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Abstract

Semantic segmentation requires large amounts of pixel-

wise annotations to learn accurate models. In this paper, we

present a video prediction-based methodology to scale up

training sets by synthesizing new training samples in order

to improve the accuracy of semantic segmentation networks.

We exploit video prediction models’ ability to predict future

frames in order to also predict future labels. A joint propa-

gation strategy is also proposed to alleviate mis-alignments

in synthesized samples. We demonstrate that training seg-

mentation models on datasets augmented by the synthe-

sized samples leads to significant improvements in accu-

racy. Furthermore, we introduce a novel boundary label re-

laxation technique that makes training robust to annotation

noise and propagation artifacts along object boundaries.

Our proposed methods achieve state-of-the-art mIoUs of

83.5% on Cityscapes and 82.9% on CamVid. Our single

model, without model ensembles, achieves 72.8% mIoU on

the KITTI semantic segmentation test set, which surpasses

the winning entry of the ROB challenge 2018.

1. Introduction

Semantic segmentation is the task of dense per pixel pre-

dictions of semantic labels. Large improvements in model

accuracy have been made in recent literature [44, 14, 10],

in part due to the introduction of Convolutional Neural Net-

works (CNNs) for feature learning, the task’s utility for self-

driving cars, and the availability of larger and richer train-

ing datasets (e.g., Cityscapes [15] and Mapillary Vista [32]).

While these models rely on large amounts of training data

to achieve their full potential, the dense nature of semantic

segmentation entails a prohibitively expensive dataset an-

notation process. For instance, annotating all pixels in a

1024 × 2048 Cityscapes image takes on average 1.5 hours

[15]. Annotation quality plays an important role for training

better models. While coarsely annotating large contiguous
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Figure 1: Framework overview. We propose joint image-label

propagation to scale up training sets for robust semantic segmen-

tation. The green dashed box includes manually labelled samples,

and the red dashed box includes our propagated samples. T is the

transformation function learned by the video prediction models to

perform propagation. We also propose boundary label relaxation

to mitigate label noise during training. Our framework can be used

with most semantic segmentation and video prediction models.

regions can be performed quickly using annotation toolkits,

finely labeling pixels along object boundaries is extremely

challenging and often involves inherently ambiguous pixels.

Many alternatives have been proposed to augment train-

ing processes with additional data. For example, Cords et

al. [15] provided 20K coarsely annotated images to help

train deep CNNs, an annotation cost effective alternative

used by all top 10 performers on the Cityscapes benchmark.

Nevertheless, coarse labeling still takes, on average, 7 min-

utes per image. An even cheaper way to obtain more labeled

samples is to generate synthetic data [35, 36, 18, 47, 45].

However, model accuracy on the synthetic data often does

not generalize to real data due to the domain gap between

synthetic and real images. Luc et al. [28] use a state-of-the-

art image segmentation method [42] as a teacher to gen-

erate extra annotations for unlabelled images. However,

their performance is bounded by the teacher method. An-

other approach exploits the fact that many semantic seg-

mentation datasets are based on continuous video frame

sequences sparsely labeled at regular intervals. As such,

several works [2, 9, 31, 16, 33] propose to use temporal
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consistency constraints, such as optical flow, to propagate

ground truth labels from labeled to unlabeled frames. How-

ever, these methods all have different drawbacks.

In this work, we propose to utilize video prediction mod-

els to efficiently create more training samples (image-label

pairs) as shown in Fig. 1. Given a sequence of video frames

having labels for only a subset of the frames, we exploit

the prediction models’ ability to predict future frames in or-

der to also predict future labels (new labels for unlabelled

frames). Specifically, we propose leveraging such models

in two ways. 1) Label Propagation (LP): We create new

training samples by pairing a propagated label with the orig-

inal future frame. 2) Joint image-label Propagation (JP):

We create a new training sample by pairing a propagated la-

bel with the corresponding propagated image. In approach

(2), it is of note that since both past labels and frames are

jointly propagated using the same prediction model, the re-

sulting image-label pair will have a higher degree of align-

ment. We separately apply each approach for multiple fu-

ture steps to scale up the training dataset.

While great progress has been made in video prediction,

it is still prone to producing unnatural distortions along ob-

ject boundaries. For synthesized training examples, this

means that the propagated labels along object boundaries

should be trusted less than those within an object’s interior.

