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Abstract

In this work, we propose a novel framework for unsuper-

vised learning for event cameras that learns motion infor-

mation from only the event stream. In particular, we pro-

pose an input representation of the events in the form of a

discretized volume that maintains the temporal distribution

of the events, which we pass through a neural network to

predict the motion of the events. This motion is used to at-

tempt to remove any motion blur in the event image. We then

propose a loss function applied to the motion compensated

event image that measures the motion blur in this image.

We train two networks with this framework, one to predict

optical flow, and one to predict egomotion and depths, and

evaluate these networks on the Multi Vehicle Stereo Event

Camera dataset, along with qualitative results from a vari-

ety of different scenes.

1. Introduction

Event cameras are a neuromorphically inspired, asyn-

chronous sensing modality, that detect changes in log light

intensity. When a change is detected in a pixel, the camera

immediately returns an event, e = {x, y, t, p}, consisting

of the position of the pixel, x, y, timestamp of the change,

t, accurate to microseconds, and the polarity of the change,

p, corresponding to whether the pixel became brighter or

darker. The asynchronous nature of the camera, and the

tracking in the log image space, provide numerous benefits

over traditional frame based cameras, such as extremely low

latency for tracking very fast motions, very high dynamic

range, and significantly lower power consumption.

However, the novel output of the cameras provide new

challenges in algorithm development. As the events sim-

ply reflect whether a change has occurred at a given pixel, a

model of photoconsistency, as used traditional motion esti-

mation tasks such as optical flow or structure from motion

(SFM), applied directly on the events is no longer valid. As

a result, there has been a significant research drive to de-

Associated video: https://youtu.be/cdcg-CdV7TU.

Figure 1: Our network learns to predict motion from motion

blur by predicting optical flow (top) or egomotion and depth

(bottom) from a set of input, blurry, events from an event

camera (left), and minimizing the amount of motion blur

after deblurring with the predicted motion to produce the

deblurred image (right). Best viewed in color.

velop new algorithms for event cameras to solve these tra-

ditional robotics problems.

There have been recent works by Zhu et al. [24] and

Ye et al. [20] that train neural networks to learn to esti-

mate these motion tasks in a self and unsupervised manner.

These networks abstract away the difficult problem of mod-

eling and algorithm development. However, both works still

rely on photoconsistency based principles, applied to the

grayscale image and an event image respectively, and, as a

result, the former work relies on the presence of grayscale

images, while the latter’s photoconsistency assumption may

not hold valid in very blurry scenes. In addition, both works

take inputs that attempt to summarize the event data, and as

a result lose temporal information.

In this work, we resolve these deficiencies by propos-

ing a novel input representation that captures the full spa-

tiotemporal distribution of the events, and a novel set of

unsupervised loss functions that allows for efficient learn-

ing of motion information from only the event stream. Our

input representation, a discretized event volume, discretizes

the time domain, and then accumulates events in a linearly

weighted fashion similar to interpolation. This representa-

tion encodes the distribution of all of the events within the

spatiotemporal domain. We train two networks to predict

optical flow and ego-motion and depth, and use the predic-

tions to attempt to remove the motion blur generated when
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Figure 2: Network architecture for both the optical flow and egomotion and depth networks. In the optical flow network,

only the encoder-decoder section is used, while in the egomotion and depth network, the encoder-decoder is used to predict

depth, while the pose model predicts the egomotion. At training time, the loss is applied at each stage of the decoder, before

being concatenated into the next stage of the network.

the events are projected into the 2D image plane, as vi-

sualized in Fig. 1. Our unsupervised loss then measures

the amount of motion blur in the corrected event image,

which provides a training signal to the network. In addi-

tion, our deblurred event images are comparable to edge

maps, and so we apply a stereo loss on the census transform

of these images to allow our network to learn metric poses

and depths.

We evaluate both methods on the Multi Vehicle Stereo

Event Camera dataset [26][24], and compare against the

equivalent grayscale based methods, as well as the prior

state of the art by [24].

Our contributions can be summarized as:

• A novel discretized event volume representation for

passing events into a neural network.

• A novel application of a motion blur based loss func-

tion that allows for unsupervised learning of motion

information from events only.

• A novel stereo similarity loss applied on the census

transform of a pair of deblurred event images.

• Quantitative evaluations on the Multi Vehicle Stereo

Event Camera dataset [26], with qualitative and quanti-

tative evaluations from a variety of night time and other

challenging scenes.

