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Abstract

The superior performance of Deformable Convolutional

Networks arises from its ability to adapt to the geomet-

ric variations of objects. Through an examination of its

adaptive behavior, we observe that while the spatial sup-

port for its neural features conforms more closely than reg-

ular ConvNets to object structure, this support may never-

theless extend well beyond the region of interest, causing

features to be influenced by irrelevant image content. To

address this problem, we present a reformulation of De-

formable ConvNets that improves its ability to focus on per-

tinent image regions, through increased modeling power

and stronger training. The modeling power is enhanced

through a more comprehensive integration of deformable

convolution within the network, and by introducing a mod-

ulation mechanism that expands the scope of deformation

modeling. To effectively harness this enriched modeling ca-

pability, we guide network training via a proposed feature

mimicking scheme that helps the network to learn features

that reflect the object focus and classification power of R-

CNN features. With the proposed contributions, this new

version of Deformable ConvNets yields significant perfor-

mance gains over the original model and produces leading

results on the COCO benchmark for object detection and

instance segmentation.

1. Introduction

Geometric variations due to scale, pose, viewpoint and

part deformation present a major challenge in object recog-

nition and detection. The current state-of-the-art method

for addressing this issue is Deformable Convolutional Net-

works (DCNv1) [7], which introduces two modules that

aid CNNs in modeling such variations. One of these mod-

ules is deformable convolution, in which the grid sampling

∗This work is done when Xizhou Zhu is an intern at Microsoft Research

Asia.

locations of standard convolution are each offset by dis-

placements learned with respect to the preceding feature

maps. The other is deformable RoIpooling, where offsets

are learned for the bin positions in RoIpooling [15]. The

incorporation of these modules into a neural network gives

it the ability to adapt its feature representation to the config-

uration of an object, specifically by deforming its sampling

and pooling patterns to fit the object’s structure. With this

approach, large improvements in object detection accuracy

are obtained.

Towards understanding Deformable ConvNets, the au-

thors visualized the induced changes in receptive field, via

the arrangement of offset sampling positions in PASCAL

VOC images [10]. It is found that samples for an acti-

vation unit tend to cluster around the object on which it

lies. However, the coverage over an object is inexact, ex-

hibiting a spread of samples beyond the area of interest.

In a deeper analysis of spatial support using images from

the more challenging COCO dataset [28], we observe that

such behavior becomes more pronounced. These findings

suggest that greater potential exists for learning deformable

convolutions.

In this paper, we present a new version of Deformable

ConvNets, called Deformable ConvNets v2 (DCNv2), with

enhanced modeling power for learning deformable convo-

lutions. This increase in modeling capability comes in two

complementary forms. The first is the expanded use of de-

formable convolution layers within the network. Equipping

more convolutional layers with offset learning capacity al-

lows DCNv2 to control sampling over a broader range of

feature levels. The second is a modulation mechanism in

the deformable convolution modules, where each sample

not only undergoes a learned offset, but is also modulated

by a learned feature amplitude. The network module is thus

given the ability to vary both the spatial distribution and the

relative influence of its samples.

To fully exploit the increased modeling capacity of

DCNv2, effective training is needed. Inspired by work on
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knowledge distillation in neural networks [1, 21], we make

use of a teacher network for this purpose, where the teacher

provides guidance during training. We specifically utilize

R-CNN [16] as the teacher. Since it is a network trained for

classification on cropped image content, R-CNN learns fea-

tures unaffected by irrelevant information outside the region

of interest. To emulate this property, DCNv2 incorporates a

feature mimicking loss into its training, which favors learn-

ing of features consistent to those of R-CNN. In this way,

DCNv2 is given a strong training signal for its enhanced

deformable sampling.

With the proposed changes, the deformable modules re-

main lightweight and can easily be incorporated into ex-

isting network architectures. Specifically, we incorporate

DCNv2 into the Faster R-CNN [32] and Mask R-CNN [19]

systems, with a variety of backbone networks. Extensive

experiments on the COCO benchmark demonstrate the sig-

nificant improvement of DCNv2 over DCNv1 for object de-

tection and instance segmentation. The code for DCNv2

will be released.

