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1. On the implementation details
Architectures and hyperparameters employed for each ex-
periment are reported in Tab. 1, in terms of the type of
blocks, autoregressive layers, mini-batch size, learning rate
and weight of the log-likelihood objective. All intermediate
layers are Leaky ReLU activated. The objective function is
optimized using Adam [2]. All hyperparameters are tuned
on a held-out validation set, by minimizing the raw objec-
tive (Eq. 4 with λ = 1).

2. On the log-likelihood objective
In this section, we detail how the log-likelihood term (Eq. 4
in the main paper) has been computed and optimized. Im-
portantly, as mentioned in the main paper, we model each
CPD through a multinomial. To this aim, we firstly need
that the encoder acts as a bounded function. To achieve
such desideratum, we simply employ a sigmoidal activa-
tion, ensuring that latent representations z = f(x; θf ) re-
side in [0, 1]d. Therefore, for each zj with j = 1, 2, . . . , d,
we perform a linear quantization of the space [0, 1] inB bins
(where B is a hyperparameter). This latter step provides
for zj a B-dimensional categorical distribution φ(zj), high-
lighting the correct bin to which zj belongs. For each CPD,
such distribution will serve as ground truth for the estima-
tor h(z; θh), the latter coherently predicting d distributions
p(zj |z<j) across the B bins, employing a softmax activa-
tion. This way, as shown in Eq. 1, the LLLK loss turns out to
be a valid likelihood term, defined as the cross-entropy loss
between each one of the estimated CPD and their categori-
cal counterparts:

LLLK(θf , θh) = Ex∼P

[
−

d∑
j=1

B∑
k=1

φ(zj)k log(p(zj |z<j)k)

]
.

(1)
It is worth noting that multinomials are just one of the plau-
sible models for the CPDs. Indeed, if we replace them
with Gaussians, the overall framework would leave stand-
ing. However, as we observed in different trials, this choice

does not yield considerable improvements but rather numer-
ical instabilities, as described in prior works [5].

3. On the relations to Variational Autoencoders

Our framework yields some similarities with the Variational
Autoencoder (VAE) [3]. Indeed, they both approximate the
integral of Eq. 1 in the main paper through the minimiza-
tion of the reconstruction error under a regularization con-
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Mini Batch 256 256 2760 8 16
Learning Rate 10−4 10−3 10−3 10−3 10−3

λ 1 0.1 0.1 1 1
*Patches extracted from input clips having shape 1,16,256,384.

Table 1. Architectural and optimization hyperparameters of each
setting. We denote with DC

S (downsampling), UC
S (upsampling)

and RC (residual) the parametrizations for the employed building
blocks (see Fig. 1ii in the main paper). On the one hand, C is
the number of output channels, whereas S is the stride of the first
convolution in the block. Additionally, FCC and TFCC denote
dense layers and temporally-shared full connections respectively
(in this case, C is the number of output features). Finally, we refer
to MFCC and MSCC for the proposed autoregressive layers, illus-
trated in Fig. 3 in the manuscript. For a comprehensive description
of each type of layer, please refer to Sec. 3.1 of the main paper.
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FID VAE Samples Our Samples FID

149.72 72.96

172.02 72.53

181.56 76.27

188.37 67.33

202.06 68.33

207.47 73.92

186.48 62.26

220.79 64.38

164.36 52.53

204.84 67.17

Figure 1. For all CIFAR-10 classes (organized in different rows), we report images sampled from VAEs (left) and the proposed autoencoders
with autoregressive priors. As can be seen, our samples visually exhibit fine-grained details and sharpness, differently from the heavily
blurred ones coming from VAEs. Finally, the over-regularization arising from VAE is confirmed when looking at FID scores (at the
extremes of the figure, the lower, the better).