Here, we present a novel boundary label relaxation tech-

nique that can make training more robust to such errors. We

demonstrate that by maximizing the likelihood of the union

of neighboring class labels along the boundary, the trained

models not only achieve better accuracy, but are also able to

benefit from longer-range propagation.

As we will show in our experiments, training seg-

mentation models on datasets augmented by our synthe-

sized samples leads to improvements on several popular

datasets. Furthermore, by performing training with our pro-

posed boundary label relaxation technique, we achieve even

higher accuracy and training robustness, producing state-

of-the-art results on the Cityscapes, CamVid, and KITTI

semantic segmentation benchmarks. Our contributions are

summarized below:

• We propose to utilize video prediction models to prop-

agate labels to immediate neighbor frames.

• We introduce joint image-label propagation to alleviate

the mis-alignment problem.

• We propose to relax one-hot label training by maxi-

mizing the likelihood of the union of class probabilities

along boundary. This results in more accurate models

and allows us to perform longer-range propagation.

• We compare our video prediction-based approach to

standard optical flow-based ones in terms of segmen-

tation performance.

2. Related Work

Here, we discuss additional work related to ours, focus-

ing mainly on the differences.

Label propagation There are two main approaches to prop-

agating labels: patch matching [2, 9] and optical flow

[31, 16, 33]. Patch matching-based methods, however, tend

to be sensitive to patch size and threshold values, and, in

some cases, they assume prior-knowledge of class statis-

tics. Optical flow-based methods rely on very accurate opti-

cal flow estimation, which is difficult to achieve. Erroneous

flow estimation can result in propagated labels that are mis-

aligned with their corresponding frames.

Our work falls in this line of research but has two major

differences. First, we use motion vectors learned from video

prediction models to perform propagation. The learned mo-

tion vectors can handle occlusion while also being class ag-

nostic. Second, we conduct joint image-label propagation

to greatly reduce the mis-alignments.

Boundary handling Some prior works [12, 29] explic-

itly incorporate edge cues as constraints to handle bound-

ary pixels. Although the idea is straightforward, this ap-

proach has at least two drawbacks. One is the potential er-

ror propagation from edge estimation and the other is fitting

extremely hard boundary cases may lead to over-fitting at

the test stage. There is also literature focusing on struc-

ture modeling to obtain better boundary localization, such

as affinity field [21], random walk [5], relaxation labelling

[37], boundary neural fields [4], etc. However, none of these

methods deals directly with boundary pixels but they in-

stead attempt to model the interactions between segments

along object boundaries. The work most similar to ours is

[22] which proposes to incorporate uncertainty reasoning

inside Bayesian frameworks. The authors enforce a Gaus-

sian distribution over the logits to attenuate loss when un-

certainty is large. Instead, we propose a modification to

class label space that allows us to predict multiple classes at

a boundary pixel. Experimental results demonstrate higher

model accuracy and increased training robustness.

3. Methodology

We present an approach for training data synthesis from

sparsely annotated video frame sequences. Given an input

video I ∈ R
n×W×H and semantic labels L ∈ R

m×W×H ,

where m ≤ n, we synthesize k × m new training samples

(image-label pairs) using video prediction models, where k

is the length of propagation applied to each input image-

label pair (Ii,Li). We will first describe how we use video

prediction models for label synthesis.

3.1. Video Prediction

Video prediction is the task of generating future frames

from a sequence of past frames. It can be modeled as the
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Figure 2: Motivation of joint image-label propagation. Row 1: original frames. Row 2: propagated labels. Row 3: propagated frames.

The red and green boxes are two zoomed-in regions which demonstrate the mis-alignment problem. Note how the propagated frames align

perfectly with propagated labels as compared to the original frames. The black areas in the labels represent a void class. (Image brightness

has been adjusted for better visualization.)

process of direct pixel synthesis or learning to transform

past pixels. In this work, we use a simple and yet effec-

tive vector-based approach [34] that predicts a motion vec-

tor (u, v) to translate each pixel (x, y) to its future coordi-

nate. The predicted future frame eIt+1 is given by,

eIt+1 = T
⇣
G
�
I1:t,F2:t

�
, It

⌘
, (1)

where G is a 3D CNN that predicts motion vectors (u, v)
conditioned on input frames I1:t and estimated optical flows

Fi between successive input frames Ii and Ii−1. T is an

operation that bilinearly samples from the most recent input

It using the predicted motion vectors (u, v).
Note that the motion vectors predicted by G are not

equivalent to optical flow vectors F. Optical flow vectors

are undefined for pixels that are visible in the current frame

but not visible in the previous frame. Thus, performing

past frame sampling using optical flow vectors will dupli-

cate foreground objects, create undefined holes or stretch

image borders. The learned motion vectors, however, ac-

count for disocclusion and attempt to accurately predict fu-

ture frames. We will demonstrate the advantage of learned

motion vectors over optical flow in Sec. 4.

