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Abstract

This paper proposes a new generative adversarial net-

work for pose transfer, i.e., transferring the pose of a

given person to a target pose. The generator of the net-

work comprises a sequence of Pose-Attentional Transfer

Blocks that each transfers certain regions it attends to, gen-

erating the person image progressively. Compared with

those in previous works, our generated person images pos-

sess better appearance consistency and shape consistency

with the input images, thus significantly more realistic-

looking. The efficacy and efficiency of the proposed net-

work are validated both qualitatively and quantitatively

on Market-1501 and DeepFashion. Furthermore, the pro-

posed architecture can generate training images for per-

son re-identification, alleviating data insufficiency. Codes

and models are available at: https://github.com/

tengteng95/Pose-Transfer.git.

1. Introduction

In this paper, we are interested in generating images of

non-rigid objects that often possess a large variation of de-

formation and articulation. Specifically, we focus on trans-

ferring a person from one pose to another as depicted in

Fig.1. The problem, first introduced by [21] as pose trans-

fer, is valuable in many tasks such as video generation with

a sequence of poses [38] and data augmentation for person

re-identification [47].

Pose transfer can be exceptionally challenging, particu-

larly when given only the partial observation of the person.

As exemplified in Fig. 1, the generator needs to infer the

unobserved body parts in order to generate the target poses

and views. Adding to the challenge, images of different

poses under different views can be drastically different in

appearance. This inevitably demands the generator to cap-

ture the large variations possessed by the image distribution.
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Figure 1: Generated examples by our method based on different target

poses. Zoom in for better details.

Therefore, even with the strong learning capabilities of deep

neural networks, recent methods [21, 34, 22, 5] often fail to

produce robust results.

We start with the perspective that the images of all the

possible poses and views of a certain person constitute a

manifold, which is also suggested in previous works [4, 24].

To transfer pose is to go from point px on the manifold to

another point py , both indexed by their respective poses.

In this perspective, the aforementioned challenges can be

attributed to the complex structure of the manifold on the

global level. However, the structure manifold becomes sim-

pler on a local level. This transition happens when we re-

strict the variation of pose to a small range. For example, it

is hard to transfer pose from sitting to standing, but much

simpler to only raise a straight arm to a different angle.

This insight motivates us to take a progressive pose trans-

fer scheme. In contrast to the one-step transfer scheme

adopted in many previous works [5, 34], we propose to

transfer a condition pose by transferring through a sequence

of intermediate pose representations before reaching the tar-

get. The transfer is carried out by a sequence of Pose-

Attentional Transfer Blocks (PATBs), implemented by neu-

ral networks. This scheme allows each transfer block to

perform a local transfer on the manifold, therefore avoid-

ing the challenge of capturing the complex structure of the

global manifold.

Each PATB performs the transfer in a pose-attentional
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Figure 2: Generator architecture of the proposed method.

manner. It takes as input the representation of both the im-

age and the pose. Inside the block, we create an attention

mechanism that infers the regions of interest based on the

human pose. As a person’s image and pose are registered,

this attention mechanism allows better selectivity in choos-

ing the image regions for transferring. The block outputs

the updated image and pose representations, so that such

blocks can be cascaded in sequence to form a PAT network

(PATN), as illustrated in Fig. 2.

The proposed network exhibits superior performance

both qualitatively and quantitatively on challenging bench-

marks, and substantially augments person dataset for person

re-identification application. To summarize, the contribu-

tions of our paper are two folded:

1. We propose a progressive pose attention transfer net-

work to address the challenging task of pose transfer,

which is neat in design and efficient in computation.

2. The proposed network leverages a novel cascaded

Pose-Attentional Transfer Blocks (PATBs) that can

effectively utilize pose and appearance features to

smoothly guide the pose transfer process.

2. Related work

Generative Adversarial Networks (GAN) [6], which are

basically composed of generator and discriminator that are

trained in an adversarial way, can usually generate sharp

images [6, 25, 30, 13, 17, 28, 12, 48, 20, 42]. Many real-

world applications demand that generated images satisfy

some condition constraints, e.g., generating images with

specific pose, viewpoint or other attributes. Conditional

generative adversarial networks (CGANs) [25] are built for

this purpose. CGANs have achieved remarkable success

in pixel-wise aligned image generation problems. Isola et

al. [12] demonstrated their good applicability for image-to-

image translation problems such as day-to-night and sketch-

to-image. However, pixel-wise alignment is not well suit-

able for pose transfer due to the deformation between the

condition and target pose.

For person image generation, Lassner et al. [16] pre-

sented a model combining VAE [15] and GAN together to

generate images of a person with different clothes, given the

3D model of the person. Zhao et al. [44] adopted a coarse-

to-fine method for generating multi-view cloth images from

a single view cloth image. Balakrishnan et al. [2] pre-

sented a GAN network that decomposes the person image

generation task into foreground and background generation,

and then combines to form the final image. Several works

[8, 39, 43, 31] were inspired by the virtually try-on appli-

cations and made good progress to change the clothes of a

given person while maintaining the person pose by warping

the clothes to fit for the body topology of the given person.