2. Analysis of Deformable ConvNet Behavior

2.1. Spatial Support Visualization

To better understand the behavior of Deformable Con-

vNets, we visualize the spatial support of network nodes by

their effective receptive fields [30], effective sampling lo-

cations, and error-bounded saliency regions. These three

modalities provide different and complementary perspec-

tives on the underlying image regions that contribute to a

node’s response.

Effective receptive fields Not all pixels within the receptive

field of a network node contribute equally to its response.

The differences in these contributions are represented by an

effective receptive field, whose values are calculated as the

gradient of the node response with respect to intensity per-

turbations of each image pixel [30]. We utilize the effective

receptive field to examine the relative influence of individ-

ual pixels on a network node, but note that this measure does

not reflect the structured influence of full image regions.

Effective sampling / bin locations In [7], the sampling lo-

cations of (stacked) convolutional layers and the sampling

bins in RoIpooling layers are visualized for understanding

the behavior of Deformable ConvNets. However, the rela-

tive contributions of these sampling locations to the network

node are not revealed. We instead visualize effective sam-

pling locations that incorporate this information, computed

as the gradient of the network node with respect to the sam-

pling / bin locations, so as to understand their contribution

strength.

Error-bounded saliency regions The response of a net-

work node will not change if we remove image regions

that do not influence it, as demonstrated in recent research

on image saliency [40, 41, 12, 6]. Based on this property,

we can determine a node’s support region as the smallest

image region giving the same response as the full image,

within a small error bound. We refer to this as the error-

bounded saliency region, which can be found by progres-

sively masking parts of the image and computing the result-

ing node response, as described in more detail in the Ap-

pendix. The error-bounded saliency region facilitates com-

parison of support regions from different networks.

2.2. Spatial Support of Deformable ConvNets

We analyze the visual support regions of Deformable

ConvNets in object detection. The regular ConvNet we em-

ploy as a baseline consists of a Faster R-CNN + ResNet-

50 [20] object detector with aligned RoIpooling1 [19]. All

the convolutional layers in ResNet-50 are applied on the

whole input image. The effective stride in the conv5 stage is

reduced from 32 to 16 pixels to increase feature map reso-

lution. The RPN [32] head is added on top of the conv4 fea-

tures of ResNet-101. On top of the conv5 features we add

the Fast R-CNN head [15], which is composed of aligned

RoIpooling and two fully-connected (fc) layers, followed

by the classification and bounding box regression branches.

We follow the procedure in [7] to turn the object detector

into its deformable counterpart. The three layers of 3 × 3
convolutions in the conv5 stage are replaced by deformable

convolution layers. Also, the aligned RoIpooling layer is

replaced by deformable RoIPooling. Both networks are

trained and visualized on the COCO benchmark. It is worth

mentioning that when the offset learning rate is set to zero,

the Deformable Faster R-CNN detector degenerates to reg-

ular Faster R-CNN with aligned RoIpooling.

Using the three visualization modalities, we examine the

spatial support of nodes in the last layer of the conv5 stage

in Figure 1 (a)∼(b). The sampling locations analyzed in [7]

are also shown. From these visualizations, we make the

following observations:

1. Regular ConvNets can model geometric variations to

some extent, as evidenced by the changes in spatial support

with respect to image content. Thanks to the strong repre-

sentation power of deep ConvNets, the network weights are

learned to accommodate some degree of geometric transfor-

mation.

2. By introducing deformable convolution, the network’s

ability to model geometric transformation is considerably

enhanced, even on the challenging COCO benchmark. The

spatial support adapts much more to image content, with

nodes on the foreground having support that covers the

whole object, while nodes on the background have ex-

1Aligned RoIpooling is called RoIAlign in [19]. We use the term

“aligned RoIpooling” in this paper to more clearly describe it in the context

of other related terms.

9309



high

low

(a) regular conv

high

low

(b) deformable conv@conv5 stage (DCNv1)

(c) modulated deformable conv@conv3∼5 stages (DCNv2)

Figure 1. Spatial support of nodes in the last layer of the conv5

stage in a regular ConvNet, DCNv1 and DCNv2. The regular

ConvNet baseline is Faster R-CNN + ResNet-50. In each sub-

figure, the effective sampling locations, effective receptive field,

and error-bounded saliency regions are shown from the top to the

bottom rows. Effective sampling locations are omitted in (c) as

they are similar to those in (b), providing limited additional infor-

mation. The visualized nodes (green points) are on a small object

(left), a large object (middle), and the background (right).

panded support that encompasses greater context. However,

the range of spatial support may be inexact, with the effec-

tive receptive field and error-bounded saliency region of a

foreground node including background areas irrelevant for

detection.