In this work, we propose to reuse the predicted motion

vectors to also synthesize future labels eLt+1. Specifically:

eLt+1 = T
⇣
G
�
I1:t,F2:t

�
,Lt

⌘
, (2)

where a sampling operation T is applied on a past label

Lt. G in equation 2 is the same as in equation 1 and is pre-

trained on the underlying video frame sequences for the task

of accurately predicting future frames.

3.2. Joint Image-Label Propagation

Standard label propagation techniques create new train-

ing samples by pairing a propagated label with the origi-

nal future frame as
�
Ii+k, eLi+k

�
, with k being the propa-

gation length. For regions where the frame-to-frame cor-

respondence estimation is not accurate, we will encounter

mis-alignment between Ii+k and eLi+k. For example, as we

see in Fig. 2, most regions in the propagated label (row 2)

correlate well with the corresponding original video frames

(row 1). However, certain regions, like the pole (red) and

the leg of the pedestrian (green), do not align with the orig-

inal frames due to erroneous estimated motion vectors.

To alleviate this mis-alignment issue, we propose a joint

image-label propagation strategy; i.e., we jointly propagate

both the video frame and the label. Specifically, we apply

equation 2 to each input training sample (Ii,Li) for k fu-

ture steps to create km new training samples by pairing a

predicted frame with a predicted label as (eIi+k, eLi+k). As

we can see in Fig. 2, the propagated frames (row 3) cor-

respond well to the propagated labels (row 2). The pole

and the leg experience the same distortion. Since semantic

segmentation is a dense per-pixel estimation problem, such

good alignment is crucial for learning an accurate model.

Our joint propagation approach can be thought of as a

special type of data augmentation because both the frame

and label are synthesized by transforming a past frame and

the corresponding label using the same learned transforma-
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Figure 3: Motivation of boundary label relaxation. For the en-

tropy image, the lighter pixel value, the larger the entropy. We

find that object boundaries often have large entropy, due to am-

biguous annotations or propagation distortions. The green boxes

are zoomed-in figures showing such distortions.

tion parameters (u, v). It is an approach similar to standard

data augmentation techniques, such as random rotation, ran-

dom scale or random flip. However, joint propagation uses

a more fundamental transformation which was trained for

the task of accurate future frame prediction.

In order to create more training samples, we also per-

form reversed frame prediction. We equivalently apply joint

propagation to create additional km new training samples as

(eIi−k, eLi−k). In total, we can scale the training dataset by a

factor of 2k+1. In our study, we set k to be ±1,±2,±3,±4
or ±5, where + indicates a forward propagation, and − a

backward propagation.

We would like to point out that our proposed joint prop-

agation has broader applications. It could also find appli-

cation in datasets where both the raw frames and the corre-

sponding labels are scarce. This is different from label prop-

agation alone for synthesizing new training samples for typ-

ical video datasets, for instance Cityscapes [15], where raw

video frames are abundant but only a subset of the frames

have human annotated labels.

3.3. Video Reconstruction

Since, in our problem, we know the actual future frames,

we can instead perform not just video prediction but video

reconstruction to synthesize new training examples. More

specifically, we can condition the prediction models on both

the past and future frames to more accurately reconstruct

“future” frames. The motivation behind this reformula-

tion is that because future frames are observed by video

reconstruction models, they are, in general, expected to pro-

duce better transformation parameters than video prediction

models which only observe only past frames.

Mathematically, a reconstructed future frame Ît+1 is

given by,

Ît+1 = T
⇣
G
�
I1:t+1,F2:t+1

�
, It

⌘
. (3)

In a similar way to equation 2, we also apply G from equa-

tion 3 (which is learned for the task of accurate future frame

reconstruction) to generate a future label L̂t+1.