Specifically for the pose transfer task, Ma et al. [21] pre-

sented a two-stage model to generate person images while

their coarse-to-fine strategy requires relatively large com-

putational budget and complicated training procedures. Ma

et al. [22] further improved their previous work by disen-

tangling and encoding foreground, background and pose of

the input image into embedding features then decodes them

back to an image. Though the controllability of the genera-

tion process is improved, the quality of their generated im-

ages degrade. Likewise, Essner et al. [5] exploited to com-

bine VAE [15] and U-Net [12] to disentangle appearance

and pose. However, appearance features are difficult to be

represented by a latent code with fixed length, giving rise

to several appearance misalignments. Siarohin et al. [34]

introduced deformable skip connections that require exten-
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sive affine transformation computation to deal with pixel-to-

pixel misalignment caused by pose differences. And their

method is fragile to inaccurate pose disjoints, resulting in

poor performance for some rare poses. Pumarola et al. [29]

adopted a bidirectional strategy to generate person images

in a fully unsupervised manner that may induce some geo-

metric errors as pointed out in their paper.

Most of the previous pose transfer approaches adopted

keypoint-based pose representation. Besides, Neverova et

al. [27] adopted DensePose [7] as its pose representation,

which contains abundant information of depth and body

part segmentation, to produce more texture details. The ex-

pensive cost of acquiring the DensePose representation for

the target pose hinders its applicability, whereas keypoint-

based pose representation is much cheaper and more flexi-

ble. Hence, we favor to keypoint-based pose representation.

3. Model

We begin with a few notations.
{
P

j
i

}j=1...M

i=1...Nj

denotes

the set of person images in a dataset, where j is person in-

dex, i is the image index of person j. M is the number of

persons, Nj is the number of images of person j. S
j
i is the

corresponding keypoint-based representation of P
j
i , which

consists of a 18-channel heat map that encodes the loca-

tions of 18 joints of a human body. We adopt the Human

Pose Estimator (HPE) [3] used by [21, 22, 34] to estimate

the 18 joints for fair comparison. During training, the model

requires condition and target image (Pc, Pt) and their corre-

sponding condition and target pose heat map (Sc, St). The

generator outputs a person image, which is challenged by

the discriminators for its realness. The following describes

each in detail.

3.1. Generator

3.1.1 Encoders

Fig. 2 shows the architecture of the generator, whose inputs

are the condition image Pc, the condition pose Sc and the

target pose St. The generator aims to transfer the pose of

the person in the condition image Pc from condition pose

Sc to target pose St, thus generates realistic-looking person

image Pg .

On the input side, the condition image is encoded by N

down-sampling convolutional layers (N = 2 in our case);

The condition pose Sc and target pose heat maps St are

stacked along their depth axes before being encoded, also

by N down-sampling convolutional layers. The encoding

process mixes the two poses, preserving their information

and capturing their dependencies. Although one can imag-

ine encoding the two poses separately and concatenate their

vectors in the end, our structure works effectively and re-

quires less computation.

3.1.2 Pose-Attentional Transfer Network

At the core of the generator is the Pose-Attentional Trans-

fer Network (PATN), consisting of several cascaded Pose-

Attentional Transfer Blocks (PATBs). Starting from the ini-

tial image code FP
0

and joint pose code FS
0

, PATN pro-

gressively updates these two codes through the sequence of

PATBs. At the output, the final image code FP
T are taken

to decode the output image, while the final pose code FS
T is

discarded.

All PATBs have identical structure. A PATB carries out

one step of update. Consider the t-th block, whose inputs

are FP
t−1

and FS
t−1

. As depicted in Fig. 2, the block com-

prises two pathways, called image pathway and pose path-

way respectively. With interactions, the two pathways up-

date FP
t−1

and FS
t−1

to FP
t and FS

t , respectively.

In the following, we describe the detailed update process

in three parts and justify their designs.

Pose Attention Masks. The pose transfer, at a basic level,

is about moving patches from the locations induced by the

condition pose to the locations induced by the target pose.

In this sense, the pose guides the transfer by hinting where

to sample condition patches and where to put target patches.

In our network, such hints are realized by the attention mask

denoted as Mt, which are values between 0 and 1 indicating

the importance of every element in the image code.

The attention masks Mt are computed from the pose

code FS
t−1

, which incorporates both the condition and the

target pose. The pose code FS
t−1

firstly goes through two

convolutional layers (with a normalization layer [11, 37]

and ReLU [26] in between), before being mapped to the

range of (0, 1) by an element-wise sigmoid function. Math-

ematically:

Mt = σ
(
convS

(
FS
t−1

))
. (1)

Image Code Update. Having computed Mt, the image

code FP
t is updated by:

FP
t = Mt ⊙ convP

(
FP
t−1

)
+ FP

t−1
, (2)

where ⊙ denotes element-wise product. By multiplying the

transformed image codes with the attention masks Mt, im-

age code FP
t at certain locations are either preserved or sup-

pressed. The output of the element-wise product is added by

FP
t−1

, constituting a residual connection [9]. The residual

connection helps preserve the original image code, which

is critical for the pose transfer. Having residual connection

also eases the training as observed in [9], particularly when

there are many PATBs.

Pose Code Update. As the image code gets updated

through the PATBs, the pose code should also be updated

to synchronize the change, i.e. update where to sample and

put patches given the new image code. Therefore, the pose

code update should incorporate the new image code.
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Specifically, the previous pose code FS
t−1

firstly goes

through two convolutional layers (with a normalization

layer and ReLU in between). Note when t > 1, the first

convolutional layer will reduce the feature map depth to

half, making the feature map depths of subsequent layers

in the pose pathway equal to those in the image pathway.

Then, the transformed code is mixed with the updated im-

age code by concatenation. Mathematically, the update is

performed by

FS
t = convS

(
FS
t−1

)
‖FP

t , (3)

where ‖ denotes the concatenation of two maps along depth

axis.

