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Abstract

This paper presents a perturbation analysis for the esti-

mate of epipolar matrices using the 8-Point Algorithm (8-

PA). Our approach explores existing bounds for singular

subspaces and relates them to the 8-PA, without assuming

any kind of error distribution for the matched features. In

particular, if we use unit vectors as homogeneous image co-

ordinates, we show that having a wide spatial distribution

of matched features in both views tends to generate lower

error bounds for the epipolar matrix error. Our experimen-

tal validation indicates that the bounds and the effective er-

rors tend to decrease as the camera Field of View (FoV) in-

creases, and that using the 8-PA for spherical images (that

present 360◦×180◦ FoV) leads to accurate essential matri-

ces. As an additional contribution, we present bounds for

the direction of the translation vector extracted from the es-

sential matrix based on singular subspace analysis.

1. Introduction

Obtaining 3D scene structure and camera poses based

on two or more views of the same scene have been widely

studied by the computer vision community, and the epipolar

geometry encoded by either the fundamental or the essen-

tial matrix is a keystone in the context of Structure from

Motion [28]. For simplicity, we will use the name epipolar

matrix to denote either one of these two matrices, as in [1].

There are several approaches for estimating epipolar ma-

trices [18, 21, 25], but the 8-Point Algorithm (8-PA) pro-

posed by Longuet-Higgins [20] is still very popular, serving

as an initial estimate or as the basis for further developments

such as feature normalization schemes [15, 24], the impo-

sition of rank constraints [49], the inclusion of additional

matrix factorizations [44], the use of robust loss functions

to better handle outliers [16], or the inclusion of weights and

deep learning strategies for simultaneous keypoint matching

and motion recovery [46]. A class of approaches focuses on

estimating optimal inlier sets [45], which is particularly im-

portant when the number of matched features is scarce and

outliers are present. When using wider Field of View (FoV)

cameras, however, the spatial region captured by both cam-

eras present more overlap on the image domain, typically

leading to more matched features. In particular, spherical

images present full 360◦×180◦ FoV and are becoming in-

creasingly popular in the context of multiview 3D recon-

struction and/or pose estimation [12, 29, 30, 31, 32].

As noted in [46], the typical pipeline for estimating

epipolar matrices consists of finding correspondence points

across images, and then applying an outlier removal strat-

egy (e.g. RANSAC [9] or its variants [33]) to retrieve a sub-

set of potential inliers. This pruned set of correspondences

is then fed to the estimation method itself, such as the 8-PA,

and errors in the matching step can degrade the estimated

epipolar matrix. They are caused by noisy feature matching

(features are correctly matched but not at the exact loca-

tion) or wrong feature matching, and determining the im-

pact of these errors on the estimated matrix is a relevant re-

search topic. Existing error analysis approaches [5, 36, 42]

focus on noisy features, assuming that badly matched fea-

tures can be effectively removed by the outlier rejection

method. However, outliers are typically detected based on

some kind of distance to the epipolar line (or curve when

using spherical images), such as algebraic or Sampson dis-

tances [39]. Hence, wrong matches along (or close to) the

epipolar line/curve might be erroneously considered inliers.

This paper presents a perturbation analysis for the 8-PA

that does not assume any kind of matching error distribu-

tion. We represent the matched features in homogeneous

coordinates as 3D unit vectors, which relate to the viewing

directions of the rays that connect the 3D world points and

the camera centers in the calibrated case. This is a particu-

larly natural choice when using spherical cameras [12, 17],

but can also be explored when the pinhole model is as-

sumed. We present error bounds for epipolar matrix esti-

mation as a function of matching errors and shed some light

on the impact of the Field of View (FoV) of the cameras on

error propagation. In particular, we show that the 8-PA po-

tentially provides good estimates for the essential matrix E
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when using spherical images, which present a 360◦×180◦
FoV. Additionally, we present bounds for the translation

vector (up to a scale) extracted from the essential matrix.

2. Related work

Estimating the uncertainty when computing epipolar ma-

trices has been studied by several authors [5, 15, 22, 24, 36,

42], focusing on the relationship between correspondence

errors and the epipolar matrices themselves or directly on

the errors of estimated 3D structure and/or pose.

Weng et al. [42] presented an error analysis of the essen-

tial matrix estimation based on first order perturbations, re-

lating the covariance matrix of the matching errors with the

covariance of the essential matrix. This assumption implies

that the variance of the feature detector error must be deter-

mined, which is very dependent on the detector itself and

the scene, and very sensitive to outliers. Furthermore, they

assumed the un-normalized 8-PA, which was later shown

by Hartley that leads to numerical instabilities [15].

