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Abstract

Discriminative region responses residing inside an ob-

ject instance can be extracted from networks trained with

image-level label supervision. However, learning the full

extent of pixel-level instance response in a weakly super-

vised manner remains unexplored. In this work, we tackle

this challenging problem by using a novel instance extent

filling approach. We first design a process to selectively col-

lect pseudo supervision from noisy segment proposals ob-

tained with previously published techniques. The pseudo

supervision is used to learn a differentiable filling module

that predicts a class-agnostic activation map for each in-

stance given the image and an incomplete region response.

We refer to the above maps as Instance Activation Maps

(IAMs), which provide a fine-grained instance-level rep-

resentation and allow instance masks to be extracted by

lightweight CRF. Extensive experiments on the PASCAL

VOC12 dataset show that our approach beats the state-

of-the-art weakly supervised instance segmentation meth-

ods by a significant margin and increases the inference

speed by an order of magnitude. Our method also gen-

eralizes well across domains and to unseen object cate-

gories. Without fine-tuning for the specific tasks, our model

trained on VOC12 dataset (20 classes) obtains top per-

formance for weakly supervised object localization on the

CUB dataset (200 classes) and achieves competitive results

on three widely used salient object detection benchmarks.

1. Introduction

Powered by the recent advances of Deep Convolu-

tional Neural Networks (DCNNs), instance segmentation

has made remarkable progress [13, 6, 25]. Deep learn-

ing approaches, however, typically require large amounts of

data for training and rely on detailed ground truth (GT) in

the form of instance masks which often requires extensive
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Figure 1: Peak Response Maps [43] from classification net-

works can only identify the discriminative parts of each in-

stance. Our approach collects pseudo ground-truth masks

from noisy segment proposals obtained with off-the-shelf

techniques and learns an extent filling module. The result-

ing Instance Activation Maps (IAMs) effectively localize

instance-level spatial extent.

human effort. For example, in the CityScapes dataset [9],

fine-detailed pixel-level annotation typically requires more

than 1.5 hours for a single image. In contrast, image-level

labels, i.e., the presence or absence of object categories in

an image, are much easier to define and can even be auto-

matically collected from the Internet.

Learning instance segmentation with image-level labels

is a challenging task as the annotation does not inform the

location or spatial extent of objects in an image. Zhou et

al. [43] took the first step in addressing this task by extract-

ing instance-aware visual cues from classification networks.

They produce response maps for each object category, i.e.,

Class Activation Maps (CAMs) [42], to indicate essential

receptive fields used by the network when identifying the

object class. The peaks, i.e., local maximas, of CAMs are

stimulated and back-propagated to generate Peak Response

Maps (PRMs) that highlight informative regions residing

inside each object instance. PRMs could identify discrim-

inative parts of each object yet failed to localize other re-

gions. As shown in Fig. 2, PRMs highlight the dog head
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while ignoring the dog’s body. The reason may lie in the

fact that the body region could be obscured when identify-

ing “dog” but the head is essential for classification. There-

fore, PRMs do not complete the instance’s extent. This lim-

its its performance and reduces its inference efficiency due

to its dependence on a costly instance mask generation strat-

egy, i.e., retrieving segment object proposals obtained with

low-level vision techniques [33, 29, 28].

In this paper, we address the problem of learning in-

stance extent in a weakly supervised manner by developing

a novel instance extent filling approach. We first leverage

incomplete region responses obtained with the previously

developed PRM method [43] to collect pseudo ground-truth

(GT) masks from noisy object segment proposals. The

pseudo GT masks are then used to learn a differentiable fill-

ing module that predicts a class-agnostic activation map for

each instance conditioned on the image and an incomplete

region response. The result is an Instance Activation Map

(IAM) that specifies both spatial layout and fine-detailed in-

stance boundaries, Fig. 1. This allows instance masks to

be directly extracted with the lightweight and GPU-friendly

dense CRF post-processing [19, 32]. As a result, we signif-

icantly improve the state-of-the-art weakly supervised in-

stance segmentation performance as well as increase the in-

ference speed by an order of magnitude.