Table 1: Effectiveness of Mapillary pre-training and class uniform

sampling on both fine and coarse annotations.

Method mIoU (%)

Baseline 76.60
+ Mapillary Pre-training 78.32

+ Class Uniform Sampling (Fine + Coarse) 79.46

3.4. Boundary Label Relaxation

Most of the hardest pixels to classify lie on the bound-

ary between object classes [25]. Specifically, it is difficult

to classify the center pixel of a receptive field when po-

tentially half or more of the input context could be from

a different class. This problem is further compounded by

the fact that the annotations are nowhere near pixel-perfect

along the edges.

We propose a modification to class label space, applied

exclusively during training, that allows us to predict multi-

ple classes at a boundary pixel. We define a boundary pixel

as any pixel that has a differently labeled neighbor. Suppose

we are classifying a pixel along the boundary of classes A

and B for simplicity. Instead of maximizing the likelihood

of the target label as provided by annotation, we propose

to maximize the likelihood of P (A ∪ B). Because classes

A and B are mutually exclusive, we aim to maximize the

union of A and B:

P (A ∪B) = P (A) + P (B), (4)

where P () is the softmax probability of each class. Specifi-

cally, let N be the set of classes within a 3×3 window of a

pixel. We define our loss as:

Lboundary = −log
X

C∈N

P (C). (5)

Note that for |C| = 1, this loss reduces to the standard one-

hot label cross-entropy loss.

One can see that the loss over the modified label space is

minimized when
P

C∈N
P (C) = 1 without any constraints

on the relative values of each class probability. We demon-

strate that this relaxation not only makes our training robust

to the aforementioned annotation errors, but also to distor-

tions resulting from our joint propagation procedure. As

can be seen in Fig. 3, the propagated label (three frames

away from the ground truth) distorts along the moving car’s

boundary and the pole. Further, we can see how much

the model is struggling with these pixels by visualizing the

model’s entropy over the class label . As the high entropy

would suggest, the border pixel confusion contributes to a

large amount of the training loss. In our experiments, we

show that by relaxing the boundary labels, our training is

more robust to accumulated propagation artifacts, allowing

us to benefit from longer-range training data propagation.
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Table 2: Comparison between (1) label propagation (LP) and joint

propagation (JP); (2) video prediction (VPred) and video recon-

struction (VRec). Using the proposed video reconstruction and

joint propagation techniques, we improve over the baseline by

1.08% mIoU (79.46% � 80.54%).

0 ±1 ±2 ±3 ±4 ±5

VPred + LP 79.46 79.79 79.77 79.71 79.55 79.42
VPred + JP 79.46 80.26 80.21 80.23 80.11 80.04
VRec + JP 79.46 80.54 80.47 80.51 80.34 80.18

4. Experiments

In this section, we evaluate our proposed method on

three widely adopted semantic segmentation datasets, in-

cluding Cityscapes [15], CamVid [7] and KITTI [1]. For all

three datasets, we use the standard mean Intersection over

Union (mIoU) metric to report segmentation accuracy.

4.1. Implementation Details

For the video prediction/reconstruction models, the

training details are described in the supplementary mate-

rials. For semantic segmentation, we use an SGD opti-

mizer and employ a polynomial learning rate policy [27,

13], where the initial learning rate is multiplied by (1 −
epoch

max epoch
)power. We set the initial learning rate to 0.002

and power to 1.0. Momentum and weight decay are set to

0.9 and 0.0001 respectively. We use synchronized batch

normalization [44, 43] with a batch size of 16 distributed

over 8 V100 GPUs. The number of training epochs is set to

180 for Cityscapes, 120 for Camvid and 90 for KITTI. The

crop size is 800 for Cityscapes, 640 for Camvid and 368
for KITTI due to different image resolutions. For data aug-

mentation, we randomly scale the input images (from 0.5 to

2.0), and apply horizontal flipping, Gaussian blur and color

jittering during training. Our network architecture is based

on DeepLabV3Plus [14]. For the network backbone, we

use ResNeXt50 [39] for the ablation studies, and WideRes-

Net38 [38] for the final test-submissions. In addition, we

adopt the following two effective strategies.