3.1.3 Decoder

The updates in PATN result in the final image code FP
T and

the final pose code FS
T . We take the image code and dis-

card the final pose code. Following the standard practice,

the decoder generates the output image Pg from FP
T via N

deconvolutional layers.

3.2. Discriminators

We design two discriminators called appearance dis-

criminator DA and shape discriminator DS , to judge how

likely Pg contains the same person in Pc (appearance con-

sistency) and how well Pg align with the target pose St

(shape consistency). The two discriminators have similar

structures, where Pg is concatenated with either Pc or St

along the depth axis, before being fed into a CNN (convo-

lutional neural network) for judgment. Their outputs are

respectively RA and RS , i.e. the appearance consistency

score and the shape consistency score. The scores are the

probabilities output by the softmax layer of a CNN. The

final score R is the production of the two scores: R =
RARS .

As the training proceeds, we observe that a discrimina-

tor with low capacity becomes insufficient to differentiate

real and fake data. Therefore, we build the discriminators

by adding three residual blocks after two down-sampling

convolutions to enhance their capability.

3.3. Training

The full loss function is denoted as:

Lfull = argmin
G

max
D

αLGAN + LcombL1, (4)

where LGAN denotes the adversarial loss and LcombL1 de-

notes the combined L1 loss. α represents the weight of

LGAN that contributes to Lfull. The total adversarial loss

is derived from DA and DS :

LGAN =ESt∈PS ,(Pc,Pt)∈P {log[DA(Pc, Pt) ·DS(St, Pt)]}+

ESt∈PS ,Pc∈P,Pg∈P̂
{log[(1−DA(Pc, Pg))

·(1−DS(St, Pg))]} .

(5)

Note that P, P̂ and PS denotes the distribution of real per-

son images, fake person images and person poses, respec-

tively.

The combined L1 loss can be further written as:

LcombL1 = λ1LL1 + λ2LperL1, (6)

where LL1 denotes the pixel-wise L1 loss computed

between the generated and target image and LL1 =
‖Pg − Pt‖1.

In order to reduce pose distortions and make the pro-
duced images look more natural and smooth, we integrate
a perceptual L1 loss LperL1, which is effective in super-
resolution [17], style transfer [13] as well as the pose trans-
fer tasks [5, 34]. In formula,

LperL1 =
1

WρHρCρ

Wρ∑

x=1

Hρ∑

y=1

Cρ∑

z=1

‖φρ(Pg)x,y,z − φρ(Pt)x,y,z‖1

(7)

where φρ are the outputs of a layer, indexed by ρ, from

the VGG-19 model [35] pre-trained on ImageNet [32], and

Wρ,Hρ,Cρ are the spatial width, height and depth of φρ, re-

spectively. We found ρ = Conv1 2 leads to the best results

in our experiments.

Training procedures. Following the training procedures

of GAN, we alternatively train generator and two discrim-

inators. During training, the generator takes (Pc, Sc, St)
as input and outputs a transfered person image with target

pose Pg . More specifically, Pc is fed to the image pathway

and (Sc, St) are fed to the pose pathway. For the adver-

sarial training, (Pc, Pt) and (Pc, Pg) are fed to the appear-

ance discriminator DA chasing for appearance consistency.

(St, Pt) and (St, Pg) are fed to the shape discriminator DS

for shape consistency.

Implementation details. The implementation is built upon

the popular Pytorch framework. Adam optimizer [14] is

adopted to train the proposed model for around 90k itera-

tions with β1 = 0.5, β2 = 0.999. Learning rate is initially

set to 2 × 10−4, and linearly decay to 0 after 60k itera-

tions. We use 9 PATBs in the generator for both datasets.

(α, λ1, λ2) is set to (5, 1, 1) and instance normalization [37]

is applied for DeepFashion and batch normalization [11] is

used for Market-1501. Dropout [10] is only applied in the

PATBs, its rate set to 0.5. Leaky ReLU [23] is applied after

every convolution or normalization layers in the discrimina-

tors, and its negative slope coefficient is set to 0.2.
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4. Experiments

In this section, we conduct extensive experiments to ver-

ify the efficacy and efficiency of the proposed network. The

experiments not only show the superiority of our network

but also verify its design rationalities in both objective quan-

titative scores and subjective visual realness. 1

Datasets. We mainly carry out experiments on the chal-

lenging person re-identification dataset Market-1501 [45]

and the In-shop Clothes Retrieval Benchmark DeepFashion

[19]. Performing pose transfer on Market-1501 is even chal-

lenging since the images are in low-resolution (128 × 64)

and vary enormously in the pose, viewpoint, background

and illumination, whereas the images in DeepFashion are

in high-resolution (256 × 256) and of clean backgrounds.

We adopt HPE [3] as pose joints detector and filter out im-

ages where no human body is detected. Consequently, we

collect 263,632 training pairs and 12,000 testing pairs for

Market-1501. And for DeepFashion, 101,966 pairs are ran-

domly selected for training and 8,570 pairs for testing. It’s

worth noting that the person identities of the training set do

not overlap with those of the testing set for better evaluating

the model’s generalization ability.

Metrics. It remains an open problem to effectively evalu-

ate the appearance and shape consistency of the generated

images. Ma et al. [21] used Structure Similarity (SSIM)

[40] and Inception score (IS) [33] as their evaluation met-

rics, then introduced their masked versions – mask-SSIM

and mask-IS, to reduce the background influence by mask-

ing it out. Siarohin et al. [34] further introduced Detection

Score (DS) to measure whether a detector [18] can correctly

detect the person in the image. We argue that all the met-

rics mentioned above cannot explicitly quantify the shape

consistency. More specifically: SSIM relies on global co-

variance and means of the images to assess the structure

similarity, which is inadequate for measuring shape consis-

tency; IS and DS use image classifier and object detector

to assess generated image quality, which are unrelated to

shape consistency.