2. Related Work

Since the introduction of event cameras, such as Licht-

steiner et al. [10], there has been a strong interest in the de-

velopment of algorithms that leverage the benefits provided

by these cameras. In the work of optical flow, Benosman et

al. [2] showed that normal flow can be estimated by fitting

a plane to the events in x-y-t space. Bardow et al. [1] show

that flow estimation can be written as a convex optimization

problem that solves for the image intensity and flow jointly.

In the space of SFM and visual odometry, Kim et al. [9]

demonstrate that a Kalman filter can reconstruct the pose

of the camera and a local map. Rebecq et al. [15] simi-

larly build a 3D map, which they localize from using the

events. Zhu et al. [25] use an EM based feature tracking

method to perform visual-inertial odometry, while Rebecq

et al. [16] use motion compensation to deblur the event im-

age, and run standard image based feature tracking to per-

form visual-inertial odometry.

For model-free methods, self-supervised and unsuper-

vised learning have allowed deep networks to learn mo-

tion and the structure of a scene, using only well estab-

lished geometric principles. Yu et al. [8] established that

a network can learn optical flow from brightness constancy

with a smoothness prior, while Meister et al. [12] extend

this work by applying a bidirectional census loss to im-

prove the quality of the flow. In a similar fashion, Zhou et

al. [23] show that a network can learn a camera’s egomotion

and depth using camera reprojection and a photoconsistency

loss. Zhan et al. [22] and Vijayanarasimhan et al. [18] add

in a stereo constraint, allowing the network to learn abso-

lute scale, while Wang et al. [19] apply this concept with a

recurrent neural network.

Recently, there have been several works, such as [4, 5,

13, 25, ?] that have shown that optical flow, and other types

of motion information, can be estimated from a spatiotem-

poral volume of events, by propagating the events along the
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Figure 3: Our flow network is able to generalize to a variety of challenging scenes. Top images are a subset of flow vectors

plotted on top of the grayscale image from the DAVIS camera, bottom images are the dense flow output of the network at

pixels with events, colored by the direction of the flow. Left to right: Fidget spinner spinning at 13 rad/s in a very dark

environment. Ball thrown quickly in front of the camera (the grayscale image does not pick up the ball at all). Water flowing

outdoors.

optical flow direction, and attempting to minimize the mo-

tion blur in the event image. This concept of motion blur

as a loss can be seen as an analogy to the photometric error

in frames, as applied to events. In this work, we adapt a

novel formulation of this loss from Mitrokhin et al. [13] for

a neural network, by generating a single fully differentiable

loss function that allows our networks to learn optical flow

and structure from motion in an unsupervised manner.

3. Method

Our pipeline consists of a novel volumetric representa-

tion of the events, which we describe in Sec. 3.1, which

is passed through a fully convolutional neural network to

predict flow and/or egomotion and depth. We then use the

predicted motion to try to deblur the events, and apply a loss

that minimizes the amount of blur in the deblurred image,

as described in Sec. 3.2. This loss can be directly applied

to our optical flow network, Sec. 3.3. For the egomotion

and depth network, we describe the conversion to optical

flow in Sec. 3.4.1, as well as a novel stereo disparity loss in

Sec. 3.4.2. Our architecture is summarized in Fig. 2.

3.1. Input: The Discretized Event Volume

Selecting the appropriate input representation of a set

of events for a neural network is still a challenging prob-

lem. Prior works such as Moeys et al. [14] and Maqueda et

al. [11] generate an event image by summing the number of

events at each pixel. However, this discards the rich tem-

poral information in the events, and is susceptible to mo-

tion blur. Zhu et al. [24] and Ye et al. [20] propose image

representations of the events, that summarize the number

of events at each pixel, as well as the last timestamp and

average timestamp at each pixel, respectively. Both works

show that this is sufficient for a network to predict accurate

optical flow. While this maintains some of the temporal in-

formation, a lot of information is still lost by summarizing

the high resolution temporal information in the events.

We propose a novel input representation generated by

discretizing the time domain. In order to improve the res-

olution along the temporal domain beyond the number of

bins, we insert events into this volume using a linearly

weighted accumulation similar to bilinear interpolation.