Mapillary Pre-Training Instead of using ImageNet pre-

trained weights for model initialization, we pre-train our

model on Mapillary Vistas [32]. This dataset contains

street-level scenes annotated for autonomous driving, which

is close to Cityscapes. Furthermore, it has a larger training

set (i.e., 18K images) and more classes (i.e., 65 classes).

Class Uniform Sampling We introduce a data sampling

strategy similar to [10]. The idea is to make sure that all

classes are approximately uniformly chosen during training.

We first record the centroid of areas containing the class of

interest. During training, we take half of the samples from

the standard randomly cropped images and the other half

from the centroids to make sure the training crops for all

classes are approximately uniform per epoch. In this case,

we are actually oversampling the underrepresented cate-

0 1 2 3 4 5

80

81
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m
Io
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VRec w Label Relax

VPred w Label Relax

VRec w/o Label Relax

VPred w/o Label Relax
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w/ Label Relaxation

w/o Label Relaxation

Figure 4: Boundary label relaxation leads to higher mIoU at all

propagation lengths. The longer propagation, the bigger the gap

between the solid (with label relaxation) and dashed (without re-

laxation) lines. The black dashed line represents our baseline

(79.46%). x-axis equal to 0 indicates no augmented samples are

used. For each experiment, we perform three runs and report the

mean and sample standard deviation as the error bar [8].

gories. For Cityscapes, we also utilize coarse annotations

based on class uniform sampling. We compute the class

centroids for all 20K samples, but we can choose which data

to use. For example, classes such as fence, rider, train are

underrepresented. Hence, we only augment these classes by

providing extra coarse samples to balance the training.

4.2. Cityscapes

Cityscapes is a challenging dataset containing high qual-

ity pixel-level annotations for 5000 images. The standard

dataset split is 2975, 500, and 1525 for the training, valida-

tion, and test sets respectively. There are also 20K coarsely

annotated images. Cityscapes defines 19 semantic labels

containing both objects and stuff, and a void class for do-

not-care regions. We perform several ablation studies below

on the validation set to justify our framework design.

Stronger Baseline First, we demonstrate the effective-

ness of Mapillary pre-training and class uniform sampling.

As shown in Table 1, Mapillary pre-training is highly ben-

eficial and improves mIoU by 1.72% over the baseline

(76.60% � 78.32%). This makes sense because the Map-

illary Vista dataset is close to Cityscape in terms of do-

main similarity, and thus provides better initialization than

ImageNet. We also show that class uniform sampling is

an effective data sampling strategy to handle class imbal-

ance problems. It brings an additional 1.14% improvement

(78.32% � 79.46%). We use this recipe as our baseline.

Label Propagation versus Joint Propagation Next, we

show the advantage of our proposed joint propagation over

label propagation. For both settings, we use the mo-

tion vectors predicted by the video prediction model to

perform propagation. The comparison results are shown
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in Table 2. Column 0 in Table 2 indicates the baseline

ground-truth-only training (no augmentation with synthe-

sized data). Columns 1 to 5 indicate augmentation with

sythesized data from timesteps ±k, not including intermedi-

ate sythesized data from timesteps < |k|. For example, ±3
indicates we are using +3, −3 and the ground truth samples,

but not ±1 and ±2. Note that we also tried the accumulated

case, where ±1 and ±2 is included in the training set. How-

ever, we observed a slight performance drop. We suspect

this is because the cumulative case significantly decreases

the probability of sampling a hand-annotated training exam-

ple within each epoch, ultimately placing too much weight

on the synthesized ones and their imperfections. Compar-

isons between the non-accumulated and accumulated cases

can be found in the supplementary materials.

As we can see in Table 2 (top two rows), joint propaga-

tion works better than label propagation at all propagation

lengths. Both achieve highest mIoU for ±1, which is ba-

sically using information from just the previous and next

frames. Joint propagation improves by 0.8% mIoU over

the baseline (79.46% � 80.26%), while label propagation

only improves by 0.33% (79.46% � 79.79%). This clearly

demonstrates the usefulness of joint propagation. We be-

lieve this is because label noise from mis-alignment is out-

weighed by additional dataset diversity obtained from the

augmented training samples. Hence, we adopt joint propa-

gation in subsequent experiments.

Video Prediction versus Video Reconstruction Recall

from Sec. 3.1 that we have two methods for learning the

motion vectors to generate new training samples through

propagation: video prediction and video reconstruction. We

experiment with both models in Table 2.