As all the metrics mentioned above are either insufficient

or disable to quantify the shape consistency of the generated

images, we hereby introduce a new metric as a complement

to explicitly assess the shape consistency. To be specific,

person shape is simply represented by 18 pose joints ob-

tained from the Human Pose Estimator (HPE) [3]. Then the

shape consistency is approximated by pose joints alignment

which is evaluated from PCKh measure2 [1]. According

to the protocol of [1], PCKh score is the percentage of the

keypoints pairs whose offsets are below the half size of the

1Due to page limits, more visual results including a video are put in the

supplementary material for further reference.
2PCKh is the slightly modified version of Percentage of Correct Key-

points (PCK) [41]

head segment. The head is estimated by the bounding box

that tightly covers a set of keypoints related to head.

4.1. Comparison with previous work

4.1.1 Quantitative and qualitative comparison

Quantitative comparisons with previous works can be found

in Tab.1. Since the data split of previous works [21, 34]

are not given, we download their well-trained models and

re-evaluate their performance on our testing set. Although

the testing set inevitably includes some of their training im-

ages and thus giving an edge to their methods, our method

still outperforms them on most metrics, and the numeric

improvements are steady for both datasets. Notably, our

method ranks the highest on the PCKh metric which cap-

tures shape consistency. Although we achieve the same

highest PCKh score as [34] on Market-1501, we promote

the best PCKh performance of previous works by 2% on

DeepFashion, attaining to 0.96, which nearly hits the per-

formance ceiling.
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<latexit sha1_base64="q4jktobt7rDIPtSosFIgTTogXBw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtljvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/iEONfg==</latexit><latexit sha1_base64="q4jktobt7rDIPtSosFIgTTogXBw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtljvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/iEONfg==</latexit><latexit sha1_base64="q4jktobt7rDIPtSosFIgTTogXBw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtljvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/iEONfg==</latexit><latexit sha1_base64="q4jktobt7rDIPtSosFIgTTogXBw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtljvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/iEONfg==</latexit>

Pt
<latexit sha1_base64="WTt9I1+DUK5cS2YtS8o/HjIMlWE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnDXrXm1t0ZyDLxClKDAs1e9avbT1gWc4VMUmM6nptikFONgkk+qXQzw1PKRnTAO5YqGnMT5LNTJ+TEKn0SJdqWQjJTf0/kNDZmHIe2M6Y4NIveVPzP62QYXQa5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOlUbAje4svLxD+rX9W9u/Na47pIowxHcAyn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj3lrySlmDuEPnM8fofaNjw==</latexit><latexit sha1_base64="WTt9I1+DUK5cS2YtS8o/HjIMlWE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnDXrXm1t0ZyDLxClKDAs1e9avbT1gWc4VMUmM6nptikFONgkk+qXQzw1PKRnTAO5YqGnMT5LNTJ+TEKn0SJdqWQjJTf0/kNDZmHIe2M6Y4NIveVPzP62QYXQa5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOlUbAje4svLxD+rX9W9u/Na47pIowxHcAyn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj3lrySlmDuEPnM8fofaNjw==</latexit><latexit sha1_base64="WTt9I1+DUK5cS2YtS8o/HjIMlWE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnDXrXm1t0ZyDLxClKDAs1e9avbT1gWc4VMUmM6nptikFONgkk+qXQzw1PKRnTAO5YqGnMT5LNTJ+TEKn0SJdqWQjJTf0/kNDZmHIe2M6Y4NIveVPzP62QYXQa5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOlUbAje4svLxD+rX9W9u/Na47pIowxHcAyn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj3lrySlmDuEPnM8fofaNjw==</latexit><latexit sha1_base64="WTt9I1+DUK5cS2YtS8o/HjIMlWE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnDXrXm1t0ZyDLxClKDAs1e9avbT1gWc4VMUmM6nptikFONgkk+qXQzw1PKRnTAO5YqGnMT5LNTJ+TEKn0SJdqWQjJTf0/kNDZmHIe2M6Y4NIveVPzP62QYXQa5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOlUbAje4svLxD+rX9W9u/Na47pIowxHcAyn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj3lrySlmDuEPnM8fofaNjw==</latexit>

DeepFashion Market-1501

Pc
<latexit sha1_base64="q4jktobt7rDIPtSosFIgTTogXBw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtljvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/iEONfg==</latexit><latexit sha1_base64="q4jktobt7rDIPtSosFIgTTogXBw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtljvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/iEONfg==</latexit><latexit sha1_base64="q4jktobt7rDIPtSosFIgTTogXBw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtljvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/iEONfg==</latexit><latexit sha1_base64="q4jktobt7rDIPtSosFIgTTogXBw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtljvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6p7d+e1xnWRRhmO4BhOwYMLaMAtNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/iEONfg==</latexit>