Given a set of N input events {(xi, yi, ti, pi)}i∈[1,N ],

and a set B bins to discretize the time dimension, we scale

the timestamps to the range [0, B − 1], and generate the

event volume as follows:

t∗i =(B − 1)(ti − t1)/(tN − t1) (1)

V (x, y, t) =
∑

i

pikb(x− xi)kb(y − yi)kb(t− t∗i ) (2)

kb(a) =max(0, 1− |a|) (3)

where kb(a) is equivalent to the bilinear sampling kernel

defined in Jaderberg et al. [7]. Note that the interpolation

in the x and y dimensions is necessary when camera undis-

tortion or rectification is performed, resulting in non integer

pixel positions. In the case where no events overlap between

pixels, this representation allows us to reconstruct the exact

set of events. When multiple events overlap on a voxel, the

summation does cause some information to be lost, but the

resulting volume retains the distribution of the events across

the spatiotemporal dimensions within the window.

In this work, we treat the time domain as channels in a

traditional 2D image, and perform 2D convolution across

the x, y spatial dimensions. We found negligible perfor-

mance increases when using 3D convolutions, for a signifi-

cant increase in processing time.
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Figure 4: Our network learns to predict motion from motion

blur by predicting optical flow or egomotion and depth (1)

from a set of input, blurry, events (2), and minimizing the

amount of motion blur after deblurring with the predicted

motion to produce the deblurred image (3). The color of the

flow indicates direction, as draw in the colorwheel (4).

3.2. Supervision through Motion Compensation

As event cameras register changes in log intensity, the

standard model of photoconsistency does not directly ap-

ply onto the events. Instead, several works have applied the

concept of motion compensation, as described in Rebecq et

al. [16], as a proxy for photoconsistency when estimating

motion from a set of events. The goal of motion compensa-

tion is to use the motion model of each event to deblur the

event image, as visualized in Fig. 4.

For the most general case of per pixel optical

flow, u(x, y), v(x, y), we can propagate the events,

{(xi, yi, ti, pi)}i=1,...,N , to a single time t′:

(

x′i
y′i

)

=

(

xi
yi

)

+ (t′ − ti)

(

u(xi, yi)
v(xi, yi)

)

(4)

If the input flow is correct, this reverses the motion in the

events, and removes the motion blur, while for an incorrect

flow, this will likely induce further motion blur.

We use a measure of the quality of this deblurring ef-

fect as the main supervision for our network. Gallego et

al. [4] proposed using the image variance on an image gen-

erated by the propagated events. However, we found that

the network would easily overfit to this loss, by predicting

flow values that push all events within each region of the

image to a line. This effect is discussed further in the sup-

plemental. Instead, we adopt the loss function described by

Mitrokhin et al. [13], who use a loss which minimizes the

sum of squares of the average timestamp at each pixel.

However, the previously proposed loss function is non-

differentiable, as the timestamps were rounded to generate

an image. To resolve this, we replace the rounding with bi-

linear interpolation. We apply the loss by first separating the

events by polarity and generating an image of the average

timestamp at each pixel for each polarity, T+, T−:

Tp′(x, y|t′) =
∑

i 1(pi = p′)kb(x− x′i)kb(y − y′i)ti
∑

i 1(pi = p′)kb(x− x′i)kb(y − y′i) + ǫ
(5)

p′ ∈{+,−}, ǫ ≈ 0

The loss is, then, the sum of the two images squared.

Ltime(t
′) =

∑

x

∑

y

T+(x, y|t′)2 + T−(x, y|t′)2 (6)

However, using a single t′ for this loss poses a scaling prob-

lem. In (4), the output flows, u, v, are scaled by (t′ − ti).
During backpropagation, this will weight the gradient over

events with timestamps further from t′ higher, while events

with timestamps very close to t′ are essentially ignored. To

mitigate this scaling, we compute the loss both backwards

and forwards, with t′ = t1 and t′ = tN :

Ltime =Ltime(t1) + Ltime(tN ) (7)

Note that changing the target time, t′, does not change the

timestamps used in (5).

This loss function is similar to that of Benosman et

al. [2], who model the events with a function Σei , such that

Σei(xi) = ti. In their work, they assume that the function

is locally linear, and solve the minimization problem by fit-

ting a plane to a small spatiotemporal window of events.

We can see that the gradient of the average timestamp im-

age, (dt/dx, dt/dy), corresponds to the inverse of the flow,

if we assume that all events at each pixel have the same flow.

