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Abstract

We address the unsupervised open domain recognition

(UODR) problem, where categories in labeled source do-

main S is only a subset of those in unlabeled target domain

T . The task is to correctly classify all samples in T includ-

ing known and unknown categories. UODR is challenging

due to the domain discrepancy, which becomes even hard-

er to bridge when a large number of unknown categories

exist in T . Moreover, the classification rules propagated

by graph CNN (GCN) may be distracted by unknown cate-

gories and lack generalization capability.

To measure the domain discrepancy for asymmetric la-

bel space between S and T , we propose Semantic-Guided

Matching Discrepancy (SGMD), which first employs in-

stance matching between S and T , and then the discrep-

ancy is measured by a weighted feature distance between

matched instances. We further design a limited balance

constraint to achieve a more balanced classification out-

put on known and unknown categories. We develop Unsu-

pervised Open Domain Transfer Network (UODTN), which

learns both the backbone classification network and GCN

jointly by reducing the SGMD, enforcing the limited bal-

ance constraint and minimizing the classification loss on

S . UODTN better preserves the semantic structure and en-

forces the consistency between the learned domain invari-

ant visual features and the semantic embeddings. Experi-

mental results show superiority of our method on recogniz-

ing images of both known and unknown categories.

1. Introduction

We study the unsupervised open domain recognition

problem (UODR) in this paper. In UODR, a labeled source

domain S and unlabeled target domain T are given, where

the categories in S is only a subset of those in T . The

task is to classify all samples in T including known and

unknown categories, which is undoubtedly a more chal-

∗Corresponding author.

lenging task but closer to the case in real-world applica-

tions compared to other related tasks in Domain Adaptation

(DA) [2, 3, 4, 20, 21, 33, 40, 42, 34, 13, 5, 10, 25] and Zero-

Shot Learning (ZSL) [24, 11, 28, 16, 32, 15, 14, 29, 41].

The major differences among UODR and other related

problems are summarized in Table 1. Traditional unsuper-

vised DA [4, 20, 21, 33, 42] is too strict to assume that

S and T share the same categories. Researchers begin to

explore a more difficult setting that S and T do not share

the same categories (asymmetric category space). In partial

adversarial-DA [3] and partial weighted-DA [40], the au-

thors addressed the problem that the category space of T is a

subset of S . However, the category space is still constrained

in close set expanded by source domain categories. For the

more difficult setting, i.e., the category space of S is a sub-

set of T is rarely considered in DA field. In open set DA [2],

there are unknown categories both in S and T , but the task

is to classify only the samples of known categories in the

target domain, while the samples of unknown categories are

ignored. In contrast, there is no unknown categories in S ,

and all samples of known and unknown categories in target

domain are required to be classified in UODR. UODR is al-

so different from generalized ZSL [28, 16, 11, 32, 15, 14],

since in generalized ZSL all the data are from the same do-

main and there is no presumed domain discrepancy between

S (i.e., training set in ZSL) and T (i.e., testing set in ZS-

L). Therefore, existing solutions can not be directly used to

solve UODR problem due to its unique characteristics.

UODR is challenging due to the semantic discrepancy

between S and T , which can be explained from both fea-

ture distribution and semantic aspects. First, there is large

divergence on both content and distribution perspectives be-

tween S and T , which is also referred to as domain dis-

crepancy in existing DA studies [4, 20, 21, 33, 42]. The

domain discrepancy is even harder to bridge if a large num-

ber of unknown categories are injected into T . In this case,

directly applying techniques used in DA, e.g., MMD [20]

and DCORAL [33], would lead to negative transfer. Sec-

ond, it is hard to classify instances of unknown categories
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Table 1: The major differences among UODR, DA and ZSL problems.

Domain

discrepancy

Unknown

classes in T
Classify all

samples in T
Use T

for training

Asymmetric

label space

Unsupervised DA X × X X ×
Partial Unsupervised DA X × X X X

Unsupervised open set DA X X × X ×
Generalized ZSL × X X × –

Transductive Generalized ZSL × X X X –

UODR X X X X X

without labeled training data or any auxiliary attributes in-

formation [16, 37]. With the knowledge on the relationship

among known and unknown categories, graph CNN (GC-

N) [15] can be used in UODR to propagate classification

rules of known categories to unknown categories [38, 14].