Our approach learns instance extent knowledge from

image-level labels and noisy segment proposals. We also

show that the learned knowledge generalizes well across

domains and to unseen object categories. This extends the

application of the proposed approach to many other object

extent related visual tasks. Our model obtains competitive

performance on weakly supervised object localization and

salient object detection benchmarks without fine-tuning the

extent filling module for the specific tasks.

The main contributions of this paper include:

• The development of an instance extent filling approach

to tackle the challenging problem of weakly super-

vised instance segmentation task by collecting pseudo

GT masks from noisy segment proposals, and then

train a differentiable filling module to learn common

knowledge of class-agnostic object extent.

• An implementation of our approach with popular DC-

NNs, e.g., ResNet50, that demonstrate substantial im-

provement over the state-of-the-art with respect to both

performance and inference speed.

• A demonstration of the fact that the extent knowledge

learned by the proposed approach generalizes well and

achieves a performance that matches or exceeds state-

of-the-art on object extent related tasks such as weakly

supervised object localization and salient object detec-

tion without fine-tuning for the specific tasks.

dog dog dog

potted plant potted plant potted plant

Image CAM PRM IAM (ours)

Figure 2: The activation maps from three methods, Class

Activation Map (CAM) [42], Peak Response Map (PRM)

[43] and our Instance Activation Map (IAM), shown in se-

quence for two example images. Our IAM covers full ob-

ject extent while the other two methods only show coarse

location or discriminative object parts.

2. Related Work

Weakly supervised instance segmentation: As one of

the most challenging problems in computer vision, instance

segmentation has been extensively investigated [22, 10, 2,

13, 6, 25]. Nevertheless, many of these works require strong

supervision in the form of human annotated instance masks

which limits their application on large-scale datasets with

weaker forms of labeling. Weakly supervised instance seg-

mentation tries to break this limitation. To perform in-

stance segmentation with few annotations, partial supervi-

sion [16] performs instance segmentation on datasets where

that a subset of classes have instance mask annotations dur-

ing training. The remaining classes have only bounding box

annotations. Weakly supervised instance segmentation with

object bounding box supervision [18] uses object bounding

boxes to construct pseudo GT masks to train instance seg-

mentation models.

Although these methods have relaxed their reliance on

accurate pixel-level masks, they still require instance-level

labeling, which requires the location of each object. In [43],

Zhou et al. for the first time proposed to tackle weakly

supervised instance segmentation by exploiting the class

peak response of classification networks to extract instance-

aware visual cues. The cues were then used to retrieve pro-

posals as instance masks. Nevertheless, as the filters learned

for image classification typically corresponds to discrimi-

native object parts, this approach failed to locate the full

object extent and thus misled the instance mask generation.

We aim to address this issue and extract complete instance-

level representations by compensating for the missing ex-

tent information by learning knowledge of object extent

from segment proposals off-the-shelf. As more areas of the

instance are activated in the proposed Instance Activation

Maps (IAMs), our method can better improve instance seg-

mentation performance and increase the inference speed via

lightweight post-processing strategy.
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Figure 3: An overview of learning Instance Activation Maps for weakly supervised instance segmentation. The images are

first fed to a classification network to generate deep feature pyramids and Peak Response Maps (PRMs) which highlight object

parts. The deep features are used to construct the weights for an Instance Extent Filling module which recover instance extent

from the PRMs. During training, the filling module collects common knowledge of object extent from pseudo GT masks.

Learning pixel-level affinity: Our work is also related

to the approaches which leverage/learn pixel-level affin-

ity for image segmentation [8, 3, 34, 1]. Some of these

approaches use semantic segmentation labels to estimate

a pixel-level affinity matrix of an image by training de-

convolutional networks [3] or refinement modules, such as

dense CRFs [8]. In contrast, our goal is to fill object re-

gions by leveraging the sparse and partial visual cues under

weak supervision. With solely image-level categories avail-

able, synthetic labels extracted from class response maps

are employed to train a network which learns pairwise se-

mantic affinity [1]. Our approach learns instance-aware

affinity which extends beyond the semantic affinity. Our

approach is also related to the Spatial Propagation Net-

work [24] which learns semantically-aware affinity values

for high-level vision tasks. The difference lies that [24] re-

lies on GT masks while our approach uses image-level la-

bels and inaccurate class-agnostic proposals off-the-shelf.