Pt
<latexit sha1_base64="WTt9I1+DUK5cS2YtS8o/HjIMlWE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnDXrXm1t0ZyDLxClKDAs1e9avbT1gWc4VMUmM6nptikFONgkk+qXQzw1PKRnTAO5YqGnMT5LNTJ+TEKn0SJdqWQjJTf0/kNDZmHIe2M6Y4NIveVPzP62QYXQa5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOlUbAje4svLxD+rX9W9u/Na47pIowxHcAyn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj3lrySlmDuEPnM8fofaNjw==</latexit><latexit sha1_base64="WTt9I1+DUK5cS2YtS8o/HjIMlWE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnDXrXm1t0ZyDLxClKDAs1e9avbT1gWc4VMUmM6nptikFONgkk+qXQzw1PKRnTAO5YqGnMT5LNTJ+TEKn0SJdqWQjJTf0/kNDZmHIe2M6Y4NIveVPzP62QYXQa5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOlUbAje4svLxD+rX9W9u/Na47pIowxHcAyn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj3lrySlmDuEPnM8fofaNjw==</latexit><latexit sha1_base64="WTt9I1+DUK5cS2YtS8o/HjIMlWE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnDXrXm1t0ZyDLxClKDAs1e9avbT1gWc4VMUmM6nptikFONgkk+qXQzw1PKRnTAO5YqGnMT5LNTJ+TEKn0SJdqWQjJTf0/kNDZmHIe2M6Y4NIveVPzP62QYXQa5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOlUbAje4svLxD+rX9W9u/Na47pIowxHcAyn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj3lrySlmDuEPnM8fofaNjw==</latexit><latexit sha1_base64="WTt9I1+DUK5cS2YtS8o/HjIMlWE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvtnDXrXm1t0ZyDLxClKDAs1e9avbT1gWc4VMUmM6nptikFONgkk+qXQzw1PKRnTAO5YqGnMT5LNTJ+TEKn0SJdqWQjJTf0/kNDZmHIe2M6Y4NIveVPzP62QYXQa5UGmGXLH5oiiTBBMy/Zv0heYM5dgSyrSwtxI2pJoytOlUbAje4svLxD+rX9W9u/Na47pIowxHcAyn4MEFNOAWmuADgwE8wyu8OdJ5cd6dj3lrySlmDuEPnM8fofaNjw==</latexit> <latexit sha1_base64="b5a2vC5BjbuUnFia7RU8uekFUbQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQZcFF7qsYB/QjiWTZtrQJDNNMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QcyZNq777RQ2Nre2d4q7pb39g8Oj8vFJS0eJIrRJIh6pToA15UzSpmGG006sKBYBp+1gfJv57SlVmkXy0cxi6gs8lCxkBBsr+T2BzUiJtHH3VJv3yxW36i6A1omXkwrkaPTLX71BRBJBpSEca9313Nj4KVaGEU7npV6iaYzJGA9p11KJBdV+ugg9RxdWGaAwUvZJgxbq740UC61nIrCTWUi96mXif143MeGNnzIZJ4ZKsjwUJhyZCGUNoAFTlBg+swQTxWxWREZYYWJsTyVbgrf65XXSqlU9yx+uKvVqXkcRzuAcLsGDa6jDPTSgCQQm8Ayv8OZMnRfn3flYjhacfOcU/sD5/AGfVZHs</latexit> <latexit sha1_base64="slCitiijCUd/cc7SJnN9hnenExA=">AAAB9XicbVBNS8NAFHzxs9avqkcvi0XwVBIR9Fjw4kkqmLbQxrLZbtulm03YfVFK6P/w4kERr/4Xb/4bN20O2jqwMMy8x5udMJHCoOt+Oyura+sbm6Wt8vbO7t5+5eCwaeJUM+6zWMa6HVLDpVDcR4GStxPNaRRK3grH17nfeuTaiFjd4yThQUSHSgwEo2ilh25EcaSjrOnfcpz2KlW35s5AlolXkCoUaPQqX91+zNKIK2SSGtPx3ASDjGoUTPJpuZsanlA2pkPesVTRiJsgm6WeklOr9Mkg1vYpJDP190ZGI2MmUWgn85Rm0cvF/7xOioOrIBMqSZErNj80SCXBmOQVkL7QnKGcWEKZFjYrYSOqKUNbVNmW4C1+eZk0z2ue5XcX1XqtqKMEx3ACZ+DBJdThBhrgAwMNz/AKb86T8+K8Ox/z0RWn2DmCP3A+fwDNE5Kh</latexit>

<latexit sha1_base64="17XEFcLadMqju42jC1jhW37dHKY=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlw484K9gHtUDJppg1NMmMehTL0O9y4UMStH+POvzHTzkJbDwQO59zLPTlRypk2vv/tra1vbG5tl3bKu3v7B4eVo+OWTqwitEkSnqhOhDXlTNKmYYbTTqooFhGn7Wh8m/vtCVWaJfLRTFMaCjyULGYEGyeFPYHNSIns3io961eqfs2fA62SoCBVKNDoV756g4RYQaUhHGvdDfzUhBlWhhFOZ+We1TTFZIyHtOuoxILqMJuHnqFzpwxQnCj3pEFz9fdGhoXWUxG5yTykXvZy8T+va018E2ZMptZQSRaHYsuRSVDeABowRYnhU0cwUcxlRWSEFSbG9VR2JQTLX14lrcta4PjDVbVeK+oowSmcwQUEcA11uIMGNIHAEzzDK7x5E+/Fe/c+FqNrXrFzAn/gff4AZVuSbg==</latexit><latexit sha1_base64="a7PLfphonz+vF7bBzbBJb98cSJc=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQi6LKgC5cV7APaUCbT23boTBJmJkIN/RI3LhRx66e482+ctFlo64GBwzn3cs+cMBFcG8/7dtbWNza3tks75d29/YOKe3jU0nGqGDZZLGLVCalGwSNsGm4EdhKFVIYC2+HkJvfbj6g0j6MHM00wkHQU8SFn1Fip71Z6kpqxktktDmMlZ3236tW8Ocgq8QtShQKNvvvVG8QslRgZJqjWXd9LTJBRZTgTOCv3Uo0JZRM6wq6lEZWog2wefEbOrDIg9rB9kSFz9fdGRqXWUxnayTymXvZy8T+vm5rhdZDxKEkNRmxxaJgKYmKSt0AGXCEzYmoJZYrbrISNqaLM2K7KtgR/+curpHVR8y2/v6zWa0UdJTiBUzgHH66gDnfQgCYwSOEZXuHNeXJenHfnYzG65hQ7x/AHzucPQo2TZw==</latexit>

