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Abstract

Representing procedure text such as recipe for cross-

modal retrieval is inherently a difficult problem, not men-

tioning to generate image from recipe for visualization. This

paper studies a new version of GAN, named Recipe Re-

trieval Generative Adversarial Network (R2GAN ), to ex-

plore the feasibility of generating image from procedure text

for retrieval problem. The motivation of using GAN is t-

wofold: learning compatible cross-modal features in an ad-

versarial way, and explanation of search results by showing

the images generated from recipes. The novelty of R2GAN

comes from architecture design, specifically a GAN with one

generator and dual discriminators is used, which makes

the generation of image from recipe a feasible idea. Fur-

thermore, empowered by the generated images, a two-level

ranking loss in both embedding and image spaces are con-

sidered. These add-ons not only result in excellent retrieval

performance, but also generate close-to-realistic food im-

ages useful for explaining ranking of recipes. On recipe1M

dataset, R2GAN demonstrates high scalability to data size,

outperforms all the existing approaches, and generates im-

ages intuitive for human to interpret the search results.

1. Introduction

Food is fundamental to health and social participation.

Due to abundant food images and recipes available online,

food computing for healthcare has recently captured numer-

ous research attentions [34, 22]. Managing to retrieve the

recipe of food intake, for example, can assist the estima-

tion of nutrition consumption and hence benefit food log-

ging [22, 5]. The past efforts on food computing range from

food categorization [19, 20, 21], food attribution recogni-

tion [3, 4, 23], zero-shot recipe retrieval [3] to food percep-

tion [36, 27] and recommendation [9, 8, 39].

This paper studies food-to-recipe and recipe-to-food re-

trieval, which is a typical problem of cross-modal re-

trieval [38] but peculiar to the domain of food computing.

Specifically, recipe is a text article describing preparation

of food material and procedure of cooking. A typical recipe

consists of three sections: title, ingredients, and cooking

instructions, which may or may not align with the visual

appearance of a cooked dish. For instance, some ingredi-

ents (e.g., sugar, salt) are not visible in dish. Furthermore,

cooking instruction more often implies the cause-and-effect

of cooking rather than visually depicting the dish appear-

ance. The nature of problem conflicts with the assump-

tion made by the existing cross-modal retrieval, which train-

s model using text narration that explicitly refers to visual

content [31, 32, 18]. Modeling lengthy procedure text such

as recipe can thus be a new challenge for cross-modal re-

trieval.

In the literature, the problem of food-to-recipe retrieval

is addressed by either classification [3, 4] or cross-modal

learning [35, 2]. Classification-based approaches annotate

rich food attributes (e.g., ingredients, cooking and cutting

methods) in food images and then match these attributes a-

gainst words extracted from recipes for retrieval [4]. A ma-

jor drawback is the significant efforts required in labeling

of food attributes, which are not only cost expensive and

labour intensive. Cross-modal learning smartly alleviates

this requirement, by training latent space that can accom-

modate both image and text modalities for similarity mea-

surement. The labeling efforts are significantly reduced by

requiring only recipe-image pairs, which are easy to collect,

than to painstakingly annotate visual food attributes [4]. To

model text description in recipe, neural networks of differ-

ent complexities have been investigated in [35, 5] to learn

embeddings for different sections of a recipe. Although ef-

ficient, cross-modal learning is inherently an unexplainable

model compared to classification-based approaches, which

are able to list out the matched attributes as evidences to re-
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(b) Thai Roast Chicken(a) Homemade Pizza

(c) Tater Tot Casserole (d) Mushroom & Salami Grill

Figure 1. Examples of thumbnails generated by R
2
GAN . From

left to right are original image, and two thumbnails generated from

image and recipe embeddings respectively.

count the retrieval result.

This paper addresses the limitation of cross-modal learn-

ing for recipe retrieval. Specifically, a novel deep archi-

tecture is designed to interpret cross-modal matching, by

synthesizing thumbnail images from recipes to assist the

browsing of search results. The machine-generated thumb-

nails represent how a system perceives the effect of cooking

and visually provides cue to explain the ranking of a recipe.

Figure 1 shows the examples of thumbnails generated from

recipes. As observed, these thumbnails (right) are not only

similar to the examples (middle) generated from image em-

bedding, but also the original images (left).

The proposed architecture is built upon cross-modal

embedding [35] and generative adversarial network

(GAN) [10]. Note that GAN has not yet been studied for

this problem. Due to the use of GAN for Recipe Retrieval,

we name the proposed model as R2GAN . As recipes are

rich of procedure descriptions, conventional GAN with one

generator and one discriminator turns out to be ineffective.