However, in generalized ZSL, there exists mode collapse

that forces the prediction of unknown categories samples

into the seen categories. Worse still, the propagated classifi-

cation rules on unknown categories may lack generalization

capability due to the domain discrepancy between S and T .

The key idea to address UODR is minimizing the seman-

tic divergence from both feature distribution and semantic

aspects. Specifically, on unlabeled domain T , there exists

many unknown categories with similar image instances giv-

en a certain known category in S . To reduce the distraction

brought by unknown categories in T , the domain-invariant

feature learning is performed by reducing the domain dis-

crepancy measured on data from the shared (known) cate-

gories of S and T . We propose Semantic-Guided Matching

Discrepancy (SGMD), which first employs instance match-

ing between S and T to produce coarsely matched pairs [3].

The discrepancy is then measured by a weighted feature dis-

tances on these pairs, where the weight is the thresholded

similarity of their target domain classifier responses. The

target domain classification output provides semantic level

abstraction on a wide range of categories, and instance pair

with the same category label are assumed to have similar

classification outputs. Therefore, the weight reflects the de-

gree of semantic consistency of each pair, and the weighted

distance calculation further reduces the negative effect of

noisy matching.

Similar as [38, 14], GCN is used to propagate the classi-

fication rules from known to unknown categories as the first

step, where the category relation is described by WordNet.

The propagated classification rules are then used to initial-

ize the classification layer of backbone network. Based on

the backbone classification network, to deal with seman-

tic shift from known to unknown categories, we design a

limited balance constraint to prevent target domain samples

of unknown categories being classified into known cate-

gories, and better avoid strongly biased classifiers on un-

known categories compared to the balance constraint pro-

posed by [32].

Putting the components together, we develop Unsuper-

vised Open Domain Transfer Network (UODTN), which

learns the backbone classification network and GCN joint-

ly by reducing the SGMD, achieving the limited balance,

enforcing the semantic structure preserving via GCN, and

minimizing the classification loss on S . Compared to multi-

stage learning paradigms [38, 14] that perform GCN-based

classification model propagation and visual feature learn-

ing step-by-step, the joint classification network and GCN

learning can better preserve the semantic structure and en-

force the consistency between the learned domain invariant

visual features and the semantic embeddings. We construct

two datasets for evaluating our method on UODR. Experi-

mental results show the effectiveness of our method on rec-

ognizing images of both known and unknown categories in

T . We make our collected data and codes publicly available

at https://github.com/junbaoZHUO/UODTN.

2. Related Work

Deep unsupervised domain adaptation. Most of the

deep unsupervised domain adaptation models are trained

by combining classification loss on S with additional losses

such as discrepancy reducing losses [20, 33, 21, 4, 8], ad-

versarial discriminative losses [7, 34, 36], adversarial gen-

erative losses [19, 1, 13] and reconstruction losses [9]. We

only review some discrepancy-reducing-based methods that

closely related to our method. A single linear kernel is ap-

plied to only one Fully-Connected (FC) layer to minimize

Maximum Mean Discrepancy (MMD) in DDC [35]. The

sum of MMDs defined between several FC layers, includ-

ing the last classification layer, is considered in Deep Adap-

tation Network (DAN) [20]. In Joint Adaptation Network-

s [21], the joint distribution discrepancies of the multi-layer

activations are considered rather than separate adaptations

on marginal and conditional distributions which often re-

quire strong independence and/or smoothness assumption-

s on the factorized distributions. Instead of MMD, do-

main discrepancy is measured by the difference between the
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second-order statistics (i.e., covariance) [33, 42]. Domain

discrepancy on both convolutional representation and the

classification layer is explicitly considered in [42]. PMD [4]

aims to approximate the first-order Wasserstein distance be-

tween two domains via minimum weight graph matching.