Region proposal: Due to the lack of object mask an-

notations, weakly supervised methods typically introduce

object priors from region proposals. Classical region pro-

posal methods [33, 46, 29, 11] hypothesize object candi-

dates based on class-agnostic low-level features, e.g., color,

texture, edge, and contours. Therefore, proposal techniques

typically generalize well and can be used off-the-shelf with-

out introducing human labeling efforts for each specific

task. The pre-computed proposals could be used to nar-

row the solution space in the pre-processing stage [4, 35]

or to refine prediction boundaries during post-processing

[31, 43]. We random sample noisy proposals to construct

pseudo GT masks during training and statistically learn a

differentiable instance extent filling module.

3. Method

In this section, we first revisit the previously published

method [43] that we use to extract incomplete instance re-

gion responses from CNNs trained with image-level class

labels. We then introduce the proposed instance extent fill-

ing approach, starting with the process of collecting pseudo

GT masks and followed by the design of the extent filling

module. Finally, we discuss the insights of the method and

specify the implementation details. The overall architecture

of our approach is illustrated in Fig. 3.

3.1. Revisiting Peak Response Mapping

We use the technique in [43] to extract Peak Response

Maps (PRMs) from classification networks. The network

is first converted to a fully convolutional network (FCN)

by removing the global pooling layer and transforming the

weights of the fully connected layers to 1x1 convolutional

filters. The FCN outputs CAMs M ∈ R
C×N×N with a

single forward pass, where C denotes the number of image

classes, and N × N is the spatial size of the maps. The

class peak responses (local maximums) of the c-th class re-

sponse map M c, are then detected and averaged to predict

a confidence score for the c-th image class.

During training, the classification loss drives the network

to learn multiple discriminative class peaks, and the learned

peaks can be back-propagated to PRMs by leveraging the

top-down relevance between spatial locations of adjacent

layers as:

P (Uk
pq) =

∑

k∈Ic

∑

(p,q)∈Mk
ij

P (Uk
pq|V

c
ij)P (V c

ij), (1)

where P (Uk
pq|V

c
ij) =

∑
(i,j)∈N c

pq
Zpq × Uk

ijŴpq . U, V are
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Figure 4: Illustration of the filling process. The value of

each pixel is filled with the value from its neighbors. The

process is performed in a convolutional manner to facilitate

Cuda acceleration.

outputs of two adjacent layers. Ic is a set of feature maps

connected to V c. Hk
ij is the set of locations in U that con-

nect to V c
ij via non-negative convolutional weights. N c

pq

is the set of locations in V that connected to U c
pq via non-

negative convolutional weights Ŵ . The negative weights

are discarded as the commonly used ReLU activation layer

prevents them from contributing to the final response. Zpq is

a normalization factor which guarantees the transition prob-

abilities sum to one. With the probability propagation de-

fined by Eq. 1 and an initial probability map that only a peak

location is 1.0, we can identify which locations in the bot-

tom layer (pixel space) contributes to the specific class peak

response from the top layer (semantic space), and generate

Peak Response Maps (PRMs), M, to highlight discrimina-

tive instance regions, Fig. 3. Note that each PRM M i ∈ M
is a map with the same shape as the input image, and its pre-

dicted class label is the channel index of the corresponding

class peak response. Before further processing, we com-

pute mean across its channel dimension and normalize it by

dividing the sum.

3.2. Learning Instance Activation Maps

Instance Activation Maps are generated by recovering

the full object extent from incomplete PRMs using an ex-

tent filling process.