Mühlich and Mester [24] related the error produced by

the 8-PA with the perturbation of eigenvalues and singular

values. They assumed that the covariance matrix of the cor-

respondence matching errors is known to obtain a bound

for the essential matrix error, and use this bound to pro-

pose a new feature normalization scheme. Mair and col-

leagues [22] extended the analysis in [42] by including the

normalization schemes presented in [15] and [24]. Notice

that both [24] and [22] present the drawback of assuming

known feature matching variances.

Csurka et al. [5] presented an error analysis of the fun-

damental matrix F obtained by a non-linear method. They

model F as a random vector, such that the mean of the dis-

tribution is the actual matrix and the covariance encodes the

uncertainty errors. They assume that outliers were rejected

in a previous step so that the analysis is focused only on

noisy correspondences. Sur and colleagues [36] follow a

similar path but focus on the errors of epipolar matrix esti-

mation using the 8-PA. However, as in [5], they present the

uncertainty as a covariance matrix and discard the presence

of outliers, which limits the application of their method.

Also, they consider the un-normalized version of the 8-PA,

as [42].

Hartley [15] evaluated the condition number of the mea-

surement matrix used in the 8-PA, suggesting a normal-

ized version that is numerically more stable. The core of

his analysis was that using “raw” homogeneous coordinates

(just appending the value 1 to the pixel coordinates) leads

to a magnitude imbalance and hence ill-conditioned ma-

trices. When using normalized homogeneous coordinates

(unit vectors), as suggested in [13] and used in most ap-

proaches that explore spherical cameras [12, 29, 30, 31, 32],

the reasoning used by Hartley no longer applies.

Most of approaches reviewed in this section assume a

distribution model for the matching errors, and disregard

the impact of outliers. They also empirically evaluate the

effect of the camera FoV on the errors, without any mathe-

matical formalism. Next, we present our bounds for epipo-

lar matrices based on correspondence errors, and provide a

tighter relationship between the distribution of matched fea-

tures and error propagation, showing that wider FoV cam-

eras tend to lead to better epipolar matrix estimation. In

particular, spherical cameras present a 360-degree FoV and

potentially allows several matches if descriptors tailored to

the spherical domain [4, 48] are used, as noted in [7].

3. Perturbation analysis for epipolar matrices

In this section, we briefly review the formulation behind

epipolar matrices, provide some generic bounds for singular

spaces, and then present error bounds for epipolar matrices.

For the particular case of the essential matrix, we also pro-

vide bounds for the translation direction.

3.1. Epipolar matrices and the 8PA

Let us consider a set of n ≥ 8 3D points Xi viewed

simultaneously by two cameras C1 and C2, which are pro-

jected to image points xi
1 and x

i
2 (in homogeneous coordi-

nates), respectively. The core concept of the epipolar ge-

ometry is that each pair of correspondence points (xi
1,x

i
2)

is related by the epipolar constraint [14]

(

x
i
2

)⊤ Exi
1 = 0, (1)

where E3×3 is an epipolar matrix that depends on the param-

eters of the two cameras.

The epipolar constraint provided by Eq. (1) is flexible to

a variety of scenarios and camera types. For instance, when

using two uncalibrated perspective cameras, the correspon-

dence points are given by

x
i
1 = K1Xi =

[

xi
1 yi1 zi1

]⊤
,

x
i
2 = K2 (RXi + t) =

[

xi
2 yi2 zi2

]⊤
,

(2)

for i = 1, 2, ..., n, where K1 and K2 are the intrinsic pa-

rameters of the two cameras, R is the rotation matrix of the

second camera w.r.t. the first, and t is the translation vector.

In this case, E = F is called the fundamental matrix, which

presents 7-degrees of freedom (DoF).

When using calibrated cameras (i.e., the intrinsics are

known), we can pre-multiply pixel values by K−1
1 and

K−1
2 , respectively. This is equivalent to use the notation

of Eq. (2) with K1 = K2 = I3×3 (identity matrix), so that

the image coordinates represent the viewing directions from

each camera center to the corresponding 3D point Xi. Sim-

ilarly, spherical cameras capture the full 360◦×180◦ neigh-

borhood, and image coordinates are typically unit vectors

that point from the camera center to the corresponding 3D
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point [2]. This is the same formulation of calibrated per-

spective cameras, and in both cases, the epipolar matrix

E = E is called the essential matrix, which presents 5-DoF.

In all these cases, the scale of the two-view coordinates

x
i
c (for c ∈ {1, 2}) is arbitrary, since they relate to homoge-

neous coordinates. In the calibrated (or spherical) case, the

unit vectors xi
c/‖xi

c‖2 represent the normalized ray (in the

Euclidean space) instead of pixel coordinates (in the pro-

jective space). Since they are generic to different central

optical systems (e.g. calibrated perspective and spherical),

they have been used as the parametrization for the corre-

spondences in recent papers such as [13].

The core of the 8-PA is to express the epipolar constraint

provided by Eq. (1) as linear combinations of the matrix

entries. For simplicity, we will derive all results assuming

the calibrated case, i.e., E = E = [eij ], for i, j ∈ {1, 2, 3}.