These discrepancy-reducing-based methods can only han-

dle the case that S and T share the same label space.

Generalized ZSL. Generalized ZSL drops the as-

sumption that target domain contains only unknown cat-

egories [23, 17, 11, 32, 16, 28, 31]. Being the most

related problem to UODR, transductive generalized ZS-

L [11, 32, 28, 16] is performed in a semi-supervised learn-

ing manner that both the labeled source data and the unla-

beled target data are available, where there is no presumed

domain discrepancy between S and T . However, in UODR,

there exists domain discrepancy between S and T . Propa-

gated Semantic Transfer (PST) [28] exploits the manifold

structure of novel classes by incorporating external knowl-

edge, such as linguistic or expert specified information to

conduct label propagation. Unsupervised Attribute Align-

ment (UAA) [16] associates cross-domain attributes by reg-

ularized sparse coding which enforces attributes shared by

known and unknown categories to be similar. In [11], a nov-

el joint learning approach is proposed to learn the shared

model space (SMS) for models such that the knowledge

can be effectively transferred between classes using the at-

tributes. Unbias ZSL [32] enforces a balanced classifier re-

sponses among known and unknown categories for unla-

beled target data to learn an unbiased embedding space for

ZSL.

Object recognition via knowledge graph. Salakhut-

dinov et al. [30] use WordNet to share the representations

among different object classifiers so that objects with few

training examples can borrow statistical strength from re-

lated objects. Deng et al. [6] apply the exclusion rules as a

constraint and add object-attribute relations into the graph

to train object classifiers for zero-shot applications. In con-

trast to these methods of using graph as constraints, a 6-

layer deep GCN is constructed to directly generate novel

object classifiers in [38]. In [14], the authors argue that too

many layers of GCN results in over-smooth classifier and

propose to train a single layer GCN. Furthermore, in [14],

a more dense graph structure is utilized and fine-tune the

feature space to adapt to the generated semantic embedding

space.

3. Method

3.1. Common Notations

Some common notations used in this paper are intro-

duced here. Suppose that there are NS source-domain

training examples DS = {zsi }
NS

i=1
with labels LS =

{yi}
NS

i=1
, yi ∈ {1, 2, . . . , LS}, and NT unlabeled target-

domain examples DT = {ztj}
NT

j=1
, where their labels

LT = {yj}
NT

j=1
, yj ∈ {1, 2, . . . , LT } are not available and

LS < LT . That is, there are LT − LS unknown categories

in target domain. zsi and ztj are the raw images from source

and target domains respectively. Let φ(·) be the feature ex-

tractor and let ψS(·) and ψT (·) denote the classifier pre-

trained on S and classifier for target domain T .

3.2. Framework

As shown in Figure 1, our Unsupervised Open Domain

Transfer Network (UODTN) contains a backbone classifi-

cation network with classifier layer for all LT categories in

target domain and a GCN that maintains the relationships

among all LT categories. We first use GCN to generate the

semantics embeddings of unknown categories in target do-

main and then initialize the classifier layer of backbone clas-

sification network by these semantic embeddings. Based on

the initialized backbone classification network, we further

reduce the proposed semantic-guided matching discrepan-

cy, enforce the proposed limited balance constraint and inte-

grate GCN to minimize the semantic discrepancy in UODR

problem. The backbone classification network and GCN are

jointly trained in an end-to-end manner with GCN aiming at

preserving semantic structure encoded in word vectors and

knowledge graph. The details are illustrated as follows.

3.3. Generating unknown class semantic embed­
dings

With the auxiliary information encoded in word vectors

and knowledge graph for unknown categories, we can gen-

erate the unknown class semantic embeddings via GCN. We

first construct a graph with N nodes where each node is

a C-dimensional vector presenting a distinct concept/class.