Collecting pseudo supervision: Low-level vision ob-

ject proposal methods often use the hypothesis that an ob-

ject has consistent color, texture, and/or closed boundary to

estimate class-agnostic object masks, Fig. 3. Although in-

complete and noisy, redundant segment proposals can sta-

tistically cover the object and are sufficient for learning to

fill the objects extent in local areas.

Given an image, we first extract a set of segment pro-

posals S . We then calculate matching scores between each

PRM M i ∈ M and each segment proposal Sj ∈ S of

the image as fij = α · M i ∗ Sj + M i ∗ Ŝj , where Ŝj

is the proposal contour mask computed by morphological

gradient operation. α is a class independent balance fac-

tor. The score comprises both the extent matching and

boundary matching between M i and Sj . After ranking the

Image PRM Filling weights IAM

bus
bus

dogdog

bus
bus

Figure 5: Visualization of the filling weights. The arrows

indicate the filling from a pixel to its eight adjacent neigh-

bors. Pixels in the flat area (e.g., “bed”) share a filling direc-

tion with their neighbors. On both sides of the edge, the ar-

rows point in opposite directions; thus preserve the instance

boundary. Best viewed zooming on screen.

match scores for each PRM, we retain the top k proposals

to provide locally correct object extent. When k increases,

more false proposals could be retained to cause large dis-

agreement between the k proposals, which might affect the

model performance. Therefore, we then compute overlaps

between the M and the k proposals and discard proposals

with overlap max
i

M i ∗ Sj lower than a threshold, i.e., 0.2

in our settings.

During training, for each PRM, the approach randomly

samples a proposal from the top k proposal candidates to

construct the pseudo GT mask in each forward pass. Note

that the difference between our approach with the proposal

retrieval procedure in PRM [43] is two-fold: 1) the masks

in our approach are used to learn the instance filling mod-

ule while those of PRM is used to generate predictions and

2) we use a random strategy to sample multiple candidates

while PRM only retrieves a single candidate with a maxi-

mum score. Therefore, the advantage is also two-fold: 1)

our approach avoids proposals in the inference phase; thus

improve the inference speed (order of magnitude). 2) we

can statistically learn from multiple noisy proposals.

Instance Extent Filling: From each PRM-proposal pair

produced above, we learn common knowledge of object ex-

tent from the segment proposals and image features to re-

cover the instance extent conditioned on the PRM. To this

end, we develop a differentiable extent filling module with

an encoding-filling-decoding architecture (Fig. 3). The en-

coding process E(·, θe) is the forward pass of a tiny con-

volutional network including two Conv-BatchNorm-ReLU-

MaxPooling stacks. θe denotes the learnable parameters in

the network. The contracting path of E squeezes the spa-

tial size of the input PRM M i; thus the filling process can

better capture the long-range dependency between spatial

locations in a computationally efficient way. Moreover, the

encoded instance cues E(M i, θe) are embedded in a fea-

ture space, making the filling process more stable to the re-

sponse noises in PRMs. The decoding process D(·, θd) is
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also a forward pass of a network that contains a symmetric

expanding path and decodes the filling processed features as

an Instance Activation Map (IAM). Note that this encoding-

decoding process is built with standard CNN components;

thus it can pass the gradients to each input. Compare to

commonly used Auto-Encoder architectures, we design a

filling process to effective model spatial relevance in the

encoded feature space. The filling process (see Fig. 1) is an

iterative process that consists of N filling steps F defined

as: Gk = F (Gk−1,W )

G0 = E(M i, θe),
(2)

where Gk ∈ R
C×N×N are the features after the k-th iter-

ation, 0 < k ≤ N , and W ∈ R
C×(N×N)×(r×r) are the

filling weights constructed from intermediate features maps

M of the classification backbone as W = R(M, θr). R

denotes a feature pyramid structure [23] which sequentially

applies two 1 × 1 convolutions to adapt the feature maps

at different levels. It then upsamples and fuses them from

deep to shallow (Fig. 3). θr is the learnable parameters in

the feature pyramid. As illustrated in Fig. 4, in each step

of the filling process, locations of the c-th channel of Gk

are filled according to its neighbors (and itself) and the pre-

dicted filling weights as

Gk
ij =

∑

u,v∈Nij

YijWc;i,j;u,vE
k−1
uv (M i, θe), (3)

where Nij denotes the r2 neighbors of coordinate (i, j), Yij

is a normalizer to guarantee
∑

u,v∈Nij
Wc;i,j;u,v = 1. The

filling process stops when the maximum number of itera-

tions N is reached. We set N to the size of the encoded

maps to ensure the access to any location on the map.