If e = [e11 e21 e31 e12 e22 e32 e13 e23 e33]
⊤

is de-

fined as the row-wise concatenation of eij , then the epipolar

constraint can be written as Ae = 0, where A is an n×9
measurement matrix for which the ith row is given by:

Ai =
[

xi
1

(

x
i
2

)⊤
yi1
(

x
i
2

)⊤
zi1
(

x
i
2

)⊤
]

. (3)

The least squares solution for e subject to ‖e‖ = 1 is

provided by the least right singular value of A [15], so that

the accuracy of the 8-PA relates to the singular subspaces

of A. Next, we present some bounds on singular subspaces,

and apply them to the context of epipolar matrix estimation.

3.2. Bounds for singular subspaces

Perturbation bounds aim to quantify how the spectrum

changes after adding a small perturbation to a matrix, and

they play an important role in SVD and spectral methods

analysis [3]. Given an approximately rank-r matrix M and

a perturbation matrix P , both of dimension n×m, an im-

portant problem is to understand how much the (left and/or

right) singular spaces of M and M̃ = M + P differ from

each other [3]. Consider that the SVD decomposition of

matrix M is given by

M =
[

U U⊥
]

[

Σ1 0
0 Σ2

]

[

V V⊥
]⊤

, (4)

where
[

U U⊥
]

and
[

V V⊥
]

are orthogonal matrices of

orders n and m, respectively, Σ1 = diag(σ1, . . . , σr) and

Σ2 = diag(σr+1, . . .) are r×r and (n−r)×(m−r) matrices

with null off-diagonal values, respectively. Variables σ1 ≥
σ2 ≥ · · · ≥ 0 are the singular values of M in descending

order. Decomposing the perturbed matrix M̃ as

M̃ = M + P =
[

Ũ Ũ⊥
]

[

Σ̃1 0

0 Σ̃2

]

[

Ṽ Ṽ⊥
]⊤

, (5)

produces submatrices having the same structures as

U,U⊥, V, V⊥,Σ1 and Σ2.

A well known bound for estimating the perturbation in-

fluence within the singular subspaces comes from Wedin’s

sinΘ theorem [41], which provides a uniform bound for

both the left and right singular spaces in terms of the singu-

lar value gap and perturbation level. Precisely, it states that

if the gap δ = min(Σ̃1)−max(Σ2) > 0, then:

max
{
∥

∥

∥
sinΘ(V, Ṽ )

∥

∥

∥

2
,
∥

∥

∥
sinΘ(U, Ũ)

∥

∥

∥

2

}

≤
max

{∥

∥

∥
PṼ

∥

∥

∥

2
,
∥

∥

∥
Ũ⊤P

∥

∥

∥

2

}

δ
≤ ‖P‖2

δ
,

(6)

where Θ(M1,M2) = diag
(

cos(σ̂1)
−1, cos(σ̂2)

−1, . . . ,

cos(σ̂r)
−1
)

are the canonical angles between two p× r or-

thogonal columns M1 and M2 [35], and σ̂1 ≥ σ̂1 ≥ . . . ≥
σ̂r ≥ 0 are the singular values of M⊤

1 M2. Despite of the

wide application range, Wedin’s theorem may not be suffi-

ciently precise for some analysis where left and right singu-

lar spaces change in different orders of magnitude after the

perturbation.

There is a number of works that present tighter per-

turbation bounds, but applicable only to problems with

known noise properties [26, 40]. On the other hand, Cai

and Zhang [3] recently established rate-optimal perturba-

tion bounds for the left and right singular spaces separately

without any noise assumption. In short, these bounds are

given by:

∥

∥

∥
sinΘ(U, Ũ)

∥

∥

∥
≤ min

(

ξz21 + ζz12
ξ2 − ζ2 − ς

, 1

)

(7)

and

∥

∥

∥
sinΘ(V, Ṽ )

∥

∥

∥
≤ min

(

ξz12 + ζz21
ξ2 − ζ2 − ς

, 1

)

, (8)

provided that ξ2 > ζ2 + ς , where ξ = σmin(U
⊤M̃V ),

ζ = ‖U⊤
⊥ M̃V⊥‖, ς = min(z221, z

2
12), z12 = ‖PUPPV⊥

‖
and z21 = ‖PU⊥

PPV ‖. Here, PD is projection operator

onto the column space of a matrix D [3], and ‖ · ‖ is either

the spectral (‖ · ‖2) or the Frobenius (‖ · ‖F ) matrix norm.

The bounds provided in Eqs. (7) and (8) tackle separately

the left and right subspaces and are tighter than Wedin’s

bound [3]. However, they involve projections of the per-

turbation matrix onto the noiseless right and left singular

subspaces, which are not known in practical applications.