In order to propagate the semantic embeddings of known

categories to unknown categories, additional nodes are re-

quired for constructing full path from known categories to

unknown categories. Each node is initialized with word

vector of the class name. The relationships among the class-

es in the knowledge graph, say, WordNet, are encoded in

form of a symmetric adjacency matrix A ∈ RN×N , which

also includes self-loops. We propagate such relationship as

performing convolution on the graph

O = σ(D−1AXΘ) (1)

where X ∈ RN×C is composed of N word vectors and

Θ ∈ RC×F denotes the trainable weights. σ(·) denotes a

nonlinear activation function. D ∈ RN×N is a degree ma-

trix where Dii =
∑

j Aij . By training the GCN to predict

the classifier weights of known classes, the GCN simulta-

neously generates the classifier weights of unknown classes

while preserves the semantic relationship exhibited in word
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Figure 1: The proposed UODTN framework for UODR problem. It consists of a two-stream Siamese network representing

the source and target models where weights of all layers are shared and a GCN for propagating classification rules of known

categories in source domain to unknown categories in target domain. The Siamese network and GCN are jointly trained in an

end-to-end manner. The proposed semantic-guided matching discrepancy is estimated on the features extracted from source

and target domain. By reducing the proposed discrepancy, UODTN is able to propagate more suitable source classifiers to

unknown categories in target domain as the source classifiers are based on domain-invariant features.

vectors and knowledge graph. The loss is

Linit =
1

2M

LS∑

i=1

M∑

j=1

(Oi,j −Wi,j)
2 (2)

whereW ∈ RLS×M denotes the classifier weights obtained

by extracting the weights of ψS(·), the classifier pretrained

on source domain. We replace the original classifier of pre-

trained ResNet-50 with the generated classifiers to form a

classification network for source and target domain.

3.4. Semantic­guided matching discrepancy

In real world scenario, there always exists domain dis-

crepancy between manually collected labeled data (source

domain) and practical data (target domain). Such domain

discrepancy leads to performance degradation on target do-

main and more severely, makes GCN propagate biased se-

mantic embeddings to unknown categories. Therefore, it is

urgent to reduce the domain discrepancy. However, it is dif-

ficult to measure the domain discrepancy in UODR problem

since there are many unknown categories samples. Existing

domain discrepancy measurements such as MMD [20, 21]

and difference between correlation [33, 42], assume that the

source and target domain share same categories, which can

not handle asymmetric label space for UODR.

We propose semantic-guided matching discrepancy to

estimate the domain discrepancy. We extract the features of

all instances from source and target domain and construc-

t a bipartite graph between the two domains. The weights

of the bipartite graph are pairwise distance of all pairs. In

this work, we use L1 distance while other distance metric-

s can also be used. By solving minimum weight match-

ing problem via the Hungarian algorithm, we obtain coarse

and noisy matched instance pairs (pairs linked with red line

in the left part of Figure 1) between source and target do-

main. Directly reducing the discrepancy measured from

noisy matched instances pair will inevitably lead to negative

transfer. Hence, we propose to utilize the semantic consis-

tency of matched pairs to filter such noisy matched pairs.

Precisely, given matched source and target instances zsi and

zti , we extract their features as fsi = φ(zsi ) and f ti = φ(zti),
and calculate their classifier responses psi = ψT (f

s
i ) and

pti = ψT (f
t
i ) respectively, the semantic-guided matching

discrepancy is

Ld =
∑

i

d(fsi , f
t
i ) ∗ ✶(〈p

s
i , p

t
i〉 > τ) (3)

where d(fsi , f
t
i ) is the distance metrics which can be L2 dis-

tance, the discrepancy metric encoded in domain discrimi-

nator when using adversarial training, etc. 〈·, ·〉 denotes in-

ner product. ✶ is indicator function and τ is a given thresh-

old. The similarity 〈psi , p
t
i〉 reveals the degree of semantic

consistency of each pair since samples of the same classes

are assumed to have similar classification responses.
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3.5. Limited balance constraint

To prevent target domain samples of unknown categories

being classified into known categories, it is straightforward

to add a balance constraint to classifier responses for tar-

get domain instances. The vanilla balance constraint [32] is

calculated as:

Lb = −log

LT∑

j=LS+1

ptj (4)

However, such balance constraint may grow into unexpect-

ed large value since there is no label for target domain,

which will result in biased classifiers of unknown cate-

gories. To prevent the classifier response of unknown cat-

egories growing abnormally, we propose limited balance

constraint:

Llb = Rt +
w2

Rt

(5)

where Rt =
∑LT

j=LS+1
ptj and w is a manually set constant

that control the ratio of classification response of unknown

categories over all categories. Such constraint enforces the

ratio of classification response of unknown categories over

all categories to lie in an appropriate range. Ideally, w can

be set according to the prior of the proportion of unknown

classes over all categories.

