields an improvement of 3% using Ours-Type2 compared
with Ours-Fixed2, which demonstrates that the fixed loca-
tion strategy may introduce erroneous bias during adapta-
tion because it already contains significantly different field
of view, while our grouping strategy is able to focus on the
desired regions under the guidance of region proposals.

4.4. Domain Adaptation for Instance Segmentation

In this section, we conduct the proposed domain adapta-
tion framework on instance segmentation task to verify the
scalability of our model. Since the instance segmentation is
a region based task (the ground-truth bounding box is given
during training), it is also a good choice to investigate the
effectiveness of the region-level adaptation.

In our implementation, we extend the proposed adapta-

Table 8. Experimental results of the domain adaptation for in-
stance segmentation. The adaptation is from Cityscapes to Foggy-
Cityscapes. Faster R-CNN is trained on source domain with the
ground truth bounding box only, thus we just report the mAP of
bounding box.

tion framework to the instance segmentation task by adding
the mask branch and ROI-Align described in Mask R-
CNN [18]. For the adaptation part, we inherit the setting
in Table 1 for the grouping strategy. The adaptation experi-
ment from Cityscapes to Foggy-Cityscapes is conducted be-
cause these datasets contain both bounding boxes and mask
annotations for the instance segmentation task. We evaluate
the performance on the validation set of Foggy-Cityscapes
and report the mAP with a threshold of 0.5.

We report the results in Table 8. By comparing the Faster
R-CNN with Source-only, it can be found that introducing
the mask branch improves the mAP of bounding box. In ad-
dition, our adaptation framework further yields an improve-
ment of 5.6% on mAP (Box) and 4.8% on mAP (Mask) over
the Source-only method. Moreover, all three variants of our
method consistently achieve much better results, which in-
dicates the effectiveness of the region-level adaptation in the
region based task and its good scalability.

5. Conclusion

In this paper, we have proposed a region-level adaptation
framework for object detection. We follow the local nature
of detection to reposition the focus of adaptation process,
from global to local. Two key components, region min-
ing and adjusted region-level alignment, are designed to ad-
dress the questions of “where to look™ and “how to align”,
effectively and robustly. We conduct extensive experiments
and ablation studies, which demonstrate our model achieves
state-of-the-art on various domain-shift settings and keeps
good scalability on other region-based task, such as instance
segmentation.
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