As a consequence, R2GAN is designed to have two dis-

criminators, with one to guess between real and fake images

as in common practice, and the other to predict the source

of embedding, i.e., whether a fake image is generated from

image or recipe embedding. Leveraging on the images gen-

erated from different modalities, a novel two-level rank loss

function is designed to consider losses in both embedding

and image spaces. The overall design of R2GAN is to

encompass a rich set of functions to quantify cross-modal

embedding, image reconstruction, food semantics and ad-

versarial losses. With these, R2GAN is capable of learning

compatible embeddings for image-to-recipe similarity mea-

sure, and performing recipe-to-image generation to explain

the rationale of similarity.

The main contribution of this paper is exploration of

GAN for cross-modal recipe retrieval. Despite the wide use

of GAN in various problem domains [30, 40, 37, 41], GAN

surprisingly remains not attempted for recipe retrieval. Us-

ing GAN, this paper novelly utilizes image generation to

visualize what is preserved in a recipe embedding for the

explanation of search results. To the best of our knowl-

edge, the proposed R2GAN with one generator and two

discriminators is a relatively new idea. Although the de-

sign of dual discriminators has been recently investigated

by D2GAN [26], the purpose is to address the issue of

mode collapse by combining Kullback-Leibler (KL) and re-

verse KL divergences into a unified objective function in

optimization, which is completely different from this pa-

per. R2GAN aims for cross-modal learning and its dual

discriminators, in contrast to D2GAN, are designed to be

functionally different aiming to learn compatible embed-

dings and explainable thumbnails jointly.

2. Related Works

The core problem of cross-modal retrieval is to mea-

sure the similarity between two modalities. Learning com-

mon feature subspace is currently the main stream of re-

search [38]. The approaches range from canonical correla-

tion analysis (CCA) [31, 29], which learns subspace to max-

imize correlation between modalities, to the most recent s-

tacked cross attention model [17], which discovers the full

latent alignment to capture fine-grained relationship across

modalities. This section focuses on works relevant to food

computing.

2.1. Recipe and Food Retrieval

Stacked attention model was first studied in [6] for

image-to-recipe retrieval. By representing ingredients ex-

tracted from recipe as a binary vector, the model attends

to image regions with salient ingredients for learning com-

mon latent space. This work, nevertheless, explores only

ingredients and cannot disambiguate recipes with the same

ingredients list but different cooking procedures. Joint neu-

ral embedding (JNE) addresses this problem by proposing

bi-directional LSTM to embed the sparse list of ingredients

and a hierarchical LSTM to encode the lengthy and com-

plex descriptions of cooking procedure [35]. In addition,

regularization with semantic loss, specifically to enforce

the learnt embedding to predict food category, is found to

be crucial in feature learning. The recent work in [5] im-

proves JNE by introducing title encoder and multi-level at-

tention modeling of cooking instructions from word-level

to sentence-level. The new model is capable of assigning

lower weights to visually insignificant words, such as “clas-

sic” and “home-made”, resulting in better retrieval accura-

cy. Built upon JNE [35], AdaMine recently proposed in [2]

surpasses the performances of [35, 5] with large margin, by

proposing a double-triplet learning scheme and an adaptive

strategy for informative triplet mining. The adaptive strate-

gy is effective in alleviating the problem of gradient dimin-

ishing, and hence is also adopted by R2GAN .

Classification-based approaches are also studied for this

problem. In [3], ingredients are multi-labeled on food im-
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ages to match recipes for retrieval. As only a limited num-

ber of 353 ingredients is trained for recognition, the idea

of zero-shot recipe retrieval is introduced to retrieve recipes

with ingredients unknown to a training model. The prob-

lem is addressed by constructing a large graph with both

known and unknown ingredients as nodes. The graph mod-

els the co-occurrence relationship among ingredients, and

conditional random field (CRF) is employed to propagate

the prediction scores from known to unknown ingredients

for recipe retrieval. This approach, nevertheless, is effec-

tive when only a small number of unknown ingredients is

considered in the graph. The approach is later extended in

[4] by predicting cooking and cutting attributes in addition

to ingredients when matching with keywords extracted from

recipes. Comparing to cross-modal retrieval, classification-

based model is explainable as attributes are explicitly evalu-

ated to quantify the final similarity score. However, training

classification models to sufficiently cover a wide variety of

food attributes for retrieval is practically intractable.

2.2. Cross­modal GAN

GAN has been applied for generating food images [13],

but not in the context of cross-modal learning. In [13],

conditioned on food category and ingredients respectively,

CGAN [24] is employed to synthesize novel dish images.