3.3. Optical Flow Prediction Network

Using the input representation and loss described in

Sec. 3.1 and 3.2, we train a neural network to predict op-

tical flow. We use an encoder-decoder style network, as in

[24]. The network outputs flow values in units of pixels/bin,

which we apply to (4), and eventually compute (9).

Our flow network uses the temporal loss in (7), combined

with a local smoothness regularization:

Lsmooth =
∑

~x

∑

~y∈N (~x)

ρ(u(~x)− u(~y)) + ρ(v(~x)− v(~y))

(8)

where ρ(x) =
√
x2 + ǫ2 is the Charbonnier loss func-

tion [3], and N (x, y) is the 4-connected neighborhood

around (x, y).
The total loss for the flow network is:

Lflow =Ltime + λ1Lsmooth (9)

3.4. Egomotion and Depth Prediction Network

We train a second network to predict the egomotion of

the camera and the structure of the scene, in a similar man-

ner to [22, 18]. Given a pair of time synchronized dis-

cretized event volumes from a stereo pair, we pass each

volume into our network separately, but use both at training

time to apply a stereo disparity loss, allowing our network

to learn metric scale. We apply a temporal timestamp loss

992



outdoor day1 indoor flying1 indoor flying2 indoor flying3

dt=1 frame AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

Ours 0.32 0.0 0.58 0.0 1.02 4.0 0.87 3.0

EV-FlowNet 0.49 0.2 1.03 2.2 1.72 15.1 1.53 11.9

UnFlow 0.97 1.6 0.50 0.1 0.70 1.0 0.55 0.0

outdoor day1 indoor flying1 indoor flying2 indoor flying3

dt=4 frames AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

Ours 1.30 9.7 2.18 24.2 3.85 46.8 3.18 47.8

EV-FlowNet 1.23 7.3 2.25 24.7 4.05 45.3 3.45 39.7

UnFlow 2.95 40.0 3.81 56.1 6.22 79.5 1.96 18.2

Table 1: Quantitative evaluation of our optical flow network compared to EV-FlowNet and UnFlow. For each sequence,

Average Endpoint Error (AEE) is computed in pixels, % Outlier is computed as the percent of points with AEE > 3 pix. dt=1

is computed with a time window between two successive grayscale frames, dt=4 is between four grayscale frames.

defined in Sec. 3.2, and a robust similarity loss between the

census transforms [21, 17] of the deblurred event images.

The network predicts Euler angles, (ψ, β, φ), a transla-

tion, T , and the disparity of each pixel, di. The disparities

are generated using the same encoder-decoder architecture

as in the flow network, except that the final activation func-

tion is a sigmoid, scaled by the image width. The pose

shares the encoder network with the disparity, and is gen-

erated by strided convolutions which reduce the spatial di-

mension from 16× 16 to 1× 1 with 6 channels.

3.4.1 Temporal Reprojection Loss

Given the network output, the intrinsics of the camera, K,

and the baseline between the two cameras, b, the optical

flow, (ui, vi) of each event at pixel location (xi, yi) is:

(

x∗i
y∗i

)

=Kπ



R
fb

di
K−1





xi
yi
1



+ T



 (10)

(

ui
vi

)

=
1

B − 1

((

x∗i
y∗i

)

−
(

xi
yi

))

(11)

where f is the focal length of the camera, R is the rotation

matrix corresponding to (ψ, β, φ) and π is the projection

function: π
(

(

X Y Z
)T

)

=
(

X
Z

Y
Z

)T
. Note that, as

the network only sees the discretized volume at the input,

it does not know the size of the time window. As a result,

the optical flow we compute is in terms of pixels/bin, where

B is the number of bins used to generate the input volume.

The optical flow is then inserted into (4) for the loss.

3.4.2 Stereo Disparity Loss

From the optical flow, we can deblur the events from the

left and right camera using (4), and generate a pair of event

images, corresponding to the number of events at each pixel

Threshold distance 10m 20m 30m

Sequence Method Average depth Error (m)

outdoor day1 Ours 2.72 3.84 4.40

Monodepth 3.44 7.02 10.03

outdoor night1 Ours 3.13 4.02 4.89

Monodepth 3.49 6.33 9.31

outdoor night2 Ours 2.19 3.15 3.92

Monodepth 5.15 7.8 10.03

outdoor night3 Ours 2.86 4.46 5.05

Monodepth 4.67 8.96 13.36

Table 2: Quantitative evaluation of our depth network com-

pared to Monodepth [6]. The average depth error is pro-

vided for all points in the ground truth up to 10m, 20m and

30m, with at least one event.