3. The three presented types of spatial support visual-

izations are more informative than the sampling locations

used in [7]. This can be seen, for example, with regu-

lar ConvNets, which have fixed sampling locations along a

grid, but actually adapt its effective spatial support via net-

work weights. The same is true for Deformable ConvNets,

whose predictions are jointly affected by learned offsets and

network weights. Examining sampling locations alone, as

done in [7], can result in misleading conclusions about De-

formable ConvNets.

Figure 2 (a)∼(b) display the spatial support of the 2fc

node in the per-RoI detection head, which is directly fol-

lowed by the classification and the bounding box regres-

sion branches. The visualization of effective bin locations

suggests that bins on the object foreground generally re-

ceive larger gradients from the classification branch, and

thus exert greater influence on prediction. This observa-

tion holds for both aligned RoIpooling and Deformable

RoIpooling. In Deformable RoIpooling, a much larger pro-

portion of bins cover the object foreground than in aligned

RoIpooling, thanks to the introduction of learnable bin off-

sets. Thus, more information from relevant bins is avail-

able for the downstream Fast R-CNN head. Meanwhile, the

error-bounded saliency regions in both aligned RoIpooling

and Deformable RoIpooling are not fully focused on the ob-

ject foreground, which suggests that image content outside

of the RoI affects the prediction result. According to a re-

cent study [5], such feature interference could be harmful

for detection.

While it is evident that Deformable ConvNets have

markedly improved ability to adapt to geometric variation

in comparison to regular ConvNets, it can also be seen that

their spatial support may extend beyond the region of inter-

est. We thus seek to upgrade Deformable ConvNets so that

they can better focus on pertinent image content and deliver

greater detection accuracy.

3. More Deformable ConvNets

To improve the network’s ability to adapt to geometric

variations, we present changes to boost its modeling power

and to help it take advantage of this increased capability.

3.1. Stacking More Deformable Conv Layers

Encouraged by the observation that Deformable Con-

vNets can effectively model geometric transformation on

challenging benchmarks, we boldly replace more regular

conv layers by their deformable counterparts. We expect

that by stacking more deformable conv layers, the geomet-

ric transformation modeling capability of the entire network

can be further strengthened.

In this paper, deformable convolutions are applied in all

the 3 × 3 conv layers in stages conv3, conv4, and conv5 in
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(a) aligned RoIpooling, with deformable conv@conv5 stage

high

low

(b) deformable RoIpooling, with deformable conv@conv5 stage (DCNv1)

(c) modulated deformable RoIpooling, with modulated deformable

conv@conv3∼5 stages

(d) with R-CNN feature mimicking on setting (c) (DCNv2)

(e) with R-CNN feature mimicking in regular ConvNet

Figure 2. Spatial support of the 2fc node in the per-RoI detection

head, directly followed by the classification and the bounding box re-

gression branches. Visualization is conducted on a regular ConvNet,

DCNv1 and DCNv2. The regular ConvNet baseline is Faster R-CNN

+ ResNet-50. In each subfigure, the effective bin locations, effective

receptive fields, and error-bounded saliency regions are shown from

the top to the bottom rows, except for (c)∼(e) where the effective bin

locations are omitted as they provide little additional understanding

over those in (a)∼(b). The input RoIs (green boxes) are on a small

object (left), a large object (middle), and the background (right).

ResNet-50. Thus, there are 12 layers of deformable con-

volution in the network. In contrast, just three layers of

deformable convolution are used in [7], all in the conv5

stage. It is observed in [7] that performance saturates when

stacking more than three layers for the relatively simple and

small-scale PASCAL VOC benchmark. Also, misleading

offset visualizations on COCO may have hindered further

exploration on more challenging benchmarks. In experi-

ments, we observe that utilizing deformable layers in the

conv3-conv5 stages achieves the best tradeoff between ac-

curacy and efficiency for object detection on COCO. See

Section 5.2 for details.