straint involving a prior distribution on latent vectors. How-
ever, it is worth noting several fundamental distinctions.
Firstly, our model does not provide an explicit strategy to
sample from the posterior distribution, thus resulting in a
deterministic mapping from the input to the hidden repre-
sentation. Secondly, while VAE specifies an explicit and
adamant form for modeling the prior p(z), in our formula-
tion its landscape is free from any assumption and directly
learnable as a result of the estimator’s autoregressive nature.
On this point, our proposal leads to two beneficial aspects.
First, as the VAE forces the codes’ distribution to match the
prior, their differential entropy converges to be the same as
the prior. This behavior results in approximately stationary
entropies across different settings (appreciable in Fig. 2 in
the main paper, where we discuss the intuition behind the
entropy minimization within a novelty detection task). Sec-
ondly, the employment of a too simplistic prior may lead
to over-regularized representations, whereas our proposal is
less prone to such risk. Empirical evidence of such behav-
ior can also be appreciated in Fig. 1, where we draw new
samples from VAE and our model, both of which has been
trained on CIFAR-10. All settings being equal, our halluci-
nations are visually much more realistic than the ones com-

ing from VAEs, the latter leading to over-smooth shapes and
lacking any details, as further confirmed by the substantial
differences in Fréchet Inception Distance (FID) scores [1].

4. On the dual nature of novelty

In this section, we stress how significant is the presence
of both terms for obtaining a highly discriminative novelty
score (NS, Eq. 9 in the main paper): namely the reconstruc-
tion error (REC), modeling the memory capabilities, and the

LLK REC NS

MNIST 0.926 0.949 0.975
CIFAR-10 0.627 0.603 0.641
UCSD Ped2 0.933 0.909 0.954
ShanghaiTech 0.695 0.726 0.725
DR(eye)VE 0.917 0.863 0.926

Table 2. For each setting, AUROC performances under three dif-
ferent novelty scores: i) the log-likelihood term (LLK), ii) the re-
construction term (REC), and iii) the proposed scheme accounting
for both (NS).
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Figure 2. Sample training log-likelihood of a Bayesian Network
modeling the distribution of latent codes produced by the encoder
of our model trained on MNIST digits. When the BN structure re-
sembles the autoregressive order imposed during training, a much
higher likelihood is achieved. This behavior is consistent in all
classes and supports the capability of the encoder to produce codes
that respect a pre-imposed autoregressive structure.

log-likelihood term (LLK), capturing the surprisal inducted
from latent representations. Aiming to reinforce this lat-
ter point, just briefly illustrated in Fig. 4 of the manuscript,
we report in Tab. 2 performances - expressed in AUROC
- delivered by different scoring strategies on each setting
mentioned in the main paper. Except for ShanghaiTech, we
systematically observe a reward in accounting for both as-
pects. Furthermore, for MNIST and CIFAR-10, we find par-
ticularly interesting the gap in performance arising from our
reconstruction error w.r.t. the one arising from the denois-
ing autoencoder (DAE) variants (0.942 and 0.590 for the
two datasets respectively, as reported in Tab. 1 of the main
paper). In this respect, we gather new evidence support-
ing that surprisal minimization acts as a novelty-oriented
regularizer for the overall architecture, as it improves the
discriminative capability of the reconstruction (as already
conjectured in Sec. 4.1 of the main paper).

5. On the causal structure of representations
We now investigate the capability of our encoder to pro-
duce representations that respect the autoregressive causal
structure imposed by the LLK loss (mentioned in Sec. 3 of
the main paper). To this aim, we extract representations
out of the ten models trained on MNIST digits and fit their
distribution using a structured density estimator. Specifi-
cally, we employ Bayesian Networks (BNs) with different
autoregressive structures. In this respect, each BN is mod-
eled with Linear Gaussians [4], s.t. each CPD p(zi|Pa(zi))
with i = 1, 2, . . . , d is given by:

p(zi|Pa(zi)) = N (zi | w(i)
0 +

∑
zj∈Pa(zi)

w
(i)
j zj , σ

2
i ), (2)

where each w(i)
j , σ2

i are learnable parameters. We indicate
with Pa(zi) the parent variables of zi in the BN. The pre-

vious equation holds for all nodes, except for the root one,
which is modeled through a Gaussian distribution. Con-
cerning the BN structure, we test:

• Autoregressive order: the BN structure follows the
autoregressive order imposed during training, namely
Pa(zi) = {zj | j = 1, 2, . . . , i− 1}

• Random order: the BN structure follows a random au-
toregressive order.

