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Abstract

Compressive sensing is a method to recover the origi-

nal image from undersampled measurements. In order to

overcome the ill-posedness of this inverse problem, image

priors are used such as sparsity, minimal total-variation,

or self-similarity of images. Recently, deep learning based

compressive image recovery methods have been proposed

and have yielded state-of-the-art performances. They used

data-driven approaches instead of hand-crafted image pri-

ors to regularize ill-posed inverse problems with under-

sampled data. Ironically, training deep neural networks

(DNNs) for them requires “clean” ground truth images,

but obtaining the best quality images from undersampled

data requires well-trained DNNs. To resolve this dilemma,

we propose novel methods based on two well-grounded

theories: denoiser-approximate message passing (D-AMP)

and Stein’s unbiased risk estimator (SURE). Our proposed

methods were able to train deep learning based image de-

noisers from undersampled measurements without ground

truth images and without additional image priors, and

to recover images with state-of-the-art qualities from un-

dersampled data. We evaluated our methods for various

compressive sensing recovery problems with Gaussian ran-

dom, coded diffraction pattern, and compressive sensing

MRI measurement matrices. Our proposed methods yielded

state-of-the-art performances for all cases without ground

truth images. Our methods also yielded comparable perfor-

mances to the methods with ground truth data.

1. Introduction

Compressive sensing (CS) has provided ways to sam-

ple and to compress signals at the same time with rela-

tively long signal reconstruction time [10, 15]. The idea

of combining signal acquisition and compression immedi-

ately drew great attention in the application areas such as

MRI [29, 38], CT [11], hyperspectral imaging [49, 50],

coded aperture imaging [2], radar imaging [36] and radio

astronomy [41]. CS applications have been investigated

extensively for the last decade and now some systems are

commercialized for practical usages such as low-dose CT

and accelerated MR.

CS is modeled as a linear equation for the measurement:

y = Ax+ ǫ (1)

where y ∈ R
M is a measurement vector, A ∈ R

M×N is

a sensing matrix with M ≪ N , x ∈ R
N is an unknown

signal to reconstruct, and ǫ ∈ R
M is a noise vector. It is

a challenging ill-posed inverse problem to estimate x from

the undersampled measurements y with M ≪ N .

Sparsity has been investigated as prior to regularize the

ill-posed problem of CS recovery. CS theories allow to

use l1 norm for good signal recovery instead of l0 norm

[10, 15]. Minimizing l1 norm is advantageous for large-

scale inverse problems since l1 norm is convex so that con-

ventional convex optimization can be used. There have been

many convex optimization algorithms for solving CS recov-

ery problems with non-differentiable l1 norm such as itera-

tive shrinkage-thresholding algorithm (ISTA), fast iterative

Ground Truth TVAL3 (35.74 dB) Proposed (38.67 dB)

Figure 1: Ground truth MR image from fully-sampled data

(left), reconstructed MR images from 50%-sampled data

using conventional TV image prior (middle, [29]) and our

proposed deep learning based method without ground truth

(right). Our proposed method yielded significantly better

result than conventional method and result comparable to

the ground truth with very small residual error (red box).

10255



shrinkage-thresholding algorithm (FISTA) [3], alternating

direction minimization (ADM) [44], and approximate mes-

sage passing (AMP) [16], to name a few.

The signal x itself is not usually sparse, but a trans-

formed signal is often sparse. Signals/images are sparse in

the wavelet domain and/or discrete cosine transform (DCT)

domain. In high-resolution imaging, images have sparse

edges that are often promoted by minimizing total variation

(TV) [28]. Sparse MR image recovery used both wavelet

and TV priors [29] or dictionary learning prior from highly

undersampled measurements [38]. Similarly, CS color

video and depth recovery used both wavelet and DCT [46].

Hyperspectral imaging utilized manifold-structured sparsity

prior [49] or reweighted Laplace prior [50]. Self-similarity

is also used for CS image recovery such as NLR-CS [14]

and denoiser-AMP (D-AMP) [32]. D-AMP utilized power-

ful modern denoisers such as BM3D [12] and has recently

been extended to sparse MRI [17].