However, recipes information, including cooking style and

process, has not yet been explored.

GAN has captured a lot of research attentions [1, 25, 41,

40, 15]. Although GAN has not been studied for recipe

retrieval, cross-modal GAN is not a new idea. Examples

include ACMR [37], GXN [11] and CM-GANS [28], with

the common goal of learning embedding features for cross-

modal retrieval. Different from most GANs, ACMR [37]

does not have generator to reconstruct image. Instead, fea-

tures are generated from images or text captions for the dis-

criminator to guess the source of modality, which is similar

to the second discriminator of R2GAN . GXN [11] has two

pairs of generator-discriminator, where a generator synthe-

sizes examples of different modalities for discriminator to

guess between real and fake samples. CM-GANS [28], dif-

ferent from ACMR and GXN, considers a whole paragraph

of text instead of a short sentence in learning. CM-GANS

also has two pairs of generator-discriminator for image-

to-image and text-to-text generation. Similar to ACMR,

cross modal learning is enabled by having a discrimina-

tor to predict the modality of an embedded feature. Hav-

ing two pairs of generator-discriminator is not considered

in R2GAN because generating procedure description from

image is practically implausible. Instead, the design of pair-

ing one generator with dual discriminators is adopted. Dif-

ferent from ACMR and CM-GANS, the second discrimina-

tor of R2GAN makes prediction of modality source on the

generated images rather than embeddings. The design en-

ables R2GAN to encapsulate a rich set of loss functions as

well as using two-level ranking losses for effective learning

of compatible features.

3. R2
GAN

3.1. Preliminaries

Problem Formulation. The goal of image-to-recipe

retrieval is to search for relevant recipes that textually

describe the preparation of a dish given a food image as

query. Similar but in the reverse direction, recipe-to-image

retrieval is to rank food images according to the likeli-

hood of being cooked based on a given recipe. Denote

P = {pi = (ri, vi)}
N
i=1 as a set of N recipe-image pairs,

where ri ∈ R is a recipe and vi ∈ V is its food image. The

notations R and V denote the collections of recipes and

images respectively. A pair pi may be assigned a semantic

label ci ∈ C, where C ∈ R
k represents the set of k food

categories such as waffle, spaghetti bolognese and chicken

quesadilla, which correspond to the predefined food groups

of recipes. It is worth noting that each image belongs to

a unique recipe, while each recipe is allowed to contain

more than one image. Furthermore, the state of an image is

assumed “after cooking”, meaning that an image captures

only a fully prepared dish.

Due to the domain gap between recipe and image, the ex-

tracted raw features from both domains cannot be matched

for similarity measurement. Similar in spirit as [35, 2], this

paper aims to learn a common latent subspace to enable

cross-modal comparison between recipe and food image.

Specifically, a mapping function Ψ(R, V ) → (ER,EV)
needs to be learnt. Given n recipe-image pairs, the function

Ψ produces both recipe embeddings ER and image embed-

dings EV, where ER ∈ R
n×d, EV ∈ R

n×d, and d is the

dimension of the learnt embedding.

Generative Adversarial Network. The vanilla

GAN [10] is composed of a generator G and a discrimina-

tor D which can be trained simultaneously in an adversarial

way. The generator G is trained to capture the real data

distribution pdata and generate fake images to fool discrim-

inator D. On the other hand, the discriminator D is trained

to distinguish between real and fake images. Specifically,

G and D play a minmax game to optimize the following

objective function:

min
G

max
D

V (D,G) =Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log (1−D(G(z)))],
(1)

where x is the real image with a data distribution pdata, and

z is a noise with a prior distribution pz .

3.2. Model Architecture

Figure 2 depicts the model architecture of our R2GAN .

The architecture is composed of two modules for recipe and
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Curry Chicken and 

Tomato Pilaf

Olive oil; 2 chicken breasts; 1 

onion; korma curry paste; 

basmati rice; 1 tomato…

1. Heat a saucepan over med 

high heat.

2. Spray with olive oil.

3. Cook chicken for 3-4 min 

each side.

4. …

Title

Ingredients

Instructions

Recipe

Food image

LSTM

Hierarchical 

LSTM

CNN

Recipe 

Embedding

Semantic Loss Classifier

Image 

Embedding

D2

D1

GAN Learning Module

Image Embedding Learning Module

Recipe Embedding Learning Module

Semantic Learning Module

Ep

Eq

En

vf
I (vq or vp)

{real, fake}

G

vf
R (vq or vp)

vn

{recipe, image}

Two-level Ranking Loss

Reconstruction Loss 

Adversarial Loss

Adversarial Loss

Figure 2. R2
GAN is composed of two modules for recipe and image embeddings and two modules for learning of GAN and semantic

classification. The GAN learning module is redesigned with one generator (G) and two discriminators (D1 and D2) for cross-modal feature

learning. Leveraging on the proposed GAN module, two-level ranking loss at embedding and image spaces is introduced.

image embeddings, and two modules for learning of GAN

and semantic classification. The architecture is learned in

an end-to-end fashion.