Figure 3: Qualitative comparisons on DeepFashion (Left) and Market-

1501 (Right) dataset. PG2, VUnet and Deform represent the results of

[21], [5] and [34], respectively.

Fig.3 (Left) gives some typical qualitative examples, all

of which are with large pose changes and/or scale variance,

on the high-resolution DeepFashion [19]. Overall, our pro-

posed method maintains the integrity of the person, espe-

cially on the wrist, and exhibits the most natural posture.

Meanwhile, our method captures the most detailed appear-

ance, especially the skin color in the first row, whiskers in

the second row, hair in the third row and hat in the last row.

Besides, our method generates much more beautiful facial

details than other methods.

We also evaluate the performance of our method on

Market-1501, a dataset of poor image quality. Some ex-

amples are shown in Fig.3 (Right). Our method yields the

sharpest person images while the generated images of other

methods are blurred to some extent. Especially, our method

gives the correct leg layouts that correspond to the target

poses, even when the legs are crossed in the target pose (in

the second and third row), or the condition image is blurred
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Model
Market-1501 DeepFashion

SSIM IS mask-SSIM mask-IS DS PCKh SSIM IS DS PCKh

Ma et al. [21] 0.253 3.460 0.792 3.435 - - 0.762 3.090 - -

Ma et al. [22] 0.099 3.483 0.614 3.491 - - 0.614 3.228 - -

Siarohin et al. [34] 0.290 3.185 0.805 3.502 0.72 - 0.756 3.439 0.96 -

Ma et al. * [21] 0.261 3.495 0.782 3.367 0.39 0.73 0.773 3.163 0.951 0.89

Siarohin et al. * [34] 0.291 3.230 0.807 3.502 0.72 0.94 0.760 3.362 0.967 0.94

Esser et al. * [5] 0.266 2.965 0.793 3.549 0.72 0.92 0.763 3.440 0.972 0.93

Ours 0.311 3.323 0.811 3.773 0.74 0.94 0.773 3.209 0.976 0.96

Real Data 1.000 3.890 1.000 3.706 0.74 1.00 1.000 4.053 0.968 1.00

Table 1: Comparison with state-of-the-art on Market-1501 and DeepFashion. * denotes the results tested on our test set.

(in the last row). Moreover, we achieved the best appear-

ance consistency, e.g., the bag is presented in our result

while lost by other methods (in the first row).

4.1.2 Model and computation complexity comparison

Tab.2 gives the model and computation complexity of all

the three methods. These methods are tested under one

NVIDIA Titan Xp graphics card in the same workstation.

Only GPU time is taken into account when generating all

the testing pairs of DeepFashion to compute the speed. No-

tably, our method significantly outperforms other methods

in both the number of parameters and the computation com-

plexity, owing to the simple and neat structure of the build-

ing blocks (PATBs) of our network. In contrast, the two-

stage strategy of Ma et al. [21] brings a huge increase

in parameters and computational burden. Although Siaro-

hin et al. [34] switched to one stage model by introduc-

ing the deformable skip connections (DSCs) leading to a

decreased model size, the computation-intensive body part

affine transformations required by DSCs make the decrease

of computation complexity only marginal.

Method Params Speed

Ma et al. [21] 437.09 M 10.36 fps

Siarohin et al. [34] 82.08 M 17.74 fps

Esser et al. [5] 139.36 M 29.37 fps

Ours (9 PATBs) 41.36 M 60.61 fps

Table 2: Comparison of model size and testing speed on DeepFashion

dataset. “M” denotes millions and “fps” denotes Frames Per Second.

4.1.3 User study

Generally, it is more appropriate to judge the realness of

the generated images by human. We recruit 30 volunteers

to give an instant judgment (real/fake) about each image

within a second. Following the protocol of [21, 34], 55

real and 55 generated images are randomly selected and

shuffled, the first 10 of them are used for practice then the

remaining 100 images are used as the evaluation set. Our

method makes considerable improvements over [21, 34] on

all measurements, as shown in Tab.3, further validating that

our generated images are more realistic, natural and sharp.

It’s worth noticing that our method quite excels at handling

condition images of poor quality, where 63.47% of our gen-

erated images are regarded as real by volunteers, reflected

as the “G2R” measure in Tab.3.

Model
Market-1501 DeepFashion

R2G G2R R2G G2R

Ma et al. [21] 11.2 5.5 9.2 14.9

Siarohin et al. [34] 22.67 50.24 12.42 24.61

Ours 32.23 63.47 19.14 31.78

Table 3: User study (%). R2G means the percentage of real images rated

as generated w.r.t. all real images. G2R means the percentage of gener-

ated images rated as real w.r.t. all generated images. The results of other

methods are drawn from their papers.