3.3. Perturbation bounds and the 8PA

Here, we relate generic bounds for singular subspaces

and the 8-PA. Ideally, the measurement matrix An×9 used in

the 8-PA (recall Eq. (3)) presents rank r = 8. Using the no-

tation of Eq. (4), its SVD generates an 8×8 diagonal matrix

Σ1 containing all the non-zero singular values of A, with the

corresponding left and right singular vectors provided in U
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and V , respectively. Also, Σ2 should be an (n − 8)×1 null

matrix, and in particular e = V⊥ is the least right singular

vector that contains the elements of the epipolar matrix.

In practice, feature matching is not exact. Without loss

of generality (as done in [24]), let us assume that xi
1 corre-

sponds to the exact feature points in the first image and x̃
i
2

to the noisy correspondences in the second image, leading

to an approximate matrix Ã = A + P , where P is the per-

turbation. Due to matching errors, there is no guarantee that

Ã presents rank 8, so that Σ̃2 may not be null.

Our goal here is to estimate the error between the actual

essential matrix e = V⊥ and the estimated one ẽ = Ṽ⊥,

both expressed in vector form. A natural distance measure

is the angular distance between them, computed as

θ = ∠(e, ẽ) = cos−1
∣

∣e
⊤
ẽ
∣

∣ , (9)

which is a particular case of the canonical angles [35].

Furthermore, as analyzed in [8], the canonical angles re-

late to projection errors. More precisely, if PV = V V ⊤ and

PṼ = Ṽ Ṽ ⊤ are the orthogonal projection matrices onto

the subspaces spanned by the columns of V and Ṽ , respec-

tively, then

‖PV − PṼ ‖2 =
∥

∥

∥
sinΘ(V, Ṽ )

∥

∥

∥

2
. (10)

Also, since e and ẽ are the orthogonal complements of

V and Ṽ , respectively, then

|sin θ| = ‖Pe − Pẽ‖2 = ‖(I − PV )− (I − PṼ )‖2
= ‖PV − PṼ ‖2 =

∥

∥

∥
sinΘ(V, Ṽ )

∥

∥

∥

2
,

(11)

recalling that θ is the angle between e and ẽ. Combining

Eq. (11) with Wedin’s bound provided by Eq. (6), we can

conclude that

| sin θ| ≤ ‖P‖2
δ

≤ ‖P‖F
δ

, (12)

meaning that the error in the estimate of the essential ma-

trix is proportional to the norm of the perturbation P and

inversely scaled by the second least singular value of Ã.

Although the spectral norm provides a tighter bound, the

Frobenius norm will be used, since it can be expressed only

in terms of the matching errors. In fact, we can express the

perturbation matrix P = Ã−A as a function of the matched

points xi
1, xi

2 and x̃
i
2. Based on Eq. (3), the ith row of P is

given by

Pi =
[

xi
1

(

∆x
i
2

)⊤
yi1
(

∆x
i
2

)⊤
zi1
(

∆x
i
2

)⊤
]

, (13)

where ∆x
i
2 = x̃

i
2 − x

i
2. Hence,

‖P‖F =

√

√

√

√

n
∑

i=1

9
∑

j=1

|Pij |2 =

√

√

√

√

n
∑

i=1

‖∆xi
2‖2‖xi

1‖2

=

√

√

√

√2

n
∑

i=1

(1− cosαj),

(14)

where αj = ∠(x̃i
2,x

i
2) is the angular matching error.

Hence, the total perturbation ‖P‖F does not depend on the

choice of the feature points xi
1 on the first image, but solely

on the matching errors on the second image.

Furthermore, a typical error measure when estimating

fundamental/essential matrices is based on the relative er-

ror using the Frobenius norm. If E and Ẽ denote the matrix

forms of the essential matrices related to e and ẽ, respec-

tively, then d(E, Ẽ) = min{‖E − Ẽ‖F , ‖E + Ẽ‖F }, can

be used to measure the error of the estimated matrix. Hence,

d(E, Ẽ) = min{‖e− ẽ‖2, ‖e+ ẽ‖2}
=
√

2 (1− cos θ′),
(15)

where θ′ = min{θ, π − θ} = sin−1 | sin θ| ∈ [0, π/2].
Since Eq. (12) provides bounds for | sin θ|, we have

d(E, Ẽ) ≤
√

2

[

1− cos

(

sin−1 min

{

1,
‖P‖
δ

})]

.

(16)

3.4. Relationship between the gap δ and the spatial
distribution of the features

One interesting aspect of the bound presented in inequal-

ity (6) is that the denominator δ is fully computable based

on the observed matrix Ã, without any knowledge on the

noiseless matrix A. More precisely, δ = σ̃8 is the second

least singular value of Ã, which depends on several aspects:

the 3D structure of the scene (noting that points along a sin-

gle plane lead to degeneracy), the locations of selected key-

points, the relative camera poses and the FoV of the cam-

eras. In particular, some authors [13, 45, 47] have empiri-

cally studied the effect of the camera FoV. Here, we provide

a more formal relationship by relating the gap δ with the

spatial distribution of the features, which is highly related

to the camera FoV.