Recipe Embedding Learning. This module follows the

work of [35], which employs a bi-directional LSTM and

a hierarchical LSTM for representation learning of ingredi-

ents and cooking instructions respectively. The learnt rep-

resentations are concatenated and fed into a fully connected

layer for learning of recipe embedding.

Image Embedding Learning. Similar as other works in

cross-modal recipe retrieval [35, 2, 5], the state-of-the-art

ResNet-50 model is employed to extract image feature. We

remove the last softmax classifier layer of ResNet-50 and

initialize the rest layers with parameters pretrained in Ima-

geNet ILSVRC12 dataset [33]. The resulting feature is fur-

ther mapped by a fully connected layer to produce an image

embedding in the same dimension as a recipe embedding.

GAN Learning. This module is specifically designed

to learn compatible and explainable embeddings for image-

recipe pairs. We redesigned vanilla GAN with one genera-

tor and two discriminators for cross-modal feature learning.

As shown in Figure 2, the generator G is trained to be capa-

ble of reconstructing image from either recipe or image em-

bedding. The reconstructed images from recipe and image

embeddings are denoted as vRf and vIf respectively, where

the subscript f represents a fake or reconstructed image and

the superscript indicates the recipe or image source.

The first discriminator D1, similar to traditional GAN, is

to distinguish between real and fake images, i.e., vreal and

vIf . The second discriminator D2, in contrast, is to differ-

entiate between vRf and vIf to tell the source of modality.

The intuition of having D2 is to nudge the distribution of

vRf to be as similar or compatible as vIf which is learnt from

the original image vreal. The generator G plays a special

role in transforming textual recipe embeddings to images

that are difficult for D2 to predict the source. This min-

max game played by GAN learning module novelly pro-

vides feedback to make the learnt recipe embedding self-

explainable, specifically by having G to recount the visu-

al appearance of an embedding for D2 to make judgement.

Note that this procedure naturally simulates an interpretable

cross-modal retrieval, by showing user vRf as an explana-

tion of how a recipe is visually interpreted and ranked by

a system. In short, by having two discriminators, R2GAN

effectively enforces vIf to learn from real food image vreal

and then vRf from vIf , until reaching a state where the re-

constructed images from a different modality share similar

or even a same distribution with the original image.

Semantic Learning. R2GAN also takes advantage

of high-level semantics (i.e., food categories) to assist the

learning of recipe and image embeddings. Intuitively, both

modalities should exhibit the same semantic interpretation

when projected to the same common subspace.
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3.3. Objective Formulation

Two-level Ranking Loss. Similar to other cross-modal

retrieval methods [17, 38], triplet ranking loss is employed.

Different from these works, nevertheless, R2GAN consid-

ers two-level of losses due to embedding and reconstruc-

tion. Let E represent an embedding, v as a reconstructed

image, and the subscripts q, p and n refer to query, positive

and negative candidates respectively. We use a large-margin

based ranking loss function which can be formalized as fol-

lows:

Lrank =max{d(Eq, Ep)− d(Eq, En) + α1, 0}+

µmax{d(vq, vp)− d(vq, vn) + α2, 0},
(2)

where d(·, ·) is a distance function measuring the similarity

between a given pair of query and candidate, for example,

(Eq , Ep) as a positive embedding pair and (vq , vp) as the

corresponding image pair. Note that the elements of a pair

belong to different modalities. The parameters α1 and α2

are margins, and µ is a trade-off hyperparameter.

The two-level ranking loss enhances the robustness of

learning, through enforcing the distances between positive

pairs to be always smaller than negative pairs, not only in

the embedding space but also the reconstructed image s-

pace. We use cosine similarity as distance function for em-

bedding space as [35, 2], and pixel-wise Euclidean distance

for image space.

Adversarial Loss. The three parts of R2GAN , i.e., G,

D1, D2, are optimized alternatively by adversarial training.