The examples of learned filling weights W are shown

in Fig. 5. The eight adjacent neighbors of a pixel are vi-

sualized in the form of vector fields, where the angle rep-

resents the corresponding neighbors and length represents

the value. We compute the mean of W across channels and

subtract the average from each map to suppress the “flat”

regions that connected with all neighbors. It can be seen

in the zoomed area that the filling weights clearly identify

the instance boundaries. Interestingly, it can be seen from

the example of the third row that our filling module suc-

cessfully identifies the boundaries of “bed” even though it

is not a valid object category in the dataset. This demon-

strates that our approach can learn the common knowledge

of object extent that generalizes to unseen object categories.

3.3. Implementation

Training details: Our proposed model is trained with

image-level labels and class-agnostic segment proposals

off-the-shelf. We implement our method based on standard

ResNet50 [14] architecture. We first train the backbone net-

work equipped with peak stimulation for image classifica-

tion [43], using the Multi-label Soft Margin Loss and SGD

optimizer, with a learning rate of 0.01. Then we optimize

the filling module using Binary Cross Entropy loss. The

initial learning rate of the SGD optimizer is set to 0.1. We

use feature maps from res-block 2, 3, 4 of the backbone

ResNet50 to form the feature pyramid. Following [43],

we use the Multi-scale Combinatorial Grouping (MCG)

framework [29] in conjunction with high-quality region hi-

erarchies obtained with Convolutional Oriented Boundaries

[28] to extract segment proposals. Note that our method

does not constrain the choice of proposal technique.

Post-processing: Since our proposed IAMs covers in-

stance extents, we choose the Convolutional Conditional

Random Field (ConvCRF) [32] for further boundary refine-

ment. This is in contrast to previous work [43] that has to

employ computationally intensive proposal retrieval strate-

gies to recover object extents. Experiments show that with

ConvCRF, when the state-of-the-art fails, we maintain top

performance while reducing the inference time by order of

magnitude (0.3s vs. 3.0s per image).

3.4. Discussion

The proposed approach leverages instance-aware cues

from classification networks, object prior from proposals,

and instance extent filling operations to learn the full ob-

ject extent. During the training phase, it actually imple-

ments a special kind of “semantic mosaicking”. It collects

redundant segments, absorbs broken semantic information

into convolutional filters, and then fits complete semantics

and full object extents. During the test phase, the peak re-

sponse maps act as semantic anchors which correspond to

the most discriminative parts, while the extent filling mod-

ule produces instance activation maps (IAMs). The pro-

cedure is similar to the classical process of “flood-filling”

[5]. The difference lies in the flood-filling is defined for

grey-level stable image regions while IAMs are for seman-

tically stable regions. The emergence of IAMs shows that

the instance-level extent can be learned from redundant and

noisy proposal segments, Fig. 1, which provide fresh insight

for weakly supervised instance segmentation.

4. Experiments

We evaluate the proposed object extent filling approach

on several popular benchmarks. In Sec. 4.1, we compare

our Instance Activation Maps (IAMs) with state-of-the-art

weakly supervised instance segmentation methods, demon-

strating the effectiveness and efficiency of our approach. In

Sec. 4.2, statistical analyses are performed to measure the

quality of IAMs, which shows that our method can gen-

erate accurate instance-aware activations that cover object

extent. In Sec. 4.3, we apply the trained filling module to

fine-grained object localization and saliency detection with-

out further fine-tuning of the instance extent filling module,

validating the generalization ability of our method.
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Figure 6: Weakly supervised instance segmentation examples. The Instance Activation Maps (2nd row) incorporate complete

instance activation, which is exploited to produce instance-level masks (3rd row). The last column shows typical failure cases.