after deblurring. Given correct flow, these images represent

the edge maps of the corresponding grayscale image, over

which we can apply a photometric loss. However, the num-

ber of events between the two cameras may also differ, and

so we apply a similarity loss on the census transforms [21]

of the images. For a given window width, W , we encode

each pixel with a W 2 length vector, where each element is

the sign of the difference between the pixel and each neigh-

bor inside the window. For the left event volume, the right

census transform is warped to the left camera using the left

predicted disparities, and we apply a Charbonnier loss [3]

on the difference between the two images, and vice versa

for the right. In addition, we apply a left-right consistency

loss between the two predicted disparities, as defined by [6].

Finally, we apply a local smoothness regularizer to the dis-

parity, as in (8). The total loss for the SFM model is:

LSFM =Ltemporal + λ2Lstereo+

λ3Lconsistency + λ4Lsmoothness (12)
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Figure 5: Ablation study on the effects of interpolation on

the event volume. Flow prediction errors are shown against

a held out validation set on two models with fixed random

seed, with and without interpolation.

4. Experiments

4.1. Implementation Details

We train two networks on the full outdoor day2 sequence

from MVSEC [26], which consists of 11 mins of stereo

event data driving through public roads. At training, each

input consists of N = 30000 events, which are converted

into discretized event volumes with resolution 256x256

(centrally cropped) and B = 9 bins. The weights for each

loss are: {λ1, λ2, λ3, λ4} = {1.0, 1.0, 0.1, 0.2}.

4.2. Optical Flow Evaluation

We tested our optical flow network on the indoor flying

and outdoor day sequences from MVSEC, with the ground

truth provided by [24]. Flow predictions were generated at

each grayscale frame timestamp, and scaled to be the dis-

placement for the duration of 1 grayscale frame (dt=1) and

4 grayscale frames (dt=4), separately. For the outdoor day

sequence, each set of input events was fixed at 30000, while

for indoor flying, 15000 events were used due to the larger

motion in the scene. For comparison against ground truth,

we convert our output, (u, v), from units of pixels/bin into

units of pixel displacement with the following: (û, v̂) =
(u, v)× (B − 1)× dt/(tN − t0).

We present the average endpoint error (AEE), and the

percentage of points with AEE greater than 3 pixels, over

pixels with valid ground truth flow and at least one event.

These results can be found in Tab. 1, where we compare

our results against EV-FlowNet [24] and the image method

UnFlow [12]. We do not provide results from ECN [20]. As

their model assumes a rigid scene, and predicts egomotion

and depth, they train on 80% of the indoor flying sequences,

and test on the other 20%. These results thus do not pose

a fair comparison to our method, which is only trained on

outdoor day2. We do note that their outdoor day1 errors

are slightly lower than ours, at 0.30 vs 0.32. However, we

believe that our method is more general, as it does not rely

on a rigid scene assumption.

4.3. Egomotion Evaluation

We evaluate our ego-motion estimation network on the

outdoor day1 sequence from MVSEC. As there is currently

no public code to the extent of our knowledge for unsu-

pervised deep SFM methods with a stereo loss, we com-

pare our ego-motion results against SFMLearner [23], and

ECN [20], which learn egomotion and depth from monoc-

ular images and events. We train the SFMLearner models

on the VI-Sensor images from the outdoor day2 sequence,

once again cropping out the hood of the car. These im-

ages are of a higher resolution than the DAVIS images, but

are from the same scene, and so should generalize as well

as training on the DAVIS images. The model is trained

from scratch for 100k iterations. As the translation pre-

dicted by SFMLearner is only up to a scale, we present

errors in terms of angular error. The relative pose errors

(RPE) and relative rotation errors (RRE) are computed as:

RPE = arccos
(

tpred·tgt

‖tpred‖2‖tgt‖2

)

, RRE = ‖logm(RT
predRgt)‖2,

where Rpred is the rotation matrix corresponding to the Eu-

ler angles from the output, and logm is the matrix logarithm.

4.4. Depth Network Evaluation

We compare our depth results against Monodepth [6],

which learns monocular disparities from a stereo pair at

training time. As the DAVIS grayscale images are not

time synchronized, we train on the cropped VI-Sensor im-

ages. The model is trained for 50 epochs, and we provide

depth errors with thresholds up to 10m, 20m and 30m in the

ground truth and with at least one event. In Tab. 3, we pro-

vide the scale invariant depth metrics reported by ECN [20].