4.2. Ablation study and result analysis
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Figure 4: Qualitative results of the ablation study on Market-1501 and

DeepFashion dataset. The images with pink border are generated by

Resnet generator [13, 12] containing 5, 9, 13 residual blocks [9] from left

to right respectively. And the images with blue borders are generated by

our PATN generator containing 5, 9, 13 PATBs. The images with orange

borders are generated by discarding a certain part of the whole model.

Efficacy of the main contributions. The generator of our

network – PATN has two important design characteristics:

one is the carefully designed building block – PATB which

aims to optimize appearance and pose simultaneously us-

ing the attention mechanism, and the other is the cascade of

building blocks which aims to guide the deformable transfer

process progressively. Therefore, we carry out two compar-

ison experiments, one is to explore the advantage of PATB

by replacing it with vanilla residual block [13] that results

in a generator named Resnet generator, and the other is to

exhibit the advantage of the progressive manner by varying

the number of PATBs.
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Qualitative comparison results are shown in Fig.4. Com-

paring the images yield by Resnet generator and those yield

by our PATN generator with the same number of building

blocks, it is evident that PATN generator can always gener-

ate images demonstrating much more consistent shape and

appearance with its target image.

Moreover, the Resnet generator is prone to ignore some

indistinguishable but representative appearance information

which usually occupies a small portion of the image, and

fails to generate correct foreground shape when the target

pose is relatively rare. For instance, Resnet generator is

likely to ignore the bottom red ring of the sweater in the

first row, the white cap in the third row and mislead the T-

shirt color as black in the fourth row since a black backpack

occludes a large portion of the T-shirt. Besides, the shapes

of the sitting girls produced by Resnet generator in the sec-

ond row are somewhat incomplete as this pose is quite rare

in DeepFashion [19].

As a contrast, our PATN generator with only 5 PATBs

could do better than the Resnet generator with 13 residual

blocks. We assume this should be attributed to the pose

attention mechanism which enhances model’s abilities in

capturing useful features and leveraging them. And our

PATN can produce much finer and more pleasant person

images with 9 PATBs. Further increasing the number of

PATBs to 13 can marginally boost the performance. This

phenomenon reflects that increasing the number of PATBs

will ease the transfer process and give results with less arti-

facts. For a tradeoff, we chose 9 PATBs as default for better

efficiency. More qualitative results are given in the supple-

mentary materials for further reference.

Under almost all the quantitative measures shown in

Tab.4, our PATN generator with only 5 PATBs outperforms

Resnet generator with all its number of residual blocks con-

figurations. These results clearly demonstrate the advan-

tages of our PATN generator.

Dissection of the PATB operations and the discrimina-

tor modifications. Besides, to investigate the effect of each

part of PATB, we conduct experiments by removing the ad-

dition (w/o add) and concatenation (w/o cat) operation in

every PATB inside the PATN generator (9 blocks). To dis-

cuss how many improvements obtained from the modified

discriminators, we further added an experiment by discard-

ing the residual blocks in discriminators (w/o resD). The

qualitative and quantitative results are also given in Fig.4

and Tab.4. It’s shown that by removing any parts of PATB

would lead to a performance drop, visually exhibiting a cer-

tain degree of color distortion and implausible details. Dis-

carding residual blocks in the discriminators also reduces

local details and influences the integrity of the person body.

Visualization of the attention masks in PATBs. To get an

intuitive understanding on how the PATBs work during the

pose transfer process, we visualize the attention masks of all

the nine cascaded PATBs in Fig.5. The pose attention trans-

fer process is clear and interpretable, where the attention

masks always attend to the regions needed to be adjusted in

a progressive manner. The initial several masks (first three

columns of masks) are some sort of blending of condition

pose and target pose. As the condition pose is transferred

towards the target pose, the regions needed to be adjusted

are shrunk and scattered, reflected in the middle four mask

columns. Eventually, the last two mask columns show that

the attention is turned from foreground to background for

refinement.

Condition 
image

Generated
 image

Target
 image

PAT1 PAT2 PAT3 PAT4 PAT5 PAT6 PAT7 PAT8 PAT9

1

0.5

0

Figure 5: Visualization of the attention masks in PATBs. “PAT1” denotes

the attention mask of the first PATB and “PAT2∼9” likewise.

5. Application to person re-identification

A good person pose transfer method can generate

realistic-looking person images to augment the datasets of

person-related vision tasks, which might result in better per-

formance especially in the situation of insufficient training

data. As person re-identification (re-ID) [46] is increasingly

promising in real-world applications and has great research

significance, we choose to evaluate the performance of our

method in augmenting the person re-ID dataset. Specifi-

cally, we use the mainstream person re-ID dataset Market-

1501 [45] and two advanced backbone network, ResNet-50

[9] and Inception-v2 [36], as our test bed.

We first randomly select a portion p of the real Market-

1501 dataset as the reduced training set, denoted as M
R
p ,

where at least one image per identity is preserved in M
R
p for

better person identity variety. Each unselected training im-

age Ĩi is replaced by a generated image that transfers from a

randomly chosen image with the same identity in M
R
p to the

pose of Ĩi. Consequently, an augmented training set MA
p is

formed from all these generated images and M
R
p . The se-

lected portion p varies from 10% to 90% at intervals of 10%.

We follow the training and testing protocols of the Open-

Reid Framework3 to train the ResNet-50 and Inception-v2

on each of the nine reduced training set MR
p and the nine

augmented training set MA
p respectively.