3.6. Semantic structure preserving via GCN

The semantic structure among categories exhibited in

word vectors and knowledge graph can not be well pre-

served via reducing semantic-guided matching discrepancy

and enforcing limited balance constraint. To preserve such

relationship, we integrate GCN into our training, resulting

in an end-to-end framework. Different from subsection 3.3,

semantic embeddings of all categories in target domain are

considered in the loss term:

Lgcn =
1

2M

LT∑

i=1

M∑

j=1

(Oi,j − Ŵi,j)
2 (6)

where Ŵ ∈ RLT×M denotes the classifier weights obtained

by extracting the weights of ψT (·), the classification layer

for all categories in target domain. Unlike the method pro-

posed in [14], which fixes the classifier learnt from GCN

and fine-tune the features, the classifier in our model can be

well adapted to data while the semantic relationship of all

categories is still maintained via GCN.

3.7. Joint training

After initializing the classifier layer of UODTN via

trained GCN in subsection 3.3, we utilize all proposed tech-

niques to train UODTN in an end-to-end manner. The total

loss is

L = Lcls + λdLd + λbLlb + λgLgcn (7)

where Lcls is classification loss on labeled source domain.

λd, λb and λg are weights for semantic-guided matching

discrepancy minimizing loss, limited balance constraint and

structure preserving loss of GCN. Specifically, minimizing

semantic-guided matching discrepancy provides domain-

invariant features for classifiers of known and unknown cat-

egories. Further, the classifiers of known categories re-

ceive both the supervision of classification loss and reg-

ularization of GCN. On the other hand, the classifiers of

unknown categories are trained with guidance from limited

balance constraint and GCN. Joint training is unhindered to

achieve better trade-off of classification accuracy between

known and unknown categories in target domain. Minimiz-

ing sematic guided matching discrepancy actually propa-

gates semantic information from feature perspective while

GCN propagates semantic embeddings from semantic per-

spective. The UODR problem is actually an ill-conditioned

problem where limited balance constraint prevents ill solu-

tions of UODTN during the training progress.

4. Experiment

4.1. Datasets

We evaluate our method on two datasets: a small-scale

dataset I2AwA and a large-scale dataset I2WebV. The target

domain of I2AwA is AwA2[39] which is a replacement of

the original AwA dataset for zero-shot learning. It consists

of 50 animal classes, with a total of 37,322 images and an

average of 746 images per class. We use the proposed split

in [39] in which 40 classes are regarded as known categories

and the rest 10 classes as unknown categories. We collect a

source domain dataset with 40 known categories via Google

image searching engine. We manually remove the noisy im-

ages resulting 2,970 images in total. There exists domain

discrepancy between source and target domain as shown in

Figure2. As for I2WebV, its source domain is ILSVRC-

2012 with 1,000 classes which consists of 1,279,847 images

totally. The target domain of I2WebV is the validation set

of WebVision [18] with 5,000 classes, which is composed

of 294,009 images. I2WebV is a very challenging dataset

as there is large domain discrepancy between two domains

and large number of unknown categories in target domain,

some of which are very different from 1,000 known cate-

gories. The knowledge database we use for both I2AwA

and I2WebV is WordNet [22].

4.2. Evaluation metrics

We perform classification on the whole target domain

similar to generalized zero-shot learning and report the Top

1 Accuracies of known categories, unknown categories and

all categories on target domain for better understanding the

knowledge transfer process.
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Figure 2: The first and second rows show the samples from

source and target domain of I2AwA respectively and images

of the same column belong to the same categories. The tar-

get samples are taken from natural scene while source data

that are collected from Internet, containing 3D model im-

ages of animals, which appear to be discrepant from target

domain on both content and distribution perspectives.