1.1. Deep learning in compressive image recovery

Deep learning with massive amount of data has revo-

lutionized many computer vision tasks [26]. It has also

influenced many low level computer vision tasks such as

image denoising [8, 22, 40, 42, 48, 35] and CS recov-

ery [20, 21, 23, 25, 33, 43, 47]. There are largely two differ-

ent approaches using deep neural networks (DNNs) for CS

recovery. One is to use a deep network to directly map from

an initially recovered low-quality image from compressive

samples to a high-quality ground truth image [23, 25]. The

other approach for deep learning based CS image recov-

ery is to use DNN structures that unfold optimization algo-

rithms and learned image priors, inspired by learned ISTA

(LISTA) [19]. In sparse MRI, ADMM-Net [45] and vari-

ational network [21] were proposed with excellent per-

formances. Both methods learned parametrized shrinkage

functions as well as transformation operators for sparse rep-

resentation from training data. Recently, instead of us-

ing explicit parametrization in shrinkage operator, DNNs

were used to unfold optimizations for CS recovery such

as learned D-AMP (LDAMP) [33], ISTA-Net [47], CNN-

projected gradient descent for CT [20], and Laplacian pyra-

mid reconstructive adversarial network [43]. Utilizing gen-

erative adversarial network (GAN) for CS was also investi-

gated [4]. These methods have one important requirement:

“clean” ground truth images must be available for training.

1.2. Deep learning without ground truth

Most deep learning based data-driven approaches for CS

image recovery solve the ill-posed inverse problem with un-

dersampled data by using DNNs. Ironically, training DNNs

for them requires “clean” ground truth images, but obtain-

ing the best quality images from undersampled data requires

well-trained DNNs. It is often expensive or infeasible to

acquire clean data, for example, in medical imaging (long

acquisition for MR, high radiation dose for CT) or hyper-

spectral imaging. Here, we address this dilemma.

Recently, there have been a few attempts to train DNNs

for low-level computer vision tasks in unsupervised ways.

Lehtinen et al. proposed noise2noise to train DNNs for im-

age denoising, inpainting, and MR reconstruction [27]. This

work implemented MR reconstruction using a direct map-

ping instead of unfolding optimization scheme. However,

this was not evaluated with various CS applications and it

requires two contaminated data for each image, which may

not be available in some cases. Bora et al. proposed Am-

bientGAN, a training method for GAN with contaminated

images and applied it to CS image recovery [4, 5]. How-

ever, AmbientGAN was trained with artificially contami-

nated images, rather than with CS measurements. More-

over, the method of [4] is limited to i.i.d. Gaussian mea-

surement matrix theoretically and was evaluated with rela-

tively low-resolution images. Soltanayev et al. proposed

a Stein’s unbiased risk estimator (SURE) based training

method for deep learning based denoisers [39]. This method

requires only one realization, but it is limited to i.i.d. Gaus-

sian noise. Moreover, it is not straightforward to extend this

work to CS image recovery with measurements.

We propose unsupervised training methods for deep

learning based CS image recovery based on two well-

grounded theories: D-AMP and SURE. Our proposed meth-

ods were able to train DNN based image denoisers from

undersampled measurements without ground truth images,

and to recover images with state-of-the-art qualities from

undersampled data. Here are the contributions of this work:

1) Proposing a method to train DNN denoisers from un-

dersampled measurements without ground truth and with-

out additional image priors. Only one realization for each

measurement was required. An accurate noise estimation

method was also developed for training deep denoisers.

2) Proposing a CS image recovery method by modifying

LDAMP to have up to1 denoiser instead of 9 denoisers with

comparable performance to reduce training time.

3) Extensive evaluations of the proposed method using

high-resolution natural images and MR images for the CS

recovery problems with Gaussian random, coded diffraction

pattern, and realistic CS MR measurement matrices.