Let us consider the singular values of Ã given by σ̃1 ≥
σ̃2 ≥ · · · ≥ σ̃9, where σ̃i =

√

λ̃i and λ̃i is one of the

first nine eigenvalues of Ã⊤Ã (or, equivalently, of ÃÃ⊤).

Hartley [15] showed that when using un-normalized homo-

geneous coordinates, the entries along the diagonal of Ã⊤Ã
vary considerably in magnitude and used interlacing proper-

ties to find estimates on the eigenvalues and condition num-

ber of the matrix. When using unit vectors, however, such
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analysis is not possible. Instead, we evaluate the impact

of the spatial distribution of the matched features, which is

strongly affected by the FoV of the cameras.

Merikoski et al. [23] presented several bounds for sin-

gular values and eigenvalues based on traces. In particular,

they showed that for a square matrix Bp×p with real non-

negative eigenvalues (in decreasing order), the second least

eigenvalue satisfies the following condition:

λp−1(B) ≤ tr(B)

p− 1
−
√

1

(p− 1)(p− 2)

(

tr(B2)− tr(B)2

p− 1

)

.

(17)

If we consider B = Ã⊤Ã (so that p = 9), we have that

tr(B) = ‖Ã‖2F =

n
∑

i=1

‖xi
1‖2‖x̃i

2‖2 = n, (18)

recalling that n is the number of matched points. Since B is

symmetric, we also have that tr(B2) = tr(B⊤B) = ‖B‖2F .

Let us also consider C = ÃÃ⊤, so that tr(B⊤B) =
tr(C⊤C) = ‖C‖2F . Matrix C = [cij ]n×n presents an inter-

esting structure, since each element is given as a dot product

of rows from Ã:

cij = ÃiÃ
⊤
j

= xi
1x

j
1(x̃

i
2)

⊤
x̃
j
2 + yi1y

j
1(x̃

i
2)

⊤
x̃
j
2 + zi1z

j
1(x̃

i
2)

⊤
x̃
j
2

= (xi
1)

⊤
x
j
1(x̃

i
2)

⊤
x̃
j
2 = (cosβij)(cos γij),

(19)

where βij = ∠(xi
1,x

j
1) and γij = ∠(x̃i

2, x̃
j
2) are the angles

between features i and j in the first and second images, re-

spectively. Clearly, both βij and γij are limited by the FoV

of the camera: if it is small, the entries cij tend to be closer

to one. Also, we have that

‖C‖2F =
∑

i

∑

j

c2ij =
∑

i

∑

j

(cos2 βij)(cos
2 γij). (20)

Recalling that σ̃8 =
√

λ̃8, we simplify Eq. (17) to obtain

σ̃8 ≤

√

n

8
− 1

8

√

8‖C‖2F − n2

7
. (21)

If all the angles βij and γij are small, ‖C‖F tends to be

larger, yielding a smaller value for δ = σ̃8 and hence more

potential sensibility to perturbations. In the limit, we have

‖C‖F ≈ n, which leads to δ ≈ 0. In this case, even small

perturbations P can lead to highly degraded estimates for

the epipolar matrix. On the other hand, the bound in in-

equality (21) is at most
√
n/8, which is an “optimistic” up-

per bound for δ (best case scenario), leading to δ = O(
√
n).

Also, note that a single outlier can significantly increase the

perturbation ‖P‖F according to Eq. (14), so that n must be

very large to compensate for the presence of “bad” outliers.

Our analysis can be easily extended to weighted ver-

sions of the 8-PA, which is used in Iterative Reweighted

Least-Squares schemes (IRLS) [39] or in the loss func-

tion of recent deep learning approaches [46]. This in-

volves defining an n×n diagonal matrix W = [wij ] with

the weights for each correspondence pair and minimiz-

ing ‖WAe‖2. In that case, the perturbation error is

‖WP‖F =
√

∑n
i=1 w

2
ii‖x̃i

2 − xi
2‖2, so that the influence

of outliers can be alleviated by choosing small weights for

bad matches.

3.5. Perturbation analysis of 5DoF pose estimation
from the essential matrix

For calibrated or spherical cameras, the 5-DoF pose pa-

rameters – rotation and the direction of the translation vec-

tor – can be extracted from the essential matrix through the

SVD [14]. In particular, the direction of the translation vec-

tor is given by the least left singular vector t of E, and it is

more prone to errors in the essential matrix than the rotation

matrix, as noted in [25, 38].