Method mAP r
0.25 mAP r

0.5 mAP r
0.75 ABO

Ground Truth Box

Rect. 78.3 30.2 4.5 47.4

Ellipse 81.6 41.1 6.6 51.9

MCG 69.7 38.0 12.3 53.3

Baselines constructed from Weakly Supervised Object Localization

CAM [42]

Rect. 18.7 2.5 0.1 18.9

Ellipse 22.8 3.9 0.1 20.8

MCG 20.4 7.8 2.5 23.0

SPN [45]

Rect. 29.2 5.2 0.3 23.0

Ellipse 32.0 6.1 0.3 24.0

MCG 26.4 12.7 4.4 27.1

MELM [35]

Rect. 36.0 14.6 1.9 26.4

Ellipse 36.8 19.3 2.4 27.5

MCG 36.9 22.9 8.4 32.9

Weakly Supervised Instance Segmentation

PRM [43] 44.3 26.8 9.0 37.6

IAM-S1 45.6 28.3 10.4 41.5

IAM-S5 45.9 28.8 11.9 41.9

IAM-S9 45.7 27.8 10.5 41.7

Table 1: Weakly supervised instance segmentation results

- mean average precision (mAP%) and Average Best Over-

lap (ABO). Our method is evaluated with different random

sampling numbers, i.e., 1, 5, 9.

4.1. Weakly Supervised Instance Segmentation

We compare the performance of the proposed IAM with

some baselines on the PASCAL VOC 2012 [12] segmenta-

tion benchmark.

Numerical results: In Tab. 1, the instance segmentation

results are presented as the mean Average Precision (mAP)

at IoU thresholds of 0.25, 0.5, and 0.75. Our IAM-S5 model

outperforms the state-of-the-art by a margin 1.6%, 2.0%,

and 2.9% respectively. The improvement at a higher IoU

threshold of 0.75 is more significant than that 0.25 and 0.5,

Feed-Forward Proposal Retrieval CRF Total

PRM [43] 0.05 3.0 (+8.1) N/A 11.15

IAM (Ours) 0.07 N/A 0.3 0.37

Table 2: Per-image inference time (seconds). The feed-

forward and the CRF modules are tested with a Tesla P100

GPU while the proposal retrieval is tested with the official

code on CPU. It takes 8.1s per image to extract proposals.

which indicates the effectiveness of our approach for gen-

erating high-quality instance activation and the capture of

the fine-detailed object boundary. The Average Best Over-

lap (ABO) [30] score increased by a large margin of 4.3%,

showing the ability of the IAMs to cover full object extents.

Several baselines are constructed from weakly supervised

object localization methods via three reasonable bbox-to-

mask generation strategies [18].

The Effect of the random sampling number k: In the

filling process, we learn IAMs from pseudo GT Masks ob-

tained by random proposal sampling. The filling module

summarizes the common knowledge of the object extent

from the top k noisy masks. In Tab. 1, we evaluate the im-

pact of the sampling number k. We first set k to 1 to verify

if our model can explore the common object extent cross

instances with only one noisy mask for each PRM. As a

result, the IAM-S1 consistently improves the performance

on the mAP r at 0.25, 0.5, 0.75 as well as the ABO met-

ric. As we increase k to 5, the performance of IAM-S5 is

higher than IAM-S1, showing that our method can summa-

rize the common knowledge of object extent from the noisy

masks corresponding to the same PRM. Despite the ability

to learn object extent from noisy masks, our model would be
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(a) PRM [43] (b) IAM (Ours)

Figure 7: The density map of samples from PRMs and

IAMs. Darker area indicates more samples are of the corre-

sponding IoU (%) value and object size.

affected when the sampling number increases to 9, as more

and more false proposals could be sampled in the training

procedure, which makes it hard for our model to summarize

the knowledge of object extent.