2. Background

2.1. Denoiserbased AMP (DAMP)

D-AMP is an algorithm designed to solve CS problems

where one needs to recover image vector x from the set of

measurements y using prior information about x. Based on

the model (1), the problem can be formulated as:

min
x

‖y −Ax‖22 subject to x ∈ C (2)
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Algorithm 1: (Learned) D-AMP algorithm [32, 33]

input : x0 = 0,y,A
1 for t = 0 to T do

2 bt ← zt−1divDw(σ̂t−1)(xt−1 +AHzt−1)/M

3 zt ← y −Axt + bt

4 σ̂t ← ‖zt‖2/
√
M

5 xt+1 ←D
w(σ̂t)(xt +AHzt)

6 end

output: xT

where C is the set of natural images. D-AMP solves (2)

relying on approximate message passing (AMP) theory. It

employs appropriate Onsager correction term bt at each it-

eration, so that xt+AHzt in Algorithm 1 becomes close to

the ground truth image plus i.i.d. Gaussian noise. D-AMP

can utilize any denoiser as a mapping operator D
w(σ̂t)(·)

in CS recovery (Algorithm 1) for reducing i.i.d. Gaussian

noise as far as the divergence of denoiser can be obtained.

D-AMP [31] first utilized conventional state-of-the-art

denoisers such as BM3D [12] for D
w(σ̂t)(·) in Algorithm 1.

Given a standard deviation of noise σ̂t at iteration t, BM3D

was applied to a noisy image xt+AHzt to yield estimated

image xt+1. Since BM3D can not be represented as a lin-

ear function, analytical form for divergence of this denoiser

is not available for obtaining Onsager term. This issue was

resolved by using Monte-Carlo (MC) approximation for di-

vergence term divD
w(σ̂t)(·) [37]: For ǫ > 0 and ñ is a

standard normal random vector,

divD
w(σ̂t)(·) ≈

ñ′

ǫ

(

D
w(σ̂t)(·+ ǫñ)−D

w(σ̂t)(·)
)

. (3)

Recently, LDAMP was proposed to use deep learning

based denoisers for D
w(σ̂t)(·) in Algorithm 1. Nine DNN

denoisers were trained with noiseless ground truth data for

different noise levels. LDAMP consists of 10 D-AMP lay-

ers (iterations) and DnCNN [48] was used in each layer as

a denoiser operator. Unlike other unrolled neural network

versions of iterative algorithms such as learned-AMP [6]

and LISTA [19], LDAMP exploited imaging system mod-

els, which are fixed A and AH operators while the param-

eters for DnCNN denoisers were trained with ground truth

data in image domain.

2.2. Stein’s unbiased risk estimator (SURE) based
deep neural network denoisers

Over the past years, DNN based denoisers have been

well investigated [8, 22, 40, 42, 48, 35] and often outper-

formed conventional denoisers such as BM3D [12] and non-

local filtering [7, 34]. DNN denoisers such as DnCNN [48]

yielded state-of-the-art denoising performance at multiple

noise levels and are typically trained by minimizing the

mean square error (MSE) between the output image of de-

noiser and the noiseless ground truth image:

1

K

K
∑

j=1

‖D
w(σ)(z

(j))− x(j)‖2 (4)

where z ∈ R
N is a noisy image of the ground truth im-

age x contaminated with i.i.d. Gaussian noise with zero

mean and fixed σ2 variance, D
w(σ)(·) is a deep learning

based denoiser with large-scale parameters w to train, and

(z(1),x(1)), . . . , (z(K),x(K)) is a training dataset with K
samples in image domain.

Recently, a method to train deep learning based denois-

ers only with noisy images was proposed [39]. Instead of

minimizing MSE, the following Monte-Carlo Stein’s un-

biased risk estimator (MC-SURE) that approximates MSE

was minimized with respect to large-scale weights w in the

DNN without noiseless ground truth images:

1

K

K
∑

j=1

‖z(j) −D
w(σ)(z

(j))‖2 −Nσ2+

2σ2ñ′

ǫ

(

D
w(σ)(z

(j) + ǫñ)−D
w(σ)(z

(j))
)

.