3.2. Modulated Deformable Modules

To further strengthen the capability of Deformable Con-

vNets in manipulating spatial support regions, a modulation

mechanism is introduced. With it, the Deformable Con-

vNets modules can not only adjust offsets in perceiving in-

put features, but also modulate the input feature amplitudes

from different spatial locations / bins. In the extreme case, a

module can decide not to perceive signals from a particular

location / bin by setting its feature amplitude to zero. Con-

sequently, image content from the corresponding spatial lo-

cation will have considerably reduced or no impact on the

module output. Thus, the modulation mechanism provides

the network module another dimension of freedom to adjust

its spatial support regions.

Given a convolutional kernel of K sampling locations,

let wk and pk denote the weight and pre-specified offset for

the k-th location, respectively. For example, K = 9 and

pk ∈ {(−1,−1), (−1, 0), . . . , (1, 1)} defines a 3 × 3 con-

volutional kernel of dilation 1. Let x(p) and y(p) denote the

features at location p from the input feature maps x and out-

put feature maps y, respectively. The modulated deformable
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convolution can then be expressed as

y(p) =

K∑

k=1

wk · x(p+ pk +∆pk) ·∆mk, (1)

where ∆pk and ∆mk are the learnable offset and modula-

tion scalar for the k-th location, respectively. The modu-

lation scalar ∆mk lies in the range [0, 1], while ∆pk is a

real number with unconstrained range. As p+ pk +∆pk is

fractional, bilinear interpolation is applied as in [7] in com-

puting x(p+ pk +∆pk). Both ∆pk and ∆mk are obtained

via a separate convolution layer applied over the same in-

put feature maps x. This convolutional layer is of the same

spatial resolution and dilation as the current convolutional

layer. The output is of 3K channels, where the first 2K
channels correspond to the learned offsets {∆pk}

K
k=1

, and

the remaining K channels are further fed to a sigmoid layer

to obtain the modulation scalars {∆mk}
K
k=1

. The kernel

weights in this separate convolution layer are initialized to

zero. Thus, the initial values of ∆pk and ∆mk are 0 and

0.5, respectively. The learning rates of the added conv lay-

ers for offset and modulation learning are set to 0.1 times

those of the existing layers.

The design of modulated deformable RoIpooling is simi-

lar. Given an input RoI, RoIpooling divides it into K spatial

bins (e.g. 7 × 7). Within each bin, sampling grids of even

spatial intervals are applied (e.g. 2 × 2). The sampled val-

ues on the grids are averaged to compute the bin output.

Let ∆pk and ∆mk be the learnable offset and modulation

scalar for the k-th bin. The output binning feature y(k) is

computed as

y(k) =

nk∑

j=1

x(pkj +∆pk) ·∆mk/nk, (2)

where pkj is the sampling location for the j-th grid cell

in the k-th bin, and nk denotes the number of sampled

grid cells. Bilinear interpolation is applied to obtain fea-

tures x(pkj + ∆pk). The values of ∆pk and ∆mk are

produced by a sibling branch on the input feature maps.

In this branch, RoIpooling generates features on the RoI,

followed by two fc layers with 3K output channels (the

feature dimension between the two fc layers is 1024-D).

The first 2K channels are the normalized learnable offsets,

where element-wise multiplications with the RoI’s width

and height are computed to obtain {∆pk}
K
k=1

. The remain-

ing K channels are normalized by a sigmoid layer to pro-

duce {∆mk}
K
k=1

. The fc layer weights are also initialized

to zero. The learning rates of the added fc layers for offset

learning are the same as those of the existing layers.

3.3. RCNN Feature Mimicking

As observed in Figure 2, the error-bounded saliency re-

gion of a per-RoI classification node can stretch beyond the

RoI for both regular ConvNets and Deformable ConvNets.

Image content outside of the RoI may thus affect the ex-

tracted features and consequently degrade the final results

of object detection.

In [5], the authors find redundant context to be a plau-

sible source of detection error for Faster R-CNN. Together

with other motivations (e.g., to share fewer features between

the classification and bounding box regression branches),

the authors propose to combine the classification scores of

Faster R-CNN and R-CNN to obtain the final detection

score. Since R-CNN classification scores are focused on

cropped image content from the input RoI, incorporating

them would help to alleviate the redundant context problem

and improve detection accuracy. However, the combined

system is slow because both the Faster-RCNN and R-CNN

branches need to be applied in both training and inference.