• Inverse order: the BN structure follows an autoregres-
sive order which is the inverse with respect to the one
imposed during training, namely Pa(zi) = {zj | j =
i+ 1, i+ 2, . . . , d}

It is worth noting that, as the three structures exhibit the
same number of edges and independent parameters, the dif-
ference in their fitting capabilities is only due to the causal
order imposed over variables.
Fig. 2 reports the sample training log-likelihood of all BN
models. Remarkably, the autoregressive order delivers a
better fit, supporting the capability of the encoder network
to extract features with learned autoregressive properties.
Moreover, to show that this result is not due to overfitting or
other lurking behaviors, we report in Tab. 3 log-likelihoods
for training, validation and test set.

6. On the entropy minimization

To provide an additional grasp about the role of the rep-
resentation’s entropy minimization, we focus on a single
MNIST digit (class 7) and report in Fig. 3 some randomly

Loss weight Reconstructions

λ = 0.01

λ = 1

λ = 100

Figure 3. MNIST reconstructions delivered by different values of
λ, the latter controlling the impact of the differential entropy min-
imization.



Classes
0 1 2 3 4 5 6 7 8 9

ARG
Train -201.60 -161.60 -171.43 -172.73 -174.17 -186.48 -158.22 -162.37 -171.65 -154.11
Val -200.96 -160.38 -170.10 -172.29 -173.85 -185.25 -157.22 -162.20 -171.42 -154.02
Test -200.89 -159.73 -169.64 -170.75 -172.40 -184.27 -157.74 -161.65 -170.10 -152.70

RDM
Train -496.33 -456.34 -466.16 -467.47 -468.90 -481.21 -452.95 -457.10 -466.39 -448.84
Val -495.69 -455.11 -464.83 -467.02 -468.58 -479.98 -451.95 -456.93 -466.15 -448.75
Test -495.62 -454.47 -464.37 -465.48 -467.13 -479.00 -452.48 -456.38 -464.83 -447.43

INV
Train -791.06 -751.07 -760.89 -762.20 -763.63 -775.94 -747.68 -751.83 -761.12 -743.57
Val -790.42 -749.84 -759.56 -761.75 -763.31 -774.71 -746.68 -751.66 -760.88 -743.48
Test -790.35 -749.20 -759.11 -760.22 -761.86 -773.73 -747.21 -751.12 -759.56 -742.16

Table 3. Sample log-likelihood obtained by different BN structures when fitting MNIST representations. Each BN is trained on latent
codes computed from the training set of a single class, following either the autoregression order (ARG), a random order (RDM) or the
order inverse to autoregression (INV). We report the log-likelihood also on the validation and test set. For train-val-test split, see Sec 4.1
of the paper. Only “normal” test samples are used in this evaluation.

sampled reconstructions from the training set. Such re-
constructions are learned under three different regulariza-
tion regimes, represented by different weights on the log-
likelihood objective (λ, Eq. 4 in the main paper). As shown
in Fig. 3, higher degrees of regularization (i.e., stricter con-
straints on entropy) deliver near mode-collapsed reconstruc-
tions, losing sharp variations in favor of capturing fewer
prototypes for the input distribution.

7. On the complexity of autoregressive layers
In this section, we briefly discuss the complexity of Masked
Fully Connected (MFC) and Masked Stacked Convolution
(MSC) layers (Fig. 3 of the main paper)1: adhering to the
notation introduced in Sec. 3 from the main paper, MFC
exhibits d2+d

2 · ci · co + d · co trainable parameters and a
computational complexity O(d2 · ci · co). MSC, instead,
features 3d2+d

2 ci · co + d · co free parameters and a time
complexity O(d2 · ci · co · t).

8. On the localizations and novelty scores in
video anomaly detection

We show in Fig. 4 other qualitative evidence of the behavior
of our model in video anomaly detection settings, namely
UCSD Ped2 and ShanghaiTech.
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Figure 4. Novelty scores and localizations maps for several test clips from UCSD Ped2 (left) and ShanghaiTech (right).