As shown in Table 2 (bottom two rows), video recon-

struction works better than video prediction at all propaga-

tion lengths, which agrees with our expectations. We also

find that ±1 achieves the best result. Starting from ±4, the

model accuracy starts to drop. This indicates that the quality

of the augmented samples becomes lower as we propagate

further. Compared to the baseline, we obtain an absolute

improvement of 1.08% (79.46% � 80.54%). Hence, we

use the motion vectors produced by the video reconstruc-

tion model in the following experiments.

Effectiveness of Boundary Label Relaxation Theoret-

ically, we can propagate the labels in an auto-regressive

manner for as long as we want. The longer the propagation,

the more diverse information we will get. However, due

to abrupt scene changes and propagation artifacts, longer

propagation will generate low quality labels as shown in

Fig. 2. Here, we will demonstrate how the proposed bound-

ary label relaxation technique can help to train a better

model by utilizing longer propagated samples.

(a) Top: MVs; Bottom: Flow

0 1 2 3 4 5

80.4

80.6

80.8

81

81.2

81.4

Propagation Length

m
Io
U

Label Relaxation Only

Label Relaxation+Learned MV

Label Relaxation+FlowNet2

(b) Propagation length performance

Figure 5: Our learned motion vectors from video reconstruction

are better than optical flow (FlowNet2). 5a Qualitative result. The

learned motion vectors are better in terms of occlusion handling.

5b Quantitative result. The learned motion vectors are better at all

propagation lengths in terms of mIoU.

We use boundary label relaxation on datasets created by

video prediction (red) and video reconstruction (blue) in

Fig. 4. As we can see, adopting boundary label relax-

ation leads to higher mIoU at all propagation lengths for

both models. Take the video reconstruction model for ex-

ample. Without label relaxation (dashed lines), the best per-

formance is achieved at ±1. After incorporating relaxation

(solid lines), the best performance is achieved at ±3 with

an improvement of 0.81% mIoU (80.54% � 81.35%). The

gap between the solid and dashed lines becomes larger as

we propagate longer. The same trend can be observed for

the video prediction models. This demonstrates that our

boundary label relaxation is effective at handling border ar-

tifacts. It helps our model obtain more diverse information

from ±3, and at the same time, reduces the impact of label

noise brought by long propagation. Hence, we use bound-

ary label relaxation for the rest of the experiments.

Note that even for no propagation (x-axis equal to 0) in

Fig. 4, boundary label relaxation improves performance by

a large margin (79.46% � 80.85%). This indicates that our

boundary label relaxation is versatile. Its use is not lim-

ited to reducing distortion artifacts in label propagation, but

it can also be used in normal image segmentation tasks to

handle ambiguous boundary labels.

Learned Motion Vectors versus Optical Flow Here, we

perform a comparison between the learned motion vectors

from the video reconstruction model and optical flow, to

show why optical flow is not preferred. For optical flow,

we use the state-of-the-art CNN flow estimator FlowNet2

[20] because it can generate sharp object boundaries and

generalize well to both small and large motions.

First, we show a qualitative comparison between the

learned motion vectors and the FlowNet2 optical flow. As

we can see in Fig. 5a, FlowNet2 suffers from serious dou-

bling effects caused by occlusion. For example, the drag-

ging car (left) and the doubling rider (right). In contrast, our

learned motion vectors can handle occlusion quite well. The

propagated labels have only minor artifacts along the object
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Table 3: Per-class mIoU results on Cityscapes. Top: our ablation improvements on the validation set. Bottom: comparison with top-

performing models on the test set.

Method split road swalk build. wall fence pole tlight tsign veg. terrain sky person rider car truck bus train mcycle bicycle mIoU

Baseline val 98.4 86.5 93.0 57.4 65.5 66.7 70.6 78.9 92.7 65.0 95.3 80.8 60.9 95.3 87.9 91.0 84.3 65.8 76.2 79.5
+ VRec with JP val 98.0 86.5 94.7 47.6 67.1 69.6 71.8 80.4 92.2 58.4 95.6 88.3 71.1 95.6 76.8 84.7 90.3 79.6 80.3 80.5

+ Label Relaxation val 98.5 87.4 93.5 64.2 66.1 69.3 74.2 81.5 92.9 64.6 95.6 83.5 66.5 95.7 87.7 91.9 85.7 70.1 78.8 81.4