Meanwhile, Deformable ConvNets are powerful in ad-

justing spatial support regions. For Deformable ConvNets

v2 in particular, the modulated deformable RoIpooling

module could simply set the modulation scalars of bins in

a way that excludes redundant context. However, our ex-

periments in Section 5.3 show that even with modulated de-

formable modules, such representations cannot be learned

well through the standard Faster R-CNN training procedure.

We suspect that this is because the conventional Faster R-

CNN training loss cannot effectively drive the learning of

such representations. Additional guidance is needed to steer

the training.

Motivated by recent work on feature mimicking [1, 21,

26], we incorporate a feature mimic loss on the per-RoI fea-

tures of Deformable Faster R-CNN to force them to be simi-

lar to R-CNN features extracted from cropped images. This

auxiliary training objective is intended to drive Deformable

Faster R-CNN to learn more “focused” feature representa-

tions like R-CNN. We note that, based on the visualized

spatial support regions in Figure 2, a focused feature repre-

sentation may well not be optimal for negative RoIs on the

image background. For background areas, more context in-

formation may need to be considered so as not to produce

false positive detections. Thus, the feature mimic loss is en-

forced only on positive RoIs that sufficiently overlap with

ground-truth objects.

The network architecture for training Deformable Faster

R-CNN is presented in Figure 3. In addition to the Faster

R-CNN network, an additional R-CNN branch is added for

feature mimicking. Given an RoI b for feature mimicking,

the image patch corresponding to it is cropped and resized

to 224 × 224 pixels. In the R-CNN branch, the backbone

network operates on the resized image patch and produces

feature maps of 14 × 14 spatial resolution. A (modulated)

deformable RoIpooling layer is applied on top of the feature

maps, where the input RoI covers the whole resized image

patch (top-left corner at (0, 0), and height and width are 224
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pixels). After that, 2 fc layers of 1024-D are applied, pro-

ducing an R-CNN feature representation for the input image

patch, denoted by fRCNN(b). A (C+1)-way Softmax classi-

fier follows for classification, where C denotes the number

of foreground categories, plus one for background. The fea-

ture mimic loss is enforced between the R-CNN feature rep-

resentation fRCNN(b) and the counterpart in Faster R-CNN,

fFRCNN(b), which is also 1024-D and is produced by the 2

fc layers in the Fast R-CNN head. The feature mimic loss

is defined on the cosine similarity between fRCNN(b) and

fFRCNN(b), computed as

Lmimic =
∑

b∈Ω

[1− cos(fRCNN(b), fFRCNN(b))], (3)

where Ω denotes the set of RoIs sampled for feature mimic

training. In the SGD training, given an input image, 32

positive region proposals generated by RPN are randomly

sampled into Ω. A cross-entropy classification loss is en-

forced on the R-CNN classification head, also computed on

the RoIs in Ω. Network training is driven by the feature

mimic loss and the R-CNN classification loss, together with

the original loss terms in Faster R-CNN. The loss weights of

the two newly introduced loss terms are 0.1 times those of

the original Faster R-CNN loss terms. The network parame-

ters between the corresponding modules in the R-CNN and

the Faster R-CNN branches are shared, including the back-

bone network, (modulated) deformable RoIpooling, and the

2 fc heads (the classification heads in the two branches are

unshared). In inference, only the Faster R-CNN network

is applied on the test images, without the auxiliary R-CNN

branch. Thus, no additional computation is introduced by

R-CNN feature mimicking in inference.

4. Related Work

Deformation Modeling is a long-standing problem in com-

puter vision, and there has been tremendous effort in de-

signing translation-invariant features. Prior to the deep

learning era, notable works include scale-invariant fea-

ture transform (SIFT) [29], oriented FAST and rotated

BRIEF (ORB) [33], and deformable part-based models

(DPM) [11]. Such works are limited by the inferior rep-

resentation power of handcrafted features and the con-

strained family of geometric transformations they address

(e.g., affine transformations). Spatial transformer networks

(STN) [24] is the first work on learning translation-invariant

features for deep CNNs. It learns to apply global affine

transformations to warp feature maps, but such transfor-

mations inadequately model the more complex geometric

variations encountered in many vision tasks. Instead of

performing global parametric transformations and feature

warping, Deformable ConvNets sample feature maps in a

local and dense manner, via learnable offsets in the pro-

posed deformable convolution and deformable RoIpooling
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Figure 3. Network training with R-CNN feature mimicking.

modules. Deformable ConvNets is the first work to effec-

tively model geometric transformations in complex vision

tasks (e.g., object detection and semantic segmentation) on

challenging benchmarks.