Let us consider a true rank-2 essential matrix E with

‖E‖F = 1, and let t and t̃ denote the least left singu-

lar values of E and its estimate Ẽ, respectively, and as-

sume that the direction ambiguity was solved (e.g. by using

cheirality constraints [37]). Using the notation of Eqs. (4)

and (5), the SVD of E generates a 2×2 diagonal matrix

Σ1 = 1√
2
I2 containing the two equal singular values of

E, and an 1×1 null matrix Σ2 (consider an analogous no-

tation for the SVD of Ẽ). The least left singular vectors

of E and Ẽ are given by t = U⊥ and t̃ = Ũ⊥, respec-

tively. Note that the gap between Σ̃1 and Σ2 is given by

δE = min{Σ̃1} − max{Σ2} = σ2(Ẽ), so that Wedin’s

theorem gives

| sinω| ≤ 1

σ2(Ẽ)
‖E − Ẽ‖F =

1

σ2(Ẽ)
‖e− ẽ‖, (22)

where ω = ∠(t̃, t) is the angle between the actual and

the estimated translation values, and σ2(Ẽ) is the second

least singular value of Ẽ. For small perturbations, we ex-

pect σ2(Ẽ) ≈ σ2(E) = 1/
√
2. More precisely, Weyl’s

bound [43] relates the qth pair of singular values σq(Ẽ) and

σq(E) through

∣

∣

∣
σq(Ẽ)− σq(E)

∣

∣

∣
≤ ‖E − Ẽ‖2 ≤ ‖E − Ẽ‖F , (23)

so that a looser version of the bound in Eq. (22) can be ex-

pressed solely based on the difference between e and ẽ:

| sinω| ≤
√
2‖e− ẽ‖

1−
√
2‖e− ẽ‖

. (24)
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(a) 54.4◦×37.8◦ (b) 65.5◦×46.4◦ (c) 195◦×195◦ (d) 360◦×180◦

Figure 1: Unitary feature projections in different FoVs.

4. Experimental results

4.1. Synthetic feature matching

In our experimental setup, we first present results using

a set of synthetic 3D points projected to calibrated cam-

eras with known parameters, and add artificial noise to the

feature locations on the second view. Since the feature

are 3D unit vectors (i.e., on the unit sphere), we add von

Mises-Fisher (vMF) noise, as done in [12]. We consider the

FoVs of typical perspective cameras with 54.4◦×37.8◦ and

65.5◦×46.4◦ [27], a 195◦ fisheye wide-angle camera [19]

and a full-spherical camera [2].

Noise is controlled by parameter κ in the vMF distri-

bution. Here, we select κ ∈ {500; 1, 000; 2, 000; 10, 000}
corresponding to average angular matching errors equiva-

lent to 3.21◦, 2.27◦, 1.60◦ and 0.72◦, respectively. For each

combination of FoV and noise level, we generate 1,000 ex-

periments, each one containing 100 3D points randomly

selected within a 5-10m radius (constrained to the camera

FoV), simulating a large indoor environment. The second

camera was randomly placed within a [−1, 1]3 cube with

arbitrary rotation. For the sake of illustration, the spheri-

cal projection of one set of features using the four selected

FoVs is depicted in Figure 1.

Table 1 presents the average sine error between e and

ẽ for each combination, as well as the Wedin’s bound

(Eq. (12)) and Cai and Zhangs’ bound (Eq. (8))1. Both

bounds decrease as the noise level decreases and the FoV

increases, as expected. However, on average they showed to

be quite loose bounds when compared to the actual errors.

Cai and Zhangs’ bound tends to be tighter than the Wedin’s,

but it is important to recall that it is not computable on prac-

tical applications, and thus we will focus only on Wedin’s

bound hereafter in our analysis.

Although Wedin’s bound showed to be loose, it still pro-

vides useful insights into the essential matrix accuracy as

a function of the camera FoVs. Figure 2 illustrates the

averaged results for the singular gap δ, the sine error and

Wedin’s perturbation bound by using an extensive combi-

nation of the horizontal and vertical FoVs (abbreviated as

HFoV and VFoV, respectively). A total of 100 simulations

1Since these bounds produce trivial values (≥ 1) for narrow FoVs, we

only show the results for wider FoVs.

per HFoV×VFoV was performed using the same setup ex-

plained before, and Wedin’s bound was truncated in value 1.

Also, we vary the noise levels, setting κ = 500, κ = 10, 000
and κ = 1, 000, 000 which correspond to an average an-

gular error of 3.21◦, 0.72◦ and 0.071◦, respectively. The

selected range for κ encompasses the tolerances of 0.5625◦

and 2◦ for considering corresponding points as true matches

as argued in [48] and [11], respectively.