Table 2: Top1 Accuracies on I2AwA.

Known Unknown All

zGCN [38] 77.2 21.0 65.0

dGCN [14] 78.2 11.6 64.0

adGCN [14] 77.3 15.0 64.1

bGCN [32] 84.6 28.0 72.6

pmd-bGCN [4] 84.7 27.1 72.5

UODTN 84.7 31.7 73.5

4.3. Baselines

we compare our method with several baselines: zGC-

N [38], two variants including dGCN and adGCN pro-

posed in [14], bGCN and pmd-bGCN. zGCN is built up-

on graph which utilizes both word vectors and the categor-

ical relationships encoded in WordNet to predict the classi-

fiers of unknown categories. Following zGCN, the authors

in [14] utilize a more dense graph structure (dGCN) and

assign different weights for additional edges (adGCN). We

also construct bGCN, GCN with original balance constrain-

t proposed in state-of-the-art transductive zero-shot learn-

ing methods [32]. Furthermore, on the basic of bGCN,

we implement another variant of GCN, pmd-bGCN, which

further reduces the population matching discrepancy [4],

a state-of-the-art domain discrepancy measurement which

shows superiority over MMD.

4.4. Implementation details

We construct two distinct graphs based on WordNet [22]

for I2AwA and I2WebV respectively. The graph nodes in-

clude all categories of target domain and their children and

ancestors. Precisely, the number of nodes for graphs of

I2AwA and I2WebV are 255 and 7,460. The word vectors

Table 3: Top1 Accuracies on I2WebV.

Known Unknown All

zGCN [38] 43.8 2.2 11.1

dGCN [14] 45.2 2.0 11.3

adGCN [14] 45.8 2.2 11.6

bGCN [32] 47.4 2.2 12.0

pmd-bGCN [4] 47.2 2.2 11.9

UODTN (Ukn.) 51.9 3.2 13.8

UODTN (Avg.) 57.3 2.4 14.2

for all categories are extracted via GloVe text model [27]

which is trained on Wikipedia. Word vectors for nodes in

graph are set as inputs of GCN. We use ResNet-50 [12] pre-

trained on ILSVRC-2012 as basic model where the last ful-

ly connected layer, i.e., the classification layer is regarded

as the target that GCN tends to predict. We train the GC-

N with word vectors as inputs and classifier of pretrained

ResNet-50 as target to obtain the initial classifiers of target

domain in I2WebV. As for I2AwA, the supervison informa-

tion for training GCN is classifiers finetuned on the source

domain of I2AwA. These initial classifiers are then concate-

nated into feature extractor of pretrained ResNet-50 (with

original classifier layer removed) to form a backbone classi-

fication network for source and target domain. We fix some

beginning convolutional layers of ResNet-50 to accelerate

the training process. The global average pooling responses

before classification layer are thought as features and based

on these features we construct a bipartite graph with each

sub-graph representing source and target domain. We use

Hungarian algorithm to get minimum weight matched pairs

for estimating population matching discrepancy [4] and our

proposed semantic-guided matching discrepancy. Specif-

ically, we use the discrepancy metric encoded in domain

discriminator as distance metric in Eqn. (3). It is difficult

to get minimum weight matched pairs for bipartite graph

based on large scale datasets. We simply apply divide and

conquer strategy to handle this issue. Take I2AwA as an

example, we randomly divide source/target domain into 5

folds, respectively. Then we construct 5 bipartite graphs for

each fold pair and use Hungarian algorithm to get minimum

weight matched pairs for 5 bipartite graphs. All of our ex-

periments are implemented with Pytorch [26]. More details

can be seen in our released codes.

4.5. Results and discussion

The classification results on I2AwA and I2WebV are

shown in Table 2 and Table 3. As shown in Table 2 and Ta-

ble 3, our method UODTN outperforms all the baselines by

considerable margins, achieving 3.7% and 0.9% improve-

ments on unknown classes and all classes on I2AwA. For a

more challenging dataset I2WebV, we implement two vari-

755



Table 4: Ablation study on I2AwA.