ResNet38 [38] test 98.7 86.9 93.3 60.4 62.9 67.6 75.0 78.7 93.7 73.7 95.5 86.8 71.1 96.1 75.2 87.6 81.9 69.8 76.7 80.6
PSPNet [44] test 98.7 86.9 93.5 58.4 63.7 67.7 76.1 80.5 93.6 72.2 95.3 86.8 71.9 96.2 77.7 91.5 83.6 70.8 77.5 81.2

InPlaceABN [10] test 98.4 85.0 93.6 61.7 63.9 67.7 77.4 80.8 93.7 71.9 95.6 86.7 72.8 95.7 79.9 93.1 89.7 72.6 78.2 82.0
DeepLabV3+ [14] test 98.7 87.0 93.9 59.5 63.7 71.4 78.2 82.2 94.0 73.0 95.8 88.0 73.0 96.4 78.0 90.9 83.9 73.8 78.9 82.1

DRN-CRL [46] test 98.8 87.7 94.0 65.1 64.2 70.1 77.4 81.6 93.9 73.5 95.8 88.0 74.9 96.5 80.8 92.1 88.5 72.1 78.8 82.8
Ours test 98.8 87.8 94.2 64.1 65.0 72.4 79.0 82.8 94.2 74.0 96.1 88.2 75.4 96.5 78.8 94.0 91.6 73.8 79.0 83.5

Our Proposed GTOur BaselineFrame

Figure 6: Visual comparisons on Cityscapes. The images are

cropped for better visualization. We demonstrate our proposed

techniques lead to more accurate segmentation than our baseline.

Especially for thin and rare classes, like street light and bicycle

(row 1), signs (row 2), person and poles (row 3). Our observation

corresponds well to the class mIoU improvements in Table 3.

borders which can be remedied by label relaxation. Next,

we show their quantitative comparison. As we can see in

Fig. 5b, the learned motion vectors (blue) perform signifi-

cantly better than FlowNet2 (red) at all propagation lengths.

As we propagate longer, the gap between them becomes

larger, which indicates the low quality of the FlowNet2 aug-

mented samples. Note that when the propagation length is

±1,±4 and ±5, the performance of FlowNet2 is even lower

than the baseline.

Comparison to State-of-the-Art As shown in Table 3

top, our proposed video reconstruction-based data synthe-

sis together with joint propagation improves by 1.0% mIoU

over the baseline. Incorporating label relaxation brings an-

other 0.9% mIoU improvement. We observe that the largest

improvements come from small/thin object classes, such as

pole, street light/sign, person, rider and bicycle. This can be

explained by the fact that our augmented samples result in

more variation for these classes and helps with model gen-

eralization. We show several visual comparisons in Fig. 6.

For test submission, we train our model using the best

recipe suggested above, and replace the network backbone

with WideResNet38 [38]. We adopt a multi-scale strategy

Figure 7: Visual examples on Cityscapes. From left to right: im-

age, GT, prediction and their differences. We demonstrate that

our model can handle situations with multiple cars (row 1), dense

crowds (row 2) and thin objects (row 3). The bottom two rows

show failure cases. We mis-classify a reflection in the mirror (row

4) and a model inside the building (row 5) as person (red boxes).

[44, 14] to perform inference on multi-scaled (0.5, 1.0 and

2.0), left-right flipped and overlapping-tiled images, and

compute the final class probabilities after averaging logits

per inference. More details can be found in the supplemen-

tary materials. As shown in Table 3 bottom, we achieve an

mIoU of 83.5%, outperforming all prior methods. We get

the highest IoU on 18 out of the 20 classes except for wall

and truck. In addition, we show several visual examples in

Fig. 7. We demonstrate that our model can handle situations

with multiple cars (row 1), dense crowds (row 2) and thin

objects (row 3). We also show two interesting failure cases

in Fig. 7. Our model mis-classifies a reflection in the mirror

(row 4) and a model inside the building (row 5) as person

(red boxes). However, in terms of appearance without rea-

soning about context, our predictions are correct. More vi-

sual examples can be found in the supplementary materials.