Our work extends Deformable ConvNets by enhancing

its modeling power and facilitating network training. This

new version of Deformable ConvNets yields significant per-

formance gains over the original model.

Relation Networks and Attention Modules are first pro-

posed in natural language processing [13, 14, 3, 35] and

physical system modeling [2, 37, 22, 34, 9, 31]. An atten-

tion / relation module effects an individual element (e.g., a

word in a sentence) by aggregating features from a set of

elements (e.g., all the words in the sentence), where the ag-

gregation weights are usually defined on feature similarities

among the elements. They are powerful in capturing long-

range dependencies and contextual information in these

tasks. Recently, the concurrent works of [23] and [36] suc-

cessfully extend relation networks and attention modules to

the image domain, for modeling long-range object-object

and pixel-pixel relations, respectively. In [18], a learnable

region feature extractor is proposed, unifying the previous

region feature extraction modules from the pixel-object re-

lation perspective. A common issue with such approaches is

that the aggregation weights and the aggregation operation

need to be computed on the elements in a pairwise fashion,

incurring heavy computation that is quadratic to the number

of elements (e.g., all the pixels in an image). Our developed

approach can be perceived as a special attention mechanism

where only a sparse set of elements have non-zero aggrega-

tion weights (e.g., 3 × 3 pixels from among all the image

pixels). The attended elements are specified by the learn-
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able offsets, and the aggregation weights are controlled by

the modulation mechanism. The computational overhead is

just linear to the number of elements, which is negligible

compared to that of the entire network (See Table 1).

Spatial Support Manipulation. For atrous convolution,

the spatial support of convolutional layers has been en-

larged by padding zeros in the convolutional kernels [4].

The padding parameters are handpicked and predetermined.

In active convolution [25], which is contemporary with De-

formable ConvNets, convolutional kernel offsets are learned

via back-propagation. But the offsets are static model pa-

rameters fixed after training and shared over different spa-

tial locations. In a multi-path network for object detec-

tion [39], multiple RoIpooling layers are employed for each

input RoI to better exploit multi-scale and context informa-

tion. The multiple RoIpooling layers are centered at the

input RoI, and are of different spatial scales. A common

issue with these approaches is that the spatial support is

controlled by static parameters and does not adapt to image

content.

Effective Receptive Field and Salient Region. Towards

better interpreting how a deep network functions, signifi-

cant progress has been made in understanding which im-

age regions contribute most to network prediction. Re-

cent works on effective receptive fields [30] and salient re-

gions [40, 41, 12, 6] reveal that only a small proportion of

pixels in the theoretical receptive field contribute signifi-

cantly to the final network prediction. The effective support

region is controlled by the joint effect of network weights

and sampling locations. Here we exploit the developed

techniques to better understand the network behavior of De-

formable ConvNets. The resulting observations guide and

motivate us to improve over the original model.

Network Mimicking and Distillation are recently intro-

duced techniques for model acceleration and compression.

Given a large teacher model, a compact student model is

trained by mimicking the teacher model output or feature

responses on training images [1, 21, 26]. The hope is that

the compact model can be better trained by distilling knowl-

edge from the large model. Here we employ a feature mimic

loss to help the network learn features that reflect the ob-

ject focus and classification power of R-CNN features. Im-

proved accuracy is obtained and the visualized spatial sup-

ports corroborate this approach.

5. Experiments

5.1. Experiment Settings

Our ablation experiments are conducted on models

trained on the 118k images of the COCO 2017 train set.

Evaluation is done on the 5k images of the COCO 2017

validation set. We also evaluate performance on the 20k

images of the COCO 2017 test-dev set, with models trained

on the union of the COCO 2017 train and validation sets.