Inference time: Tab. 2 shows the time cost for the in-

ference period. PRM usually highlights object parts of in-

stances and thus relies on the time-consuming proposal re-

trieval process (3.0s per image plus 8.1s for proposal gener-

ation) to get the instance masks. In contrast, our IAM can

fill the object extent using CRF to refine object boundary,

dramatically improves the inference speed (0.3 vs. 3.0s)

while boosting instance segmentation performance.

Qualitative results: In Fig. 6, we illustrate instance seg-

mentation examples including successful cases and typical

failure cases. In the first column, our approach can distin-

guish instances with the complex texture. Examples in the

second and third columns show that our approach performs

well with cluttered or objects close to others. In the fourth

and fifth columns, objects from different scales and differ-

ent classes are well segmented. This shows that our method

can extract both class-aware and instance-aware activation

from classification networks. The last column shows fail-

ure cases of IAMs. It could miss an instance without proper

instance-aware cues at first. Typically, IAMs can be misled

by differences in color or texture in large areas and some-

times have problems connecting the parts of obscured or

hollow objects. IAM may also fail to identify the boundary

of huddled objects that are similar to each other.

4.2. Statistical Analysis for IAMs

A series of experiments are performed to analyze IAMs

with respect to object size and object category, demonstrat-

ing that our approach outperforms the state-of-the-art ap-

proaches including Peak Response Map (PRM). IAMs are

assigned to GT (ground truth) masks and judged to be over-

lapping or not by measuring the best matching IoU (Inter-

section over Union). To be considered a perfect IAM that

completely coincides with a GT mask, the IoU between the

predicted IAM M and GT masks T must be close to 100%
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Figure 8: Per-class mean IoU (%) of PRMs and IAMs.

as computed using the metric maxθ,Ti∈T
area(fb(M,θ)∩Ti)
area(fb(M,θ)∪Ti)

,

where the function fb(M, θ) = M ≥ θ produces the best

matching binary instance masks based on the probabilistic

IAMs over a set of threshold values θ ∈ (0, 1).
Sample distribution over object size: We first visualize

the density of the IoU for PRMs and IAMs to see whether

IAMs can cover objects of different sizes (Fig. 7). Fig. 7a

shows that samples from PRMs are predominantly clustered

in the area where the IoU value is less than 50% and failed

to cover large objects. In contrast, in Fig. 7b most of the

IAMs have high IoUs and perform well on large objects.

Sample distribution over object classes: We further

calculate the mean IoU of each class to analyze the impact

of different object categories, Fig. 8. Our method achieves

consistent improvement across all categories. On “bus” and

“cat”, IAM outperforms PRM by a large margin (∼40%).

The reason is that PRMs can highlight the discriminative

parts such as a tire for “bus” and head for “cat”, while IAMs

cover complete object regions.

4.3. Generalization to Unseen Categories

The IAMs trained for weakly supervised instance seg-

mentation are directly applied to localize the full extent of

objects from a fine-grained species and unseen categories.

Without any fine-tuning or re-training of the instance extent

filling module, this procedure can be seen as unsupervised

domain adaptation.

Localizing objects from fine-grained species: We use

the pre-trained model to localize the bird species in the

CUB-200-2011 dataset [36]. The dataset contains 11788

images over 200 categories of birds. There are 5994 im-

ages for training and 5794 images for testing. We chose

this dataset to validate that the knowledge of object com-

monality learned from PASCAL VOC12 dataset can adapt

to the fine-grained species which contain many unusual bird

objects. Note that there are only 705 images defined for the

bird category in the VOC12 training set. We first calculate

IAMs for the images using the pre-trained IAM-S5 model,

then extract bounding boxes using a mean value threshold.

A bounding box is considered to have correct localization

prediction if 1) the predicted class label is correct; 2) the

overlap between the predicted box and ground-truth box is
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SPG map SPG bbox PRM IAM IAM bbox

Figure 9: Visualization of object localization from fine-

grained bird species. Green boxes are ground-truth and yel-

low boxes are predictions. Best viewed in color.