4.3. CamVid

CamVid is one of the first datasets focusing on seman-

tic segmentation for driving scenarios. It is composed of

701 densely annotated images with size 720 × 960 from

five video sequences. We follow the standard protocol pro-

posed in [3] to split the dataset into 367 training, 101 val-
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Figure 8: Visual comparison between our results and those of the winning entry [10] of ROB challenge 2018 on KITTI. From left to right:

image, prediction from [10] and ours. Boxes indicate regions in which we perform better than [10]. Our model can predict semantic objects

as a whole (bus), detect thin objects (poles and person) and distinguish confusing classes (sidewalk and road, building and sky).

Table 4: Results on the CamVid test set. Pre-train indicates the

source dataset on which the model is trained.

Method Pre-train Encoder mIoU (%)

SegNet [3] ImageNet VGG16 60.1
RTA [19] ImageNet VGG16 62.5

Dilate8 [42] ImageNet Dilate 65.3
BiSeNet [41] ImageNet ResNet18 68.7
PSPNet [44] ImageNet ResNet50 69.1

DenseDecoder [6] ImageNet ResNeXt101 70.9
VideoGCRF [11] Cityscapes ResNet101 75.2
Ours (baseline) Cityscapes WideResNet38 79.8

Ours Cityscapes WideResNet38 81.7

idation and 233 test images. A total of 32 classes are pro-

vided. However, most literature only focuses on 11 due to

the rare occurrence of the remaining classes. To create the

augmented samples, we directly use the video reconstruc-

tion model trained on Cityscapes without fine tuning on

CamVid. The training strategy is similar to Cityscapes. We

compare our method to recent literature in Table 4. For fair

comparison, we only report single-scale evaluation scores.

As can be seen in Table 4, we achieve an mIoU of 81.7%,

outperforming all prior methods by a large margin. Further-

more, our multi-scale evaluation score is 82.9%. Per-class

breakdown can be seen in the supplementary materials.

One may argue that our encoder is more powerful than

prior methods. To demonstrate the effectiveness of our pro-

posed techniques, we perform training under the same set-

tings without using the augmented samples and boundary

label relaxation. The performance of this configuration on

the test set is 79.8%, a significant IoU drop of 1.9%.

4.4. KITTI

The KITTI Vision Benchmark Suite [17] was introduced

in 2012 but updated with semantic segmentation ground

truth [1] in 2018. The data format and metrics conform

with Cityscapes, but with a different image resolution of

375 × 1242. The dataset consists of 200 training and 200
test images. Since the dataset is quite small, we perform

10-split cross validation fine-tuning on the 200 training im-

ages. Eventually, we determine the best model in terms of

mIoU on the whole training set because KITTI only allows

Table 5: Results on KITTI test set.

Method IoU class iIoU class IoU category iIoU category

APMoE seg [23] 47.96 17.86 78.11 49.17
SegStereo [40] 59.10 28.00 81.31 60.26

AHiSS [30] 61.24 26.94 81.54 53.42
LDN2 [24] 63.51 28.31 85.34 59.07

MapillaryAI [10] 69.56 43.17 86.52 68.89
Ours 72.83 48.68 88.99 75.26

one submission for each algorithm. For 200 test images, we

run multi-scale inference by averaging over 3 scales (1.5,

2.0 and 2.5). We compare our method to recent literature

in Table 5. We achieve significantly better performance

than prior methods on all four evaluation metrics. In terms

of mIoU, we outperform previous state-of-the-art [10] by

3.3%. Note that [10] is the winning entry to Robust Vision

Challenge 2018. We show two visual comparisons between

ours and [10] in Fig. 8.

5. Conclusion

We propose an effective video prediction-based data syn-

thesis method to scale up training sets for semantic segmen-

tation. We also introduce a joint propagation strategy to

alleviate mis-alignments in synthesized samples. Further-

more, we present a novel boundary relaxation technique to

mitigate label noise. The label relaxation strategy can also

be used for human annotated labels and not just synthe-

sized labels. We achieve state-of-the-art mIoUs of 83.5%
on Cityscapes, 82.9% on CamVid, and 72.8% on KITTI.

The superior performance demonstrates the effectiveness of

our proposed methods. We hope our approach inspires other

ways to perform data augmentation, such as GANs [26], to

enable cheap dataset collection and achieve improved accu-

racy in target tasks. For future work, we would like to ex-

plore soft label relaxation using the learned kernels in [34]

for better uncertainty reasoning. Our state-of-the-art imple-

mentation, will be made publicly available.
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