(5)

In compressive image recovery applications, there are

often cases where no ground truth data or no Gaussian

contaminated images are available, but only compressive

samples in measurement domain are available for training.

However, it is not straightforward to use MSE or MC-SURE

based deep denoiser networks for CS image recovery unless

additional image priors are used. The goal of this article is

to propose a method to train DNN denoisers directly from

compressive samples without additional image prior and to

simultaneously recover images.

3. Method

3.1. Training deep denoisers from undersampled
measurements without ground truth

Our proposed method exploits D-AMP (LDAMP) [32,

33] to yield Gaussian noise contaminated images during

compressive image recovery from large-scale undersampled

measurements and train a single DNN denoiser with these

noisy images at different noise levels using MC-SURE

based denoiser learning [39]. Since Onsager correction

term in D-AMP allows x + AHz term to be close to the

ground truth image plus Gaussian noise, we conjecture that

these can be utilized for MC-SURE based denoiser train-

ing. We further investigated this in the next subsection.

Our joint algorithm is detailed in Algorithm 2. Note that

for large-scale compressive measurements y(1), . . . ,y(K),

both images x̂
(1)
L , . . . , x̂

(K)
L and trained denoising deep net-

work D
wL(σ)(·) were able to be obtained. After training,
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fast and high performance compressive image recovery was

possible without further training of deep denoising network.

The original LDAMP [33] utilized 9 DnCNN denois-

ers trained on “clean” images for different noise levels

(σ = 0 ∼ 10, 10 ∼ 20, 20 ∼ 40, 40 ∼ 60, 60 ∼
80, 80 ∼ 100, 100 ∼ 150, 150 ∼ 300, 300 ∼ 500).

However, we found that training a single DnCNN denoiser

is enough to achieve almost the same results (see Table

2 in the supplementary material). The DnCNN network

was pre-trained with reconstructed images using D-AMP

with BM3D plus Gaussian noise with σ ∈ [0, 55]. The

pre-trained DnCNN blind denoiser D
wl(σ̂t) cleans xt−1 +

AHzt−1 with noise level between [0, 55] (line 8 in Algo-

rithm 2), while BM3Dσ̂t
is utilized for higher level noise

reduction (line 10 in Algorithm 2). Depending on a sam-

pling ratio and forward operator A, initial 2-4 iterations are

usually required for BM3D to decrease the noise level suffi-

cient enough for DnCNN. Then, after T iterations, the set of

training data s
(1)
l , . . . , s

(K)
l can be generated using LDAMP

with pre-trained deep denoiser. Those noisy training images

were used for further training the DnCNN with MC-SURE.

Worth to note that the noise level range for DnCNN is

subject to change depending on a particular problem. For

example, we found that for i.i.d. Gaussian and CDP matri-

ces, training DnCNN with σ ∈ [0, 55] is optimal, while for

CS MRI case, the range is shortened to σ ∈ [0, 10].

3.2. Accuracy of standard deviation estimation for
MCSURE based denoiser learning

In D-AMP and LDAMP [32, 33], noise level was esti-

mated in measurement domain using

σ̂t ← ‖zt‖2/
√
M. (6)

The accuracy of this estimation was not critical for D-AMP

or LDAMP since denoisers in both methods were not sensi-

tive to different noise levels. However, accurate noise level

estimation was quite important for MC-SURE based deep

denoiser network learning. We investigated the accuracy of

(6). It turned out that the accuracy of noise level estimation

depends on measurement matrices.