Methods GoogLeNet-GAP [42] ACol [40] SPG [41] IAM (Ours)

Loc. Err 59.00 54.08 53.36 52.21

Table 3: Localization error (%) on CUB-200-2011 test set

for weakly supervised methods and our transferable IAMs.

Note that our model is not trained on the target dataset.

higher than 0.5. To make a fair comparison, we use the

scores predicted by GoogLeNet-GAP as the object extent

predicted by our model is class agnostic. In Tab. 3, we

compare the localization results with weakly supervised lo-

calization methods. We find that IAM performs well on

the fine-grained bird species, achieving 52.21% error. This

demonstrates that the model can generalize to objects from

diversified sub-classes despite it being trained in another do-

main. Fig. 9 shows that IAMs can cover the full object ex-

tent and therefore benefit the bbox localization tasks.

Localizing salient objects from unseen categories:

We humans can tell objects extent even when we don’t

know what the object is, motivating learning class-agnostic

object commonality. To explore whether our approach can

localize objects from unseen categories, we apply it to the

salient object detection task. A Resnet50 classification net-

work pre-trained on ImageNet is used to extract instance-

aware visual cues which provide the coarse position of

salient objects. These cues and the image are then fed to

the model trained on VOC12. We obtain saliency detec-

tion results after performing ReLU on IAMs. We evaluated

the performance on three popular saliency datasets includ-

ing THUR [7], MSRA-B [26], and ECSSD [37] using the

F-measure (Fβ) as a performance metric. We compared our

approach with state-of-the-art methods, including three su-

pervised approaches based on deep learning frameworks,

three unsupervised methods based on handcraft features and

two unsupervised models based on deep learning. The re-

sults in Tab. 4 show that our model performs as well as

a generic object extent localizer, despite the fact that it is

not trained for the particular task. Fig. 10 presents some

saliency detection results, which show that IAMs can fill ob-

ject extent even though there is a large gap between the ob-

ject appearance of the target categories and those of VOC12

MSRA-B THUR ECSSD

Im
a
g
e

G
T

O
u
rs

Figure 10: Salient object detection examples. Our method

can fill salient object extent in a class-agnostic manner, even

if the object appearance is unseen during training.

Finetune Use GT Methods THUR MSRA-B ECSSD

✓ ✓ DSS [15] 0.7081 0.8941 0.8796

✓ ✓ NLDF [27] - 0.8970 0.8908

✓ ✓ DC [20] 0.6940 0.8973 0.8315

✓ ✗ SBF [38] - - 0.7870

✓ ✗ Multi-Noise [39] 0.7322 0.8770 0.8783

✗ ✗ DRFI [17] 0.5613 0.7282 0.6440

✗ ✗ RBD [44] 0.5221 0.7508 0.6518

✗ ✗ DSR [21] 0.5498 0.7227 0.6387

✗ ✗ IAM (Ours) 0.7364 0.8643 0.8613

Table 4: Mean F-measure (Fβ) on salient object detection.

The first column indicates if a finetuning model is used on

saliency datasets while the second column indicates if the

ground-truth masks are used in the training procedure.

object categories. This further validates the generalization

capability of our approach.

5. Conclusions

We developed a framework which is trained to generate

Instance Activation Maps (IAMs) driven by image-level su-

pervision and prior knowledge from object segment propos-

als off-the-shelf. By extracting instance-aware cues from

the classification network and iterative completing the cues

according to the predicted extent filling weights, IAMs pro-

vide fine-detailed instance-level representation that high-

light the spatial extent for each object. Our approach im-

plements a special kind of “semantic mosaicking” that col-

lects redundant noisy segments, absorbs broken semantic

information into convolutional filters to learn class-agnostic

object extent knowledge. On commonly used datasets, it

significantly improves the state-of-the-art performance, in-

creases inference speed by an order of magnitude, and can

generalize to unseen categories, showing great potential on

instance-level weakly supervised learning problems.
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