Due to use of two discriminators, the losses produced by D1

and D2 are averaged as the training loss of G. Therefore,

the GAN module losses are as follows:

LD1
=Ex∼pimage

[logD1(x)]+

EEV∼pimage
[log (1−D1(G(EV)))],

(3)

LD2
=EEV∼pimage

[logD2(G(EV)))]+

EER∼precipe
[log (1−D2(G(ER)))],

(4)

LG =
1

2
(EEV∼pimage

[log (1−D1(G(EV)))])+

EER∼precipe
[log (1−D2(G(ER)))],

(5)

where ER and EV denote embeddings of recipe and image

respectively.

Reconstruction Loss, which also considers two-level of

losses in feature and image levels, is introduced to encour-

age the reconstructed images to retain as much as informa-

tion of the original image. The reconstruction loss is defined

as follows:

Lrecon =
1

2
(
∥

∥Φ(vreal)− Φ(vIf )
∥

∥

2

2
+

∥

∥Φ(vIf )− Φ(vRf )
∥

∥

2

2
+

β(‖vreal − vIf‖
2
2 + ‖vIf − vRf ‖

2
2)),

(6)

where Φ(·) is a feature extractor for the input image, vreal
stands for real food image, and the images vIf and vRf are

reconstructed from image and recipe embeddings respec-

tively. Following the practice in [7], the output before

last layer of the discriminator is used as Φ(·)1. The term

‖Φ(v1)− Φ(v2)‖
2
2 refers to feature-level loss and the term

‖v1 − v2‖
2
2 refers to the image-level loss, with both using

Euclidean distance. The parameter β controls the relative

importance between feature and image losses.

Semantic Loss is characterized by cross-entropy loss as

following:

Lsem = − log
exp(Ec)

∑

i exp(Eci)
, (7)

where Ec denotes either a recipe or image embedding cate-

gory.

Overall Loss. The four modules of R2GAN are learnt

end-to-end. However, the parameters of modules are op-

timized separately using different loss functions. The full

loss, defined as following, is used to update the parameters

of embedding and semantic modules:

Lfull = Lrank + γLrecon + λLsem, (8)

where γ and λ are trade-off hyperparameters.

On the other hand, the parameters of two discriminators

are updated by LD1
and LD2

, while the parameters of gen-

erator G are updated by incorporating adversarial and re-

construction losses as following:

LGfull
= LG + δLrecon, (9)

where δ balances the relative importance of the two parts.

4. Experiments

4.1. Experiment Settings

Dataset. Recipe 1M [35] is the only large-scale food

dataset with English recipes and images publicly available.

The raw dataset contains more than 1 million recipes and

almost 900,000 images. The experiments are conducted

on the pre-processed recipe-image pairs provided by [35],

which have totally 340,922 pairs with 70% for training,

15% for validation and 15% for testing. Each pair is as-

signed to one of the 1,048 semantic food categories com-

piled by [35].

Evaluation Metrics. Median rank (MedR) and recall

rate at top K (R@K) are used to evaluate retrieval accuracy.

MedR refers to the median rank position of true positives

for all the testing queries. R@K measures the fraction of

1An alternative way of computing Φ(·) is by using VGG network [14].

However, there is no obvious performance difference between these two

approaches in our in-house experiment.
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Size Methods
image-to-recipe recipe-to-image

MedR R@1 R@5 R@10 MedR R@1 R@5 R@10

1K

Random 500 0.1 0.5 1.0 500 0.1 0.5 1.0

CCA [35] 15.7 14.0 32.0 43.0 24.8 9.0 24.0 35.0

JNE [35] 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0

ATTEN [5] 4.6 25.6 53.7 66.9 4.6 25.7 53.9 67.1

AdaMine [2] 2.5 36.4 66.2 76.9 2.1 37.4 66.7 77.1

R
2
GAN 2.0 39.1 71.0 81.7 2.0 40.6 72.6 83.3

10K

JNE [35] 41.9 - - - 39.2 - - -

ATTEN [5] 39.8 7.2 19.2 27.6 38.1 7.0 19.4 27.8

AdaMine [2] 16.5 12.5 31.5 42.2 15.6 13.6 32.8 43.4

R
2
GAN 13.9 13.5 33.5 44.9 12.6 14.2 35.0 46.8

Table 1. Cross-modal retrieval performance comparison in terms of MedR (median rank) and R@K (recall@K). A lower MedR and a

higher R@K indicate a better model. The symbol “-” means that the results are not available in the original paper.

true positives being ranked at top K returned results. There-

fore, a retrieval model with lower MedR and higher R@K

is preferable.

Implementation. The output dimensions of ingredient

and cooking instruction are set to 300 and 1,024 respective-

ly. Meanwhile, the embeddings of both recipe and image

are fixed to be in d = 1024 dimensions, following [35].