4.5. Event Volume Ablation

To test the effects of the proposed interpolation when

generating the discretized event volume, we provide results

in Fig. 5 of flow validation error during training between

a model with and without interpolation. These results show

that, while both models are able to converge to accurate flow

estimates and similar % outliers, the interpolated volume

achieves lower AEE.

5. Results

5.1. Optical Flow

From the quantitative results in Tab. 1, we can see that

our method outperforms EV-FlowNet in almost all experi-

ments, and nears the performance of UnFlow on the short 1

frame sequences. Qualitative results can be found in Fig. 6.

In general, we have found that our network generalizes to

a number of very different and challenging scenes, includ-

ing those with very fast motions and dark environments. A
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Figure 6: Qualitative outputs from the optical flow and egomotion and depth network on the indoor flying, outdoor day and

outdoor night sequences. From left to right: Grayscale image, event image, depth prediction with heading direction, ground

truth with heading direction. Top four are flow results, bottom four are depth results. For depth, closer is brighter. Heading

direction is drawn as a circle. In the outdoor night results, the heading direction is biased due to events generated by flashing

lights.
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Sequence Method Abs Rel RMSE log SILog δ < 1.25 δ < 1.252 δ < 1.253

outdoor day1 Ours 0.36 0.41 0.16 0.46 0.73 0.88

ECN 0.33 0.33 0.14 0.97 0.98 0.99

outdoor night Ours 0.37 0.42 0.15 0.45 0.71 0.86

ECN 0.39 0.42 0.18 0.95 0.98 0.99

Table 3: Quantitative evaluation of standard depth metrics from our depth network against ECN [20]. Left to right, the

metrics are: absolute relative distance, RMSE log, scale invariant log, and the percentage of points with predicted depths

beyond 1.25, 1.252 and 1.253 times larger or smaller than the ground truth.

ARPE (deg) ARRE (rad)

Ours 7.74 0.00867

SFM Learner [23] 16.27 0.00939

ECN [20] 3.98 0.000267

Table 4: Quantitative evaluation of our egomotion network

compared to SFM Learner. ARPE: Average Relative Pose

Error. ARRE: Average Relative Rotation Error.

few examples of this can be found in Fig. 3. We believe this

is because the events do not have the fine grained intensity

information at each pixel of traditional images, and so there

is less redundant data for the network to overfit.

5.2. Egomotion

Our model trained on outdoor day2 was able to general-

ize well to outdoor day1, despite the environment changing

significantly from an outdoor residential environment to a

closed office park area. In Tab. 2, we show that our rel-

ative pose and rotation errors are significantly better than

that of SFM-Learner, but worse than ECN. However, ECN

only predicts 5dof pose, up to a scale factor, while our net-

work must learn the full 6dof pose with scale. We believe

that additional training data may bridge this gap.

As the network was only trained on driving sequences,

we were unable to achieve good egomotion generalization

to the outdoor night sequences. We found that this was

due to the fluorescent lamps found at night, which gener-

ated many spurious events due to their flashing that were

not related to motion in the scene. As our egomotion net-

work takes in global information in the scene, it tended to

perceive these flashing lights as events generated by camera

motion, and as a result generated an erroneous egomotion

estimate. Future work to filter these kinds of anomalies out

will be necessary. For example, if the rate of the flashing is

known a-priori, the lights can be simply filtered by detecting

events generated at the desired frequency.

Figure 7: Failure case of our depth network. The flashing

street light is detected as very close due to spurious events.

5.3. Depth

Our depth model was able to produce good results for all

of the driving sequences, although it is unable to general-

ize to the flying sequences. This is likely because the net-

work must memorize some concept of metric scale, which

cannot generalize to completely different scenes. We out-

perform Monodepth in all of the sequences, which is likely

because the events do not have intensity information, so the

network is forced to learn geometric properties of objects.

In addition, the network generalizes well even in the face of

significant noise at night, although flashing lights cause the

network to predict very close depths, such as in Fig. 7.

For the scale invariant metrics in Tab. 3, our method

compares comparably to ECN [20] in most errors, despite

having to predict the absolute scale of the depth, whereas

the depths in ECN are corrected for scale. However, our δ
percentages are lower than expected. We believe that addi-

tional training data can alleviate this issue in the future.
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