The standard mean average-precision scores at different box

and mask IoUs are used for measuring object detection and

instance segmentation accuracy, respectively.

Faster R-CNN and Mask R-CNN are chosen as the base-

line systems. ImageNet [8] pre-trained ResNet-50 is uti-

lized as the backbone. The implementation of Faster R-

CNN is the same as in Section 3.3. For Mask R-CNN, we

follow the implementation in [19], thus FPN [27] is used.

To turn the networks into their deformable counterparts, the

last set of 3 × 3 regular conv layers (close to the output

in the bottom-up computation) are replaced by (modulated)

deformable conv layers. Aligned RoIpooling is replaced by

(modulated) deformable RoIpooling. Specially for Mask

R-CNN, the two aligned RoIpooling layers with 7 × 7 and

14 × 14 bins are replaced by two (modulated) deformable

RoIpooling layers with the same bin numbers. In R-CNN

feature mimicking, the feature mimic loss is enforced on the

RoI head for classification only (excluding that for mask es-

timation). For both systems, the choice of hyper-parameters

follows the latest Detectron [17] code base, which is briefly

presented here. In both training and inference, images are

resized so that the shorter side is 800 pixels, and anchors

of 5 scales and 3 aspect ratios are utilized. 2k and 1k re-

gion proposals are generated at a non-maximum suppres-

sion threshold of 0.7 at training and inference respectively.

In SGD training, 256 anchor boxes (of positive-negative ra-

tio 1:1) and 512 region proposals (of positive-negative ratio

1:3) are sampled for backpropagating their gradients. In

our experiments, the networks are trained on 8 GPUs with 2

images per GPU for 16 epochs. The learning rate is initial-

ized to 0.02 and is divided by 10 at the 10-th and the 14-th

epochs. The weight decay and the momentum parameters

are set to 10−4 and 0.9, respectively.

5.2. Enriched Deformation Modeling

The effects of enriched deformation modeling are exam-

ined from ablations shown in Table 1. The baseline with

regular CNN modules obtains an APbbox score of 35.6% for

Faster R-CNN, and APbbox and APmask scores of 37.8% and

33.4% respectively for Mask R-CNN. This strong baseline

matches the results of the latest implementation in Detec-

tron. To obtain a DCNv1 baseline, we follow the original

Deformable ConvNets paper by replacing the last three lay-

ers of 3 × 3 convolution in the conv5 stage and the aligned

RoIpooling layer by their deformable counterparts. This

DCNv1 baseline achieves an APbbox score of 38.2% for

Faster R-CNN, and APbbox and APmask scores of 40.3% and

35.0% respectively for Mask R-CNN. The deformable mod-

ules considerably improve accuracy as observed in [7].

By replacing more 3 × 3 regular conv layers by their

deformable counterparts, the accuracy of both Faster R-
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method setting
Faster R-CNN Mask R-CNN

APbbox APbbox
S APbbox

M APbbox
L param FLOP APbbox APmask param FLOP

baseline

regular (RoIpooling) 32.8 13.6 37.2 48.7 51.3M 196.8G - - - -

regular (aligned RoIpooling) 35.6 18.2 40.3 48.7 51.3M 196.8G 37.8 33.4 39.5M 303.5G

dconv@c5 + dpool (DCNv1) 38.2 19.1 42.2 54.0 52.7M 198.9G 40.3 35.0 40.9M 304.9G

enriched

deformation

dconv@c5 37.6 19.3 41.4 52.6 51.5M 197.7G 39.9 34.9 39.8M 303.7G

dconv@c4∼c5 39.2 19.9 43.4 55.5 51.7M 198.7G 41.2 36.1 40.0M 304.7G

dconv@c3∼c5 39.5 21.0 43.5 55.6 51.8M 200.0G 41.5 36.4 40.1M 306.0G

dconv@c3∼c5 + dpool 40.0 21.1 44.6 56.3 53.0M 201.2G 41.8 36.4 41.3M 307.2G

mdconv@c3∼c5 + mdpool 40.8 21.3 45.0 58.5 65.5M 214.7G 42.7 37.0 53.8M 320.3G

Table 1. Ablation study on enriched deformation modeling. In the setting column, “(m)dconv” and “(m)dpool” stand for (modulated)

deformable convolution and (modulated) deformable RoIpooling, respectively. Also, “dconv@c3∼c5” stands for applying deformable

conv layers at stages conv3∼conv5, for example. Results are reported on the COCO 2017 validation set.