The design of the GAN learning module is guided by D-

CGAN [30]. The generator G consists of upsampling lay-

ers, each followed by batch normalization and ReLU acti-

vation except for the last layer which uses Tanh. We use

the nearest-neighbor upsampling following a 3×3 stride 1

convolution as adopted by StackGAN [40]. For discrimina-

tor, strided convolution is adopted for down-sampling, with

each followed by batch normalization and LeakyReLU ac-

tivation except for the last layer which uses Sigmoid. Both

discriminators D1 and D2 share the same architecture. The

slope for LeakyReLU is set to be 0.2. As R2GAN empha-

sizes more on embedding compatibility than image quality,

the resolution of generated images is set to be 64×64 which

is a typical size of thumbnail enough for visualization.

For all the experiments, Adam solver with adaptive

learning schema [16, 2] is used with a batch size of 128.

The initial learning rate of the R2GAN is 0.0001 with a

decay by multiplying 0.5 when the model reaches a plateau.

The GAN learning module is trained with an initial learn-

ing rate of 0.0002, decaying by multiplying 0.1 every 20

epochs. During end-to-end training, with the principle that

ranking loss is one order of magnitude bigger than other

losses, we set µ=0.1 (Equation 2), β=1 (Equation 6), γ=0.01

and λ=0.01 (Equation 8). Following the usual practice in

the literature, the margins α1 and α2 of two-level ranking

loss in Equation 2 are set to be 0.3. The balance factor in

Equation 9 is set to be δ=1 in order to balance adversarial

and reconstruction loss.

The model training is conducted as following. In the first

20 epochs, the ResNet-50 weights are frozen and other part-

s of the model are trained from scratch. After that, we free

the ResNet-50 weights and train the whole model for anoth-

er 80 epochs. The strategy of triplet sampling is to gener-

ate samples from the mini-batch. Given a batch of matched

image-recipe paires, if we choose one item from one modal-

ity as query Eq , then the corresponding item from another

modality is treated as positive Ep while the rest are aver-

aged as negative En. The three embeddings, i.e., the query

and its positive and negative counterparts, are subsequently

utilized as inputs for generator G to reconstruct images with

corresponding outputs vq , vp and vn (Equation 2 and Fig-

ure 2). Finally, the model with the best MedR performance

on validation set is selected for testing.

4.2. Retrieval Results

Comparison. R2GAN is compared against three state-

of-the-art deep learning based approaches [35, 5, 2] and two

baselines based on random and CCA [31]. Same as [35, 5],

retrieval is conducted on a subset formed by random sam-

pling of recipe-image pairs from the testing set. The recipe

and image of a pair take turn as a query to retrieve its coun-

terpart from the subset. The sampling process is repeat-

ed for 10 times and the mean retrieval results are reported.

Note that, different from [2], the sampling process will not

guarantee unique subsets without overlapping samples. In

addition, when calculating MedR, the ranking position s-

tarts from 1 instead of 0, which is used by [35, 5]. In the

experiment, we use the pretrained embeddings2 provided

by [2] and report their results on the subsets sampled by us.

Table 1 lists the performances of different approaches on

1K and 10K subsets. First, deep learning models signifi-

cantly outperform all the baselines with large margin. Sec-

ond, R2GAN exhibits the best performance across all the

evaluation measures among the deep models. Comparing to

AdaMine [2] which reported the to-date best performance

2https://github.com/Cadene/recipe1m.bootstrap.

pytorch/tree/pytorch0.2#pretrained-models
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Figure 3. Scalability test between R
2
GAN and AdaMine [2] for

image-to-recipe retrieval.

on Recipe1M, R2GAN manages to boost MedR by almost

three ranking positions in both image-to-recipe and recipe-

to-image retrieval in 10K setting. Observed from the similar

thumbnails generated from image and recipe embeddings,

we attribute the improvement to the peculiar design of the

GAN learning module which enforces the embedding mod-

ule to learn more compatible features.

Scalability. To investigate the robustness R2GAN a-

gainst large dataset beyond 10K, we further compare its

MedR performance against AdaMine. For image-to-recipe

retrieval, as shown in Figure 3, the gap between R2GAN

and AdaMine becomes obvious and larger with the increase

of subset size. On the 50K dataset, which is almost equiv-

alent to the original size of testing set provided by [35],

R2GAN manages to rank the true positive by 11.4 positions

ahead of AdaMine on average, which is statistically signif-

icant. Similar results are also obtained for recipe-to-image

search, where R2GAN ranks true positives by 14 positions

ahead on 50K dataset. Nevertheless, the MedR of R2GAN ,

although much better than AdaMine, only reaches 66 for

image-to-recipe retrieval in 50K setting, which shows the

challenge of this task.