With i.i.d. Gaussian measurement matrix A, (6) was

very accurate and comparable to the ground truth stan-

dard deviation that was obtained from the true residual

(xt+AHzt)−xtrue. However, with coded diffraction pat-

tern measurement matrix A that yields complex measure-

ments, it turned out that (6) yielded over-estimated noise

level for multiple examples. Since the image xt is real, we

propose a new standard estimation method for D-AMP:

σ̂t ← ‖Re(AHzt)‖2/
√
N. (7)

We performed comparison studies between (6), (7), and

the ground truth from true residual (xt + AHzt) − xtrue

Algorithm 2: Simultaneous LDAMP and MC-SURE

deep denoiser learning algorithm

input : y(1), . . . ,y(K),A
1 for l = 1 to L do

2 for k = 1 to K do

3 for t = 0 to T do

4 bt ←
zt−1divDwl(σ̂t−1)(xt−1+AHzt−1)/M

5 zt ← y(k) −Axt + bt

6 σ̂t ← ‖zt‖2/
√
M

7 if σ̂t ≤ 55. then

8 xt+1 ←D
wl(σ̂t)(xt +AHzt)

9 else

10 xt+1 ← BM3Dσ̂t
(xt +AHzt)

11 end

12 end

13 x̂
(k)
l ← xT+1

14 s
(k)
l ← xT +AHzT

15 end

16 Train D
wl(σ)(·) with s

(1)
l , . . . , s

(K)
l at different

noise levels σ
17 end

output: x̂
(1)
L , . . . , x̂

(K)
L ,D

wL(σ)(·)

and found that they are all very similar for i.i.d. Gaussian

measurement matrix, but our proposed method (7) yielded

more accurate estimates of standard deviation than previous

method (6). Figure 2 illustrates the accuracy of our estima-

tor compared to previous one. When normalizing the true

residual, using accurate sigma estimation yields good fit-

ting to standard normal density (red line). Normalized his-

togram of true residual using ground truth and our proposed

standard deviation estimation yielded good fitting to that,

but previous estimation method yielded sharper histogram,

which indicates that previous method overestimates noise

level. Our proposed estimation was critical for the high per-

formance of our proposed method with CDP measurement

matrix (see Table 1 in the supplementary material).

Moreover, we found out that proposed noise estimator

(7) also can be applied to a CS-MRI case, when k-space

data is not highly undersampled. Therefore, for a sampling

rate of larger than 35-40%, true residual follows a Gaussian

noise, which can be accurately measured by (7) and further

utilized for training deep denoisers with MC-SURE.

4. Simulation Results

4.1. Setup

Datasets We used images from DIV2K [1], Berkeley’s

BSD-500 [30] datasets, and standard test images for train-

10258



Figure 2: Normalized residual histograms of “Boat” image after 10 iterations using LDAMP-BM3D for CDP matrix. Nor-

malization was done with estimated sigma from (a) true residual (b) zT (D-AMP) and (c) Re(AHzT ) (Proposed).

ing and testing our proposed method on i.i.d. Gaussian and

CDP matrices. Training dataset was comprised of all 500

images from BSD-500, while a test set of 100 images in-

cluded 75 randomly chosen images from DIV2K dataset

and 25 standard test images. Since the proposed method

used measurement data and fixed linear operator for im-

age reconstruction, all test and train images had to have the

same size. Thus, all images were subsampled and cropped

to the size of 180×180 and then compressively sampled us-

ing the forward model A to generate CS measurement data.

For CS-MRI reconstruction, Stanford dataset with 3D

FSE (fast spin echo) [18] was pulled from the open reposi-

tory at http://mridata.org/. The knee dataset included 20 pa-

tients each having 256 slices of 320 × 320 images. Among

20 cases of knee data, 3 cases were used for training and 1

case for testing. Images were transformed to k-space mea-

surements and then subsampled with realistic radial sam-

pling patterns at various sampling rates.

We implemented all methods on the Tensorflow frame-

work and used Adam optimization [24] with the learning

rate of 10-3, which was dropped to 10-4 after 40 epochs and

further trained for 10 epochs. The batch size was set to 128

and training the DnCNN denoiser took approximately 12-

14 hours on one NVIDIA Titan X (Pascal).