Figure 2 shows that the maximum δ occurs around the

full 360 degrees FoV (first row), presenting a practically

stable value regardless of the tested noise level. In fact,

the variance on the full FoV for all noise levels is around

2.8×10−5. Interestingly, the “optimal” VFoV is slightly be-

low 180◦. We believe that this happens because using the

full VFoV leads to a circular domain, which might increase

the number of neighboring features. Moreover, as expected,

when the noise level increases the sine error also increases

(second row), and Wedin’s bound behaves similarly (third

row). It is also possible to see that for higher noise lev-

els combined with narrower FoVs, Wedin’s bound turns to

be useless because its value is even greater than the trivial

bound 1. Last but not least, we found in our experiments

that the Spearman’s correlation [34] between the the gap δ
and the diagonal FoV (DFoV) is around 0.775, 0.863 and

0.877 for κ = {500; 10, 000; 1, 000, 000}, respectively (p-

value ≪ 0.01), indicating a strong relationship.

The second part of the analysis consists of estimating

the accuracy of the 5-DoF pose extracted from the essen-

tial matrix (here, we assume the calibrated/spherical case).

Our evaluation metric for the 2-DoF translation vector is the

angular error [45] given by

εt = cos−1(t⊤t̃). (25)

For the sake of illustration, we also show the rotation

matrix error, given as the angles between the actual matrix

R and the estimate R̃ [38], which is defined as

εR = cos−1

(

tr(R⊤R̃)− 1

2

)

. (26)

Figure 3 presents the average translation and rotation er-

rors as a function of the angular matching error. The dis-

tribution of the 3D points, minimum and maximum val-

ues for κ and the FoVs are the same as in the experiment

related to Table 1. Note that the rotation error is much

smaller than the translation error not only for narrow FoVs,

as noted in [25, 38], but also for wider FoV cameras. It is

also evident that the translation error decreases as the FoV

increases, since the essential matrix is estimated more ac-

curately. For the wider FoVs (195◦×195◦ and 360◦×180◦)

we also present Wedin’s bound for the angle between the

actual and the estimated 2-DoF translation vector, as given

in Eq. (22). For narrower FoVs the bound is greater than the

trivial value, and hence not shown.
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κ

54.4◦×37.8◦ 65.5◦×46.4◦ 195◦×195◦ 360◦×180◦ 195◦×195◦ 360◦×180◦ 195◦×195◦ 360◦×180◦

Sine error Wedin’s bound [41] Cai and Zhangs’ bound [3]

500 0.782 ± 0.230 0.778 ± 0.226 0.340 ± 0.252 0.085 ± 0.045 0.868 ± 0.088 0.607 ± 0.076 0.891 ± 0.073 0.671 ± 0.148

1,000 0.781 ± 0.221 0.756 ± 0.241 0.190 ± 0.180 0.054 ± 0.027 0.769 ± 0.136 0.446 ± 0.054 0.705 ± 0.174 0.335 ± 0.082

2,000 0.780 ± 0.223 0.756 ± 0.234 0.103 ± 0.090 0.036 ± 0.017 0.666 ± 0.165 0.326 ± 0.039 0.543 ± 0.205 0.177 ± 0.036

10,000 0.679 ± 0.248 0.563 ± 0.253 0.033 ± 0.025 0.015 ± 0.007 0.356 ± 0.117 0.149 ± 0.017 0.223 ± 0.145 0.053 ± 0.011

Table 1: Impact of the variation in FoV and noise level when computing the perturbation levels.
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Figure 2: Average results for the delta value, the sine error and the Wedin’s bound (in the rows) for different noise levels (in

the columns) and FoVs. From the left to the right, κ = 500, κ = 10, 000 and κ = 1, 000, 000.
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Figure 3: 5-DoF pose error for different noise levels.

To evaluate the impact of outliers, we corrupted a set of

n ∈ [10; 3, 500] noisy matchings (κ = 16, 250) with a sin-

gle outlier. The actual sine error and Wedin’s bound decay

proportionally to O(1/
√
n), leading to Pearson’s correla-

tions ρ = 0.9932 and ρ = 0.9973 (p-value ≪ 0.01), re-

spectively. This corroborates our findings in Section 3.4.

4.2. Real feature matching

Although the vMF noise model is suitable for the chosen

features, matching noise in real images is highly dependent

on the feature extractor and the local appearance of the im-

ages. Since we are not aware of existing datasets with wide

FoV cameras (e.g., spherical) and ground truth data w.r.t.

the essential matrix, we use realistic computer generated

scenes as done in [10, 11, 47]. We rendered non-aligned and

non-rectified pairs of spherical images using the Blender

Cycles models Urban Canyon and Indoor, made available

by [47], and the Classroom, recently used in [6]. We also

considered scene captures of the Medieval Port model along

with the 6-DoF pose ground-truth from [10]. The former

and the latter datasets are outdoors, and the other two are

indoors. All images are rendered at a 1280×640 resolution

in equirectangular format, and Figure 4 illustrates a single

spherical view from each dataset.