Known Unknown All

zGCN [38] 77.2 21.0 65.0

UODTN (lb) 83.9 32.5 73.0

UODTN (lb+sgmd) 84.6 31.0 73.3

UODTN (lb+sgmd+gcn) 84.7 31.7 73.5

ants of UODTN with different λd, λb and λg according to

different trade-off between known and unknown categories.

Precisely, aiming at achieving higher average performance,

UODTN (Avg.) shows 9.9%, 0.2% and 2.2% improve-

ments on known classes, unknown classes and all class-

es compared to bGCN. On the contrary, UODTN (Ukn.)

that pays more attention to unknown categories, achieves

remarkable improvement on unknown categories by 1.0%

while the overall top 1 accuracy is still higher that bGAN.

Noting that WebVision contains 4,000 unknown categories,

1.0% improvement is a great progress without any labels of

unknown categories available. We also obtain the follow-

ing observations: (1) zGCN, dGCN and adGCN obtained

from labeled source domain and knowledge graph can not

fit target data well, as there is severe classification confu-

sion between known and unknown categories. UODTN and

bGCN show improvement over zGCN, dGCN and adGCN

indicating that fitting target domain data leads to better gen-

eralization of networks. However, comparing bGCN with

UODTN, we can see that merely introducing a balance con-

straint on classifier responses is insufficient as there exist-

s domain discrepancy between source and target domain.

Such domain discrepancy results in suboptimal classifiers

cause distracted semantic embeddings when being propa-

gated to unknown categories in target domain. (2) Merely

reducing the domain discrepancy estimated by traditional

methods leads to negative transfer as revealed by compar-

ison between bGCN and pmd-bGCN. Note that we assign

a very small weight to population matching discrepancy re-

ducing term for optimal results of pmd-bGCN. On the con-

trary, by reducing our proposed semantic-guided matching

discrepancy, such negative transfer can be avoided and more

domain-invariant features are learned by UODTN, which is

illustrated in 4.6.

4.6. Ablation Study

To go deeper with the efficacy of semantic-guided

matching discrepancy, limited balance constraint and join-

t training of GCN, we conduct ablation study on I2AwA

by evaluating several models (Table 4): (1) zGCN, without

adding any proposed techniques in UODTN; (2) UODT-

N (lb), which includes only limited balance constraint;

(3) UODTN (lb+sgmd), which further contains semantic-

guided matching discrepancy reducing module; (4) UODT-

N (lb+sgmd+gcn), which is the full model with limited bal-

ance constraint, semantic-guided matching discrepancy re-

Figure 3: Visualizations of features learned by UODTN and

bGCN in target domain of I2AwA. From the black boxes

areas, we can see that samples of an unknown category are

mixed with a known category for bGCN, while these two

categories are well separated by UODTN. This validates

that semantic discrepancy is alleviated by UODTN.

Figure 4: The top three classifier responses of UODTN with

various target inputs. Green/red means that the category

is known/unknown and GT means ground-truth. The first

and second rows are examples of known categories and the

rest are drawn from unknown categories. We can see that

except ground-truth, UODTN assigns considerable weight

on related unknown/known categories for known/unknown

categories samples, indicating that the transferring mech-

anism of UODTN is effective. That is, the knowledge of

labeled source domain, word vectors and WordNet can be

transferred to unknown categories in a reasonable way.

ducing module and joint training of GCN. We can see that

UODTN (lb) outperforms zGCN [38] by a large margin s-

ince limited balance constraint can prevent the classifier ac-

tivations on known categories growing abnormally. By the

way, from Table 2 and 4, we can see that UODTN (lb) out-

performs bGCN which shows the superiority of limited bal-
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Table 5: Results for domain adaptation on I2WebV (the first

row) and I2AwA (the second row).