CNN and Mask R-CNN steadily improve, with gains be-

tween 1.5% and 2.0% for APbbox and APmask scores when

the conv layers in conv3-conv5 are replaced. No additional

improvement is observed on the COCO benchmark by fur-

ther replacing the regular conv layers in the conv2 stage.

By upgrading the deformable modules to modulated de-

formable modules, we obtain further gains between 0.6%

and 1.0% in APbbox and APmask scores. In total, enriching

the deformation modeling capability yields a 40.8% APbbox

score on Faster R-CNN, which is 2.6% higher than that of

the DCNv1 baseline. On Mask R-CNN, 42.7% APbbox and

37.0% APmask scores are obtained with the enriched defor-

mation modeling, which are respectively 2.4% and 2.0%

higher than those of the DCNv1 baseline. Note that the

added parameters and FLOPs for enriching the deformation

modeling are minor in relation to the overall networks.

Shown in Figure 1 (b)∼(c), the spatial support of the

enriched deformable modeling exhibits better adaptation to

image content compared to that of DCNv1.

5.3. RCNN Feature Mimicking

Ablations of the design choices in R-CNN feature mim-

icking are shown in Table 2. With the enriched deformation

modeling, R-CNN feature mimicking further improves the

APbbox and APmask scores by about 1% to 1.6% in both the

Faster R-CNN and Mask R-CNN systems. Mimicking fea-

tures of positive boxes on the object foreground is found to

be particularly effective, and the results when mimicking all

the boxes or just negative boxes are much lower. As shown

in Figure 2 (c)∼(d), feature mimicking can help the net-

work features better focus on the object foreground, which

is beneficial for positive boxes. For the negative boxes, the

network tends to exploit more context information (see Fig-

ure 2), where feature mimicking would not be helpful.

We also apply R-CNN feature mimicking to regular Con-

vNets without any deformable layers. Almost no accuracy

gains are observed. The visualized spatial support regions

are shown in Figure 2 (e), which are not focused on the ob-

ject foreground even with the auxiliary mimic loss. This

is likely because it is beyond the representation capability

setting
regions to

mimic

Faster

R-CNN

Mask

R-CNN

APbbox APbbox APmask

mdconv3∼5 +

mdpool

None 40.8 42.7 37.0

FG & BG 41.3 42.9 37.1

BG Only 41.1 42.7 37.1

FG Only 42.4 43.9 38.1

regular
None 35.6 37.8 33.4

FG Only 35.8 37.9 33.5

Table 2. Ablation study on R-CNN feature mimicking. Results are

reported on the COCO 2017 validation set.

backbone method

Faster

R-CNN

Mask

R-CNN

APbbox APbbox APmask

ResNet-50

regular 36.0 38.2 33.4

DCN v1 38.5 40.6 35.2

DCN v2 42.4 44.1 38.0

ResNet-101

regular 39.1 40.8 35.2

DCN v1 41.1 42.6 36.8

DCN v2 44.0 45.4 39.3

ResNext-101

regular 40.0 41.8 36.3

DCN v1 41.5 43.3 37.4

DCN v2 44.6 46.3 40.1

Table 3. Results of DCNv2, DCNv1 and regular ConvNets on var-

ious backbones on the COCO 2017 test-dev set.

of regular ConvNets to focus features on the object fore-

ground, and thus this cannot be learned.

5.4. Application on Stronger Backbones

Results on stronger backbones, by replacing ResNet-50

with ResNet-101 and ResNext-101 [38], are presented in

Table 3. For the entries of DCNv1, the regular 3 × 3
conv layers in the conv5 stage are replaced by the de-

formable counterpart, and aligned RoIpooling is replaced

by deformable RoIpooling. For the DCNv2 entries, all the

3 × 3 conv layers in the conv3-conv5 stages are of mod-

ulated deformable convolution, and modulated deformable

RoIpooling is used instead, with supervision from the R-

CNN feature mimic loss. DCNv2 is found to outperform

regular ConvNet and DCNv1 considerably on all the net-

work backbones.
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