To obtain the required correspondences for the 8-PA, we
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(a) Medieval Port [10] (b) Urban Canyon [47]

(c) Indoor [47] (d) Classroom [6]

Figure 4: Datasets used for validation.

used the spherical ORB (SPHORB) [48], which is suited for

spherical images, faster than spherical SIFT (SSIFT) [4] and

with publicly available code (https://github.com/

tdsuper/SPHORB). Given the correspondence pairs, we

robustly estimate the epipolar matrix by using RANSAC,

and consider a feature pair as inlier if its symmetric pro-

jected distance [29] is smaller than 10−2. We accept a

model if it has at least 70% of inliers.

Tables 2 and 3 present the average translation and ro-

tation errors (Eqs. (25) and (26)), as well as the epipolar

error (Eq. (15)) and the δ value for the four datasets and

the four different FoVs (set as in the synthetic matching ex-

periments). For each experiment, a total of 1,000 pairs of

images was randomly selected, and the FoV was restricted

so that the narrow FoV cameras are pointing out to some

location aligned to the scene’s horizon. Besides the results

for 8-PA, we also show the pose errors after applying the

non-linear 5-DoF pose refinement (NLR) based on the pro-

jected distance that is, among other three options, pointed

out as the best performing in [29].

In the experiment shown in Table 2, the number of

matchings is restricted to be the same as the one of the

smaller FoV, so that the main observable variable on the

results is the spreading of the features. The average num-

ber of keypoints in this experiment was 132.8± 83.9. Note

that the results in synthetic images with real feature match-

ing corroborate the results from Section 4.1, i.e., the wider

the FoV the smaller the epipolar and 5-DoF pose errors, and

larger the value of δ.

Table 3 shows the metrics using all available matches

for each tested FoV (more matches are expected for wider

FoVs). The average number of correspondences in this

new test indeed increased with the FoV: 134.8 ± 86.0,

166.8± 115.1, 722.9± 681.3 and 1288.4± 1189.0, respec-

tively. Our results indicate that increasing the number of

(“good”) features indeed helps to improve even more the

8-PA results, especially for wider FoVs. Also, as noted

Metric 54.4◦×37.8◦ 65.5◦×46.4◦ 195◦×195◦ 360◦×180◦

d(E, Ẽ) 0.849±0.687 0.815±0.698 0.134±0.287 0.100±0.260
εt (8-PA) 39.727±36.301 37.445±35.618 11.941±37.707 8.936±27.426
εt (NLR) 38.497±37.456 35.770±37.816 11.521±37.899 8.214±27.770
εR (8-PA) 8.383±20.913 7.629±18.385 1.923±7.802 1.684±8.952
εR (NLR) 8.276±20.852 7.235±17.511 1.500±7.022 1.453±8.705

δ 0.033±0.017 0.038±0.022 0.150±0.087 0.257±0.157

Table 2: Results for synthetic imagery for different FoVs

when the number of keypoints is limited.

Metric 54.4◦×37.8◦ 65.5◦×46.4◦ 195◦×195◦ 360◦×180◦

d(E, Ẽ) 0.818±0.667 0.777±0.675 0.053±0.611 0.038±0.052
εt (8-PA) 37.280±33.974 35.323±33.994 8.480±34.474 3.427±15.588
εt (NLR) 35.936±34.534 33.728±36.002 8.421±34.469 3.157±15.566
εR (8-PA) 6.053±10.479 5.417±7.015 0.2865±0.5924 0.083±0.077
εR (NLR) 6.203±12.603 5.126±7.209 0.208±0.519 0.065±0.066

δ 0.034±0.017 0.043±0.023 0.388±0.188 0.851±0.365

Table 3: Results for synthetic imagery for different FoVs

with free number of keypoints.

by [47], wider FoVs greatly improve pose and 3D estima-

tion based on non-linear bundle adjustment algorithms since

features are more likely to be visible in more than two cap-

tures of temporally aligned image sets.

5. Conclusions

We present a perturbation analysis for epipolar matrix

estimation using the well-known 8-PA by exploring singu-

lar subspace analysis. We show that the bound is inversely

proportional to the second least singular value of the ob-

servation matrix, which is strongly affected by the spatial

distribution of the matched features. In particular, the fea-

tures extracted when using narrow FoV images are spatially

concentrated, leading to larger bounds (and according to our

experiments, also larger errors in the estimate of the epipo-

lar matrix). On the other hand, cameras with wider FoV (in

the limit case spherical images) present a much better spa-

tial distribution of features, leading to smaller bounds and

smaller effective errors in the estimated matrix. This sug-

gests that expensive non-linear approaches for pose (or pose

plus 3D) refinement might be relaxed or even suppressed

when using spherical cameras.

In the future, we intend to approximate tighter bounds

(as [3]) using only observable data, better explore the sin-

gular gaps of the epipolar matrices for the 2-DoF translation

vector, and extend our bounds for the rotation matrix case.
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