Visual Interpretability. The basic idea is to show

thumbnails along each retrieved recipe such that user can

browse through the search results quickly, while picking the

right recipe even if it is not ranked at the top position. Fig-

ure 4 shows three typical examples of search in the experi-

ment. In the first example (top), the ground-truth recipe is

successfully ranked at the 1st place. The generated image

is obviously more similar to query than others, demonstrat-

ing the interpretability of the generated images in explain-

ing search results. In the second example (middle), both of

the recipes ranked at 1st and 3rd positions belong to muffin.

However, the image generated from ground-truth recipe has

shape and layout more similar to query, which explains why

it is ranked higher than other muffin recipes. In the third ex-

ample (bottom), although the ground-truth recipe is ranked

Query Image Ground Truth Retrieved Recipe Title Ranking vf
R

Christmas Pudding Granola 1

Pumpkin Spice Latte Granola 2

Peanut Butter and Nutella 

Popcorn 3

Saskatoon Berry Oat Muffins 1

Steinbeck's Johnnycake 

(Cornbread)

2

Blueberry Muffins 3

African Turkey Stew 1

Chana Masala

(Chickpeas and Tomatoes)

2

Peach Pear Salsa 3

Christmas Pudding Granola

Rolled Oats; Raisins; Sultanas; 

Ground Allspice; Ground 

Cinnamon; Ground Nutmeg; 

Runny Honey…

1. Preheat oven to 325 F and 

line a large rimmed…
2. Place oats, raisins, sultanas, 

allspice, cinnamon.…
3. …

Saskatoon Berry Oat Muffins

rolled oats; milk; all-purpose 

flour; white sugar; baking 

powder; baking soda; saskatoon

berries; egg…

1. Preheat oven to 350…
2. Grease a 12-cup muffin.…
3. Stir oats and milk together 

in a small bowl…
4. …

Chana Masala 

(Chickpeas and Tomatoes)

onion; garlic; oil; chickpeas 

(garbanzo beans); paprika; 

ginger; cayenne pepper… 

1. Heat oil in a 6-quart Dutch 

oven or large…
2. Add garlic and saute.…
3. Add coriander, paprika…
4. …

Figure 4. Examples showing the interpretability of R2
GAN . By

judging from the generated images (last column) from recipes, one

can easily guess the ground-truth recipes of query images.

at the 2nd place, user may still pick this as result judging

from the similarity of the generated image and query.

4.3. Ablation Studies

This section studies improvement due to different mod-

ules of R2GAN . Figure 5 shows four variants of R2GAN

as following. To investigate the significance of Discrimina-

tor D2, two variants, GAN* and GAN, are derived. Refer-

ring to Figure 5(a), GAN* modifies D2 to guess between re-

al image and the fake image constructed from a recipe, ver-

sus D2 in R2GAN which predicts the source of modality

when an image is generated. GAN (see Figure 5(b)), on the

other hand, simply removes D2, which makes it equivalent

to the original GAN except also considering semantic loss.

As claimed in JNE [35] and ATTEN [5] that food seman-

tics play an important role, we also study the performance

of two other variants without semantic classification (i.e.,

R2GAN-Semantic in Figure 5(c)) and with only semantic

classification (i.e., Semantic only in Figure 5(d)). Addition-

ally, we also compare to a variant, R2GAN-, which em-

ploys conventional one-level ranking loss without image-

level ranking loss. In other words, Equation 2 is modified

as follows:

Lrank =max{d(Eq, Ep)− d(Eq, En) + α1, 0}, (10)

Table 2 lists the results of ablation study. First of all, the

baseline GAN already outperforms all the previous mod-

els including AdaMine on this dataset. However, GAN*,

which uses a variant of D2, exhibits worse performance

than GAN which is without D2. The result is not surpris-

ing because reconstruction of image from recipe is highly

difficult. Directly learning to imitate real image can re-
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Methods
image-to-recipe recipe-to-image

10K 20K 30K 40K 50K 10K 20K 30K 40K 50K

Semantic only 16.0 30.6 45.7 60.8 75.7 15.1 28.6 42.8 56.8 70.9

R2GAN-Semantic 19.3 37.8 55.9 74.1 92.9 18.1 35.6 52.7 69.8 87.0

GAN 15.8 30.7 45.7 60.3 75.2 14.2 28.1 41.9 55.4 69.0

GAN* 19.3 37.9 56.1 74.2 92.9 17.2 34.0 50.5 67.1 83.4

R2GAN- 14.6 28.4 42.0 55.2 69.0 13.2 25.2 37.5 49.9 61.9

R
2
GAN 13.9 26.8 39.9 52.7 66.0 12.6 24.2 35.7 47.4 59.0

Table 2. Ablation study. Results are reported in terms of MedR with different subset sizes.
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Figure 5. Variants of architectures derived from R
2
GAN for ab-

lation study.