Initialization of DnCNN denoiser For given measure-

ment data y from BSD-500 and linear operator A, initial

images were firstly reconstructed using a conventional CS

recovery algorithm, BM3D-AMP. Even though the qual-

ity of these initial images were not close to the ground

truth images, they still provided good pre-training data

for DnCNN denoisers. Recovered images were rescaled,

cropped, flipped, and rotated to generate 298,000 image

patches whose sizes are 50×50 . These patches were used

as a ground truth to pre-train DnCNN denoiser with MSE.

Since our approach does not require dataset with ground

truth, it is possible to use measurement data from the test

set. Thus, we also generated 357,600 50×50 patches from

reconstructed test and train images. Our DnCNN denoiser

was trained for σ ∈ [0, 55] noise level range with either

training patches only or training and testing patches to-

gether. The former pre-trained DnCNN denoiser in the

LDAMP framework is denoted by “LDAMP BM3D” and

the latter pre-trained DnCNN with LDAMP is denoted

by“LDAMP BM3D-T”.

BM3D-AMP-MRI was specifically tailored for CS-MRI

reconstruction [17] and thus yielded significantly better re-

sults than conventional BM3D-AMP. Therefore, k-space

knee dataset was reconstructed using it and then the re-

sulted images were rescaled, cropped, flipped, and rotated

to generate 267,240 and 350,320 50×50 patches for training

LDAMP BM3D and LDAMP BM3D-T, respectively. We

trained DnCNN denoisers for σ ∈ [0, 10] noise range.

Training LDAMP SURE Firstly, LDAMP SURE was

run T = 10 iterations using pre-trained DnCNN denoiser

and BM3D. At the last iteration, we collected images and

estimated noise standard deviation with (7). Then, all im-

ages with noise levels in [0, 55] range (CS-MRI case: σ ∈
[0, 10]) were grouped into one set, while images with larger

noise levels were replaced by Gaussian noise added BM3D-

AMP recovered images. Thus, we have the dataset of all

images with σ ∈ [0, 55] (CS-MRI case: σ ∈ [0, 10]) to

train DnCNN denoiser with MC-SURE. These steps were

repeated L times to further improve the performance of our

proposed method. Although training DnCNN with MC-

SURE involves estimation of a noise standard deviation for

an entire image, we assume that a patch from an image has

the same noise level as the image itself. Thus, we generated

patches without using rescaling to avoid noise distortion to

train LDAMP SURE.

To train DnCNN with SURE, we initialized DnCNN

with the weights of pre-trained DnCNN and trained it using

Adam optimizer [24] with learning rate of 10-4 and batch

size 128 for 10 epochs. Then, we decreased learning rate to

10-5 and trained it for another 10 epochs. Training process

took about 3 hours for LDAMP SURE and about 4 hours for

LDAMP SURE-T. We empirically found that after L=2 it-

erations (line 1 in Algorithm 2) of training LDAMP SURE,

the results converge for both CDP and i.i.d. Gaussian cases,
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while for CS-MRI, L = 1.

The accuracy of MC-SURE approximation depends on

the selection of constant value ǫ, which is directly propor-

tional to σ [13, 39]. Therefore, for training DnCNN with

SURE, ǫ value was calculated for each patch based on its

noise level (see Section 1 in the supplementary material).

4.2. Results

Gaussian measurement matrix We compared our pro-

posed LDAMP SURE with the state-of-the-art CS meth-

ods that do not require ground truth data such as BM3D-

AMP[31], NLR-CS[14], and TVAL3[28]. BM3D-AMP

was used with default parameters and run for 30 iterations

to reduce high variation in the results, although PSNR1 ap-

proached its maximum after 10 iterations [32]. The pro-

posed LDAMP SURE algorithm was run 30 iterations but

also showed convergence after 8-10 iterations. NLR-CS

was initialized with 8 iterations of BM3D as justified in

[32], while TVAL3 was set to its default parameters. Also,

we included the results of LDAMP with a single DnCNN

(denoted as LDAMP MSE) that was trained on ground truth

images to see the performance gap.