ResNet MMD PMD SGMD

I2WebV (1K) 67.7 68.0 67.9 68.1

I2AwA (40) 84.0 84.2 84.4 85.1

ance constraint over original balance constraint [32]. Fur-

ther, we can observe that UODTN (lb+sgmd) improves the

performance by 0.1% compared with UODTN (lb), which

validates that reducing semantic-guided matching discrep-

ancy can not only avoid negative transfer but also boost the

domain invariance of learned features. By further integrat-

ing GCN for joint training, UODTN (lb+sgmd+gcn) gain-

s improvement over UODTN (lb+sgmd). It is rational as

the relationship among all known and unknown categories

is essential for transferring effective semantic embeddings

for unlabeled unknown categories. Joint training with GCN

progressively maintains the semantic structure encoded in

word vector and knowledge graph to guarantee the boost of

UODTN.

4.7. Traditional domain adaptation

We conduct experiments for traditional domain adapta-

tion to validate that semantic-guided matching discrepancy

(SGMD) is capable of dealing DA. We simply adopt L2 dis-

tance for Eqn. (3) here. The source domain is ImageNet and

the target domain is a subset of Webvision that shares 1,000

categories with ImageNet for I2WebV. From the first row

in Table 5, we can see that SGMD is slightly better than P-

MD and to MMD, demonstrating that weighted mechanism

is helpful for DA. Note that the matching is fixed, so PMD

is poor than MMD. However, our SGMD is still better than

MMD which validates the effectiveness of weighted mech-

anism. Domain adaptation results on I2AwA are shown in

the second row in Table 5. The discrepancy between source

and target domain of I2AwA is large and the size of source

domain is small. Besides, the categories in AwA2 are simi-

lar so that domain adaptation on I2AwA is very challenging.

With fixed matching, SGMD outperforms MMD and PMD

significantly which validates the superiority of SGMD.

4.8. Visualization

We visualize the t-SNE embeddings of the images of

target domain with features extracted from best competi-

tor bGCN and our model UODTN on I2AwA in Figure 3.

We only visualize 15 known categories and 3 unknown cate-

gories for the sake of visualization quality and clarity. These

known categories include the categories that are related to

3 unknown for better understanding the influence between

known and unknown categories. From Figure 3 (a), we can

see that in the black box area, the samples of unknown cat-

egory are mixed with those of known category for bGCN.

On the contrary, in Figure 3 (b), the two categories are well

separated by UODTN which qualitatively verifies the effec-

tiveness of semantic-guided matching discrepancy, limited

balance constraint and joint training of GCN in UODTN.

4.9. Illustrative examples

We show some qualitative results of UODTN in Figure 4.

We observe that UODTN effectively transfers the semantic

embeddings of source domain to unknown categories in tar-

get domain. This property mainly depends on joint training

with GCN to preserve the semantic relationships between

known and unknown categories while improving the dis-

crimination ability of classifier. Figure 4 provides some

correct classification results of UODTN. For all instances,

except the true categories that the instances belong to, the

classifiers of correctly related unknown/known categories

are also activated with large confidence. This indicates that

UODTN can effectively transfer the knowledge from both

labeled source domain, word vectors and knowledge graph.

More illustrative examples including incorrect results can

be seen in supplementary material.

5. Conclusion

We explore unsupervised open domain recognition prob-

lem, where an unlabeled target domain T and a discrepant

labeled source domain S that only covers a subset of cat-

egories of target domain are given, and the goal is to clas-

sify all instances of target domain. UODR is more chal-

lenging due to the semantic discrepancy between S and T ,

which exhibits large divergence on both content and dis-

tribution perspectives between S and T and semantic shift

from known to unknown categories between the two do-

mains. We develop Unsupervised Open Domain Transfer

Network (UODTN) , which learns the backbone classifi-

cation network and GCN jointly by reducing the SGMD,

achieving the limited balance, enforcing the semantic struc-

ture preserving via GCN, and minimizing the classification

loss on S . We collect two datasets for UODR problem and

extensive experiments validate the effectiveness of UODT-

N. In future work, discriminating known and unknown cat-

egories to alleviate the semantic shift in OUDR problem al-

so worths studying, since it is a non-trivial task as there is

function to distinguish known and unknown categories.
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