Query Image Ground Truth Method Reconstructed Image

(vf
I, vf

R)

R2GAN

GAN*

GAN

R2GAN

GAN*

GAN

Chinese-style Soup with 

Imitation Crab and Fluffy Eggs

Onion; Egg; Imitation crab meat; 

Water; Chinese soup bouillion; 

Katakuriko…

1. Thinly slice the onions.

2. Shred the imitation crab by 

hand.

3. …

Homemade Pizza

Bread flour; Italian seasoning; 

sugar; salt; rose pizza dough yeast; 

olive oil; mozzarella cheese…

1. combine flour, sugar, salt, 

yeast and Italian seasoning… 
2. add water and oil to dry 

mixture…
3. …

Figure 6. Comparison of images generated by R
2
GAN , GAN*

and GAN. The last column shows the thumbnails reconstructed

from image embedding v
I
f and recipe embedding v

R
f .

sult in overfitting harmful to the overall end-to-end learn-

ing. Instead, indirectly learning as in R2GAN to imitate

fake image generated from image embedding, which is in-

herently an easier task, appears to be more effective. The

result listed in Table 2 also aligns with [35, 5] where se-

mantic loss plays a critical role. Semantic-only, which is

without GAN, performs better than its counterpart R2GAN-

Semantic, which is with GAN only but without semantics.

The proposed R2GAN successfully compromises both in-

formation, i.e., semantics and GAN, and shows the consis-

tently best performances across subsets of different sizes

from 10K to 50K. Comparing two-level versus one-level

ranking loss, R2GAN also shows incremental improve-

ment over R2GAN- consistently across all the subsets. Fig-

ure 6 compares the images generated from image and recipe

embeddings by different GANs. R2GAN manages to gen-

erate thumbnails substantially more realistic than other vari-

ants and are apparently more similar to the original images.

5. Conclusion

We have presented a new network architecture based

on GAN for cross-modal recipe retrieval, which attains

the new state-of-the-art performance on Recipe1M dataset.

R2GAN , particularly, exhibits robustness against large-

size dataset and is more scalable compared to other mod-

els. Through the experiments, we attribute the improve-

ment to the design of architecture which makes the learn-

ing of embedding compatible across text and visual modal-

ities. This can be evidenced from the high similarity in

food images despite being generated from different modali-

ties. These generated images also greatly facilitate the self-

explaining of search results. Using more advanced GAN-

s [1, 25] and generating higher resolution images [40] may

further improve performance and enhance search result in-

terpretation. Through ablation studies, we show that the de-

sign of dual discriminators plays an important role in boost-

ing the retrieval performance. Finally, despite that the two-

level ranking loss boosts performance by a relatively small

margin, the improvement is consistently noticed across dif-

ferent sizes of subsets. While encouraging, R2GAN cur-

rently considers only image generation from recipe and not

vice versa. With the release of new dataset, such as [12]

which includes processing images for every step of cook-

ing instructions, potentially recipe-from-image is a mission-

possible task which worth further investigation.
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[2] Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier,

Nicolas Thome, and Matthieu Cord. Cross-modal retrieval in

the cooking context: Learning semantic text-image embed-

dings. In The 41st International ACM SIGIR Conference on

Research & Development in Information Retrieval, SIGIR

’18, pages 35–44, New York, NY, USA, 2018. ACM.

[3] Jingjing Chen and Chong-Wah Ngo. Deep-based ingredi-

ent recognition for cooking recipe retrieval. In Proceedings

of the 2016 ACM on Multimedia Conference, pages 32–41.

ACM, 2016.

[4] Jingjing Chen, Chong-Wah Ngo, and Tat-Seng Chua. Cross-

modal recipe retrieval with rich food attributes. In Pro-

ceedings of the 2017 ACM on Multimedia Conference, pages

1771–1779. ACM, 2017.

[5] Jingjing Chen, Chong-Wah Ngo, Fuli Feng, and Tat-Seng

Chua. Deep understanding of cooking procedure for cross-

modal recipe retrieval. In Proceedings of the 2018 ACM

on Multimedia Conference, MM ’18, New York, NY, USA,

2018.

[6] Jingjing Chen, Lei Pang, and Chong-Wah Ngo. Cross-modal

recipe retrieval: How to cook this dish? In Laurent Amsaleg,
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