From Table 1, proposed LDAMP SURE and LDAMP

SURE-T outperformed other methods at higher CS ratios

by 0.26-0.46 dB, while at a highly undersampled case, it

is inferior to NLR-CS. Nevertheless, it is clear that SURE

based LDAMP is able to improve the performance of pre-

trained LDAMP BM3D and surpasses BM3D-AMP by

0.28-1.56 dB. In Figure 3, reconstructions of all methods

on a test image are represented for 25% sampling ratio.

Proposed LDAMP SURE and LDAMP SURE-T provide

sharper edges and preserve more details.

In terms of run time, the dominant source of computation

comes from using BM3D denoiser at initial iterations, while

DnCNN takes less than a second for inference. LDAMP

SURE utilizes CPU for BM3D and GPU for DnCNN. Con-

sequently, proposed LDAMP SURE was faster than BM3D-

AMP, NLR-CS, and TVAL3 methods.

Coded diffraction pattern measurements LDAMP

SURE was tested with randomly sampled coded diffraction

pattern [9] and yielded the best quantitative performance at

higher sampling rates (see Table 2 and Figure 4). LDAMP

SURE and LDAMP SURE-T achieved about 1.8 dB perfor-

mance gain over BM3D-AMP. However, at extremely low

sampling ratio, our method slightly falls behind TVAL3.

LDAMP SURE requires better data than BM3D-AMP re-

constructed images from highly undersampled data to pre-

train DnCNN. Therefore, one way to surpass TVAL3 at

the highly undersampled case is to pretrain DnCNN with

TVAL3 images (see Table 3 in supplementary material).
1PSNR stands for peak signal-to-noise ratio and is calculated by fol-

lowing expression: 10log10(
2552

mean(x̂−xgt)2
) for pixel range ∈ [0−255]

CS MR measurement matrix LDAMP SURE was ap-

plied to CS MRI reconstruction problem to demonstrate

its generality and to show its performance on images that

contain structures different from natural image dataset.

We compared LDAMP SURE with state-of-the-art BM3D-

AMP-MRI [17] for CS-MR image reconstruction without

ground truth data along with TVAL3, BM3D-AMP, and dic-

tionary learning based DL-MRI [38]. Average image re-

covery PSNRs and run times are tabulated in Table 3. Fig-

ure 5 shows that our proposed method yielded state-of-the-

art performance, close to the ground truth. The results re-

veal that proposed LDAMP SURE-T outperforms existing

algorithms in all sampling ratios.

5. Discussion and Conclusion

We proposed methods for unsupervised training of im-

age denoisers with undersampled CS measurements. Our

methods simultaneously performed CS image recovery and

DNN denoiser learning. Our proposed method yielded bet-

ter image quality than conventional methods at higher sam-

pling rates for i.i.d Gaussian, CDP, and CS MR measure-

ments. Thus, it may be possible that this work can be help-

ful for areas where obtaining ground truth images is chal-

lenging such as hyperspectral or medical imaging.

Note that training deep learning based image denoisers

from undersampled data still seems to require to contain

enough information in the undersampled measurements.

Tables 1 and 2 show that only 5% of the full samples was

not enough to achieve state-of-the-art performance possi-

bly due to lack of information in the measurement. Note

also that since we assume a single CS measurement for

each image and evaluated with various CS matrices with

high-resolution images, it was not possible to compare

our method to noise2noise [27] and AmbientGAN [4, 5].

Lastly, our proposed method can potentially be used with

more advanced deep denoisers for potentially better perfor-

mance as far as they are trainable with MC SURE loss [39].
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Method Training Time
M
N

= 5% M
N

= 15% M
N

= 25%

PSNR Time PSNR Time PSNR Time

TVAL3 N/A 20.46 9.71 24.14 22.96 26.77 34.87

NLR-CS N/A 21.88 128.73 27.58 312.92 31.20 452.23

BM3D-AMP N/A 21.40 25.98 26.74 24.21 30.10 23.08

LDAMP BM3D 10.90 hrs 21.41 8.98 27.54 3.94 31.20 2.89

LDAMP BM3D-T 14.30 hrs 21.42 8.98 27.61 3.94 31.32 2.89

LDAMP SURE 15.05 hrs 21.44 8.98 27.65 3.94 31.46 2.89

LDAMP SURE-T 17.97 hrs 21.68 8.98 27.84 3.94 31.66 2.89

LDAMP MSE 10.17 hrs 22.07 8.98 27.78 3.94 31.65 2.89

Table 1: Average PSNRs (dB) and run times (sec) of 100 180×180 image reconstructions for i.i.d. Gaussian measurements

case (no measurement noise) at various sampling rates (M/N × 100%).