We argue that our experiment scheme is well-suited for

assessing the usefulness of our image generation method

in boosting the performance of re-ID via data augmentation

due to the following two reasons: 1) the original training set

3https://github.com/Cysu/open-reid
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Model
Market-1501 DeepFashion

SSIM IS mask-SSIM mask-IS DS PCKh SSIM IS DS PCKh

Resnet generator (5 blocks) 0.297 3.236 0.802 3.807 0.67 0.84 0.764 2.952 0.900 0.89

Resnet generator (9 blocks) 0.301 3.077 0.802 3.862 0.69 0.87 0.767 3.157 0.941 0.90

Resnet generator (13 blocks) 0.300 3.134 0.797 3.731 0.67 0.88 0.766 3.107 0.943 0.89

PATN generator (5 blocks) 0.309 3.273 0.809 3.870 0.69 0.91 0.771 3.108 0.958 0.93

PATN generator (9 blocks) 0.311 3.323 0.811 3.773 0.74 0.94 0.773 3.209 0.976 0.96

PATN generator (13 blocks) 0.314 3.274 0.808 3.797 0.75 0.93 0.776 3.440 0.970 0.96

PATN generator w/o add 0.305 3.650 0.805 3.899 0.73 0.92 0.769 3.265 0.970 0.93

PATN generator w/o cat 0.306 3.373 0.807 3.915 0.71 0.92 0.767 3.200 0.968 0.95

PATN generator w/o resD 0.308 3.536 0.809 3.606 0.73 0.93 0.773 3.442 0.978 0.94

Table 4: Quantitative comparison of the ablation study.

Aug. Model
Portion p of the real images Aug. ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2 3

None (Inc) 5.7 16.6 26.0 33.5 39.2 42.2 46.5 49.0 49.5 52.7 - -

Ours 42.3 43.6 45.7 46.7 48.0 48.5 49.1 50.7 51.6 52.7 56.6 57.1

None (Res) 9.2 27.6 41.5 50.3 56.2 58.8 61.2 62.7 63.8 65.3 - -

VUNet[5] 49.8 51.7 53.7 54.5 56.6 58.4 59.4 61.3 62.9 65.3 63.9 64.1

Deform[34] 51.9 53.9 55.4 56.1 57.6 59.4 60.5 62.2 63.5 65.3 64.2 64.6

Ours 52.6 54.5 56.5 56.6 60.3 60.9 62.1 63.3 64.8 65.3 65.3 65.7

Ours* 53.3 55.9 56.0 57.3 58.8 60.4 60.7 63.1 64.5 65.3 65.1 65.4

Table 5: The ReID results on Inception-v2 (denoted by Inc) and ResNet-

50 (denoted by Res) using images generated by different methods. None

means no generative model is employed. * denotes the results when we

randomly select target poses from M
R
p for data augmentation.

reduction leads to a degree of data insufficiency, offering an

opportunity to boost the performance via data augmentation

and giving the performance lower bound; 2) the reference

results utilize all the real images including all the ground

truth of the generated images, thus could give the theoretical

performance upper bound. Besides, the gaps between the

upper and lower bounds could measure the maximum po-

tential of data augmentation in boosting re-ID performance.

Tab.5 shows that whenever there’s a performance gap,

there is undoubtedly a performance boost owing to our data

augmentation. And the performance gain is much more sig-

nificant if the performance gap is relatively large. A natu-

ral question is, what the performance would be when fur-

ther augmenting the whole real training set. To investigate,

we augment the training dataset of Market-1501 by generat-

ing one/two samples per image, whose target poses are ran-

domly selected from the whole dataset, thus doubles/triples

the size of the original training set. The results on these two

augmented datasets are added to Tab.5 (the right part). In

a nutshell, the trends of performance gain by adding more

generated images are roughly in accordance with those by

adding more real images. It can be seen that the real data

augmentation for Inception-v2 model could get nearly lin-

ear improvements even in cases of near sizes of the whole

real data set. Therefore, doubling or tripling the training set

continuously improves the performance considerably. On

the other hand, real data augmentation for ResNet-50 model

tends to saturate in cases of near sizes of the whole real data

set, hence doubling or tripling the size fails to improve the

performance further.

We further compare our method to several existing per-

son image generators [5, 34] under the same setting for

re-ID data augmentation. As shown in Tab.5, our method

achieve consistent improvements over previous works for

different portion p of the real images, suggesting the pro-

posed method can generate more realistic human images

and be more effective for the re-ID task. We also present the

re-ID performance by randomly selecting the target poses

from the whole dataset, which can better suit the practi-

cal applications. As shown in Tab.5, there is not an obvi-

ous performance difference between the two settings, fur-

ther demonstrating that the proposed framework is robust to

various poses.

6. Conclusion

In this paper, we propose a progressive pose attention

transfer network to deal with the challenging pose trans-

fer. The network cascades several Pose Attentional Transfer

Blocks (PATBs), each is capable of optimizing appearance

and pose simultaneously using the attention mechanism,

thus guides the deformable transfer process progressively.

Compared to previous works, our network exhibits superior

performance in both subjective visual realness and objec-

tive quantitative scores while at the same time improves the

computational efficiency and reduces the model complexity

significantly. Moreover, the proposed network can be used

to alleviate the insufficient training data problem for person

re-identification substantially. Additionally, our progressive

pose-attentional transfer process can be easily visualized by

its attention masks, making our network more interpretable.

Moreover, the design of our network has been experimen-

tally verified through the ablation studies.

Our progressive pose-attentional transfer network is not

only specific to generating person images but also can be

potentially adapted to generate other non-rigid objects. Fur-

thermore, we assume the idea behind our progressive at-

tention transfer approach may be beneficial to other GAN-

based image generation approaches as well.
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