Method Training Time
M
N

= 5% M
N

= 15% M
N

= 25%

PSNR Time PSNR Time PSNR Time

TVAL3 N/A 22.57 0.85 27.99 0.75 32.82 0.67

NLR-CS N/A 19.00 93.05 22.98 86.90 31.24 119.70

BM3D-AMP N/A 21.66 22.15 27.29 22.28 31.40 17.00

LDAMP BM3D 10.56 hrs 21.97 23.43 28.04 7.01 31.65 2.71

LDAMP BM3D-T 12.67 hrs 21.93 23.43 28.01 7.01 32.12 2.71

LDAMP SURE 15.22 hrs 22.18 23.43 29.14 7.01 33.26 2.71

LDAMP SURE-T 17.61 hrs 22.06 23.43 29.17 7.01 33.51 2.71

LDAMP MSE 10.17 hrs 22.12 23.43 28.87 7.01 33.88 2.71

Table 2: Average PSNRs (dB) and run times (sec) of 100 180x180 image reconstructions for CDP measurements case (no

measurement noise) at various sampling rates (M/N × 100%).

Method Training Time
M
N

= 40% M
N

= 50% M
N

= 60%

PSNR Time PSNR Time PSNR Time

TVAL3 N/A 36.76 0.58 37.13 0.24 38.35 0.21

DL-MRI N/A 36.60 98.51 37.81 97.58 39.13 99.44

BM3D-AMP-MRI N/A 37.42 14.76 38.94 15.00 40.51 15.36

BM3D-AMP N/A 36.15 96.23 36.29 84.34 39.53 98.01

LDAMP BM3D 9.31 hrs 37.12 6.26 38.63 6.14 39.53 6.10

LDAMP BM3D-T 12.41 hrs 37.65 6.26 38.92 6.14 39.87 6.10

LDAMP SURE 12.04 hrs 37.40 6.26 38.70 6.14 40.62 6.10

LDAMP SURE-T 16.05 hrs 37.77 6.26 39.09 6.14 40.71 6.10

Table 3: Average PSNRs (dB) and run times (sec) of 100 180x180 image reconstructions for CS-MRI measurements case

(no measurement noise) at various sampling rates (M/N × 100%).
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Ground truth

(a) PSNR

TVAL3

(b) 26.10 dB

BM3D-AMP

(c) 31.90 dB

NLR-CS

(d) 33.59 dB

LDAMP SURE

(e) 34.53dB

LDAMP SURE-T

(f) 35.19 dB

Figure 3: Reconstructions of 180×180 test “Butterfly” image with i.i.d. Gaussian matrix with M/N = 0.25 sampling rate.

Ground truth

(a) PSNR

TVAL3

(b) 27.52 dB

BM3D-AMP

(c) 24.08 dB

NLR-CS

(d) 22.29 dB

LDAMP SURE

(e) 29.17 dB

LDAMP SURE-T

(f) 28.92 dB

Figure 4: Reconstructions of 180×180 test image with CDP measurement matrix for M/N = 0.15 sampling rate.

Ground truth

(a) PSNR

TVAL3

(b) 37.44 dB

BM3D-AMP

(c) 36.54 dB

DL-MRI

(d) 36.76 dB

BM3D-AMP-MRI

(e) 37.85 dB

LDAMP SURE-T

(f) 38.22 dB

Figure 5: Reconstructions of 180×180 test image with CS-MRI measurement matrix for M/N = 0.40 sampling rate.

Residual errors are shown in red boxes.
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