
Supplementary materials for:

Strike (with) a Pose: Neural Networks Are Easily Fooled

by Strange Poses of Familiar Objects

S1. Extended description of the 3D object dataset and its evaluation

S1.1. Dataset construction

Classes. Our main dataset consists of 30 unique 3D object models corresponding to 30 ImageNet classes relevant to a traffic

environment. The 30 classes include 20 vehicles (e.g., school bus and cab) and 10 street-related items (e.g., traffic

light). See Fig. S2 for example renders of each object.

Acquisition. We collected 3D objects and constructed our own datasets for the study. 3D models with high-quality image

textures were purchased from turbosquid.com, free3d.com, and cgtrader.com.

To make sure the renders were as close to real ImageNet photos as possible, we used only 3D models that had high-quality

2D image textures. We did not choose 3D models from public datasets, e.g., ObjectNet3D [52], because most of them do not

have high-quality image textures. While the renders of such models may be correctly classified by DNNs, we excluded them

from our study because of their poor realism. We also examined the ImageNet images to ensure they contained real-world

examples qualitatively similar to each 3D object in our 3D dataset.

3D objects. Each 3D object is represented as a mesh, i.e., a list of triangular faces, each defined by three vertices [27]. The

30 meshes have on average 9, 908 triangles (see Table S1 for specific numbers).

3D object Tessellated NT Original NO

ambulance 70,228 5,348

backpack 48,251 1,689

bald eagle 63,212 2,950

beach wagon 220,956 2,024

cab 53,776 4,743

cellphone 59,910 502

fire engine 93,105 8,996

forklift 130,455 5,223

garbage truck 97,482 5,778

German shepherd 88,496 88,496

golf cart 98,007 5,153

jean 17,920 17,920

jeep 191,144 2,282

minibus 193,772 1,910

minivan 271,178 1,548

3D object Tessellated NT Original NO

motor scooter 96,638 2,356

moving van 83,712 5,055

park bench 134,162 1,972

parking meter 37,246 1,086

pickup 191,580 2,058

police van 243,132 1,984

recreational vehicle 191,532 1,870

school bus 229,584 6,244

sports car 194,406 2,406

street sign 17,458 17,458

tiger cat 107,431 3,954

tow truck 221,272 5,764

traffic light 392,001 13,840

trailer truck 526,002 5,224

umbrella 71,410 71,410

Table S1: The triangle number for the 30 objects used in our study. NO shows the number of triangles for the original 3D

objects, and NT shows the same number after tessellation. Across 30 objects, the average triangle count increases ∼ 15x

from NO = 9, 908 to NT = 147, 849.

S1.2. Manual object tessellation for experiments using the Differentiable Renderer

In contrast to ModernGL [1]—the non-differentiable renderer (NR) in our paper—the differentiable renderer (DR) by

Kato et. al [19] does not perform tessellation, a standard process to increase the resolution of renders. Therefore, the render



quality of the DR is lower than that of the NR. To minimize this gap and make results from the NR more comparable with

those from the DR, we manually tessellated each 3D object as a pre-processing step for rendering with the DR. Using the

manually tessellated objects, we then (1) evaluated the render quality of the DR (Sec. S1.3); and (2) performed research

experiments with the DR (i.e., the DR-G method in Sec. 4.4).

Tessellation. We used the Quadify Mesh Modifier feature (quad size of 2%) in 3ds Max 2018 to tessellate objects, increasing

the average number of faces ∼15x from 9, 908 to 147, 849 (see Table S1). The render quality after tessellation is sharper and

of a higher resolution (see Fig. S1a vs. b). Note that the NR pipeline already performs tessellation for every input 3D object.

Therefore, we did not perform manual tessellation for 3D objects rendered by the NR.

(a) DR without tessellation (b) DR with tessellation (c) NR with tessellation

Figure S1: A comparison of 3D object renders (here, ambulance and school bus) before and after tessellation.

(a) Original 3D models rendered by the differentiable renderer (DR) [19] without tessellation.

(b) DR renderings of the same objects after manual tessellation.

(c) The non-differentiable renderer (NR), i.e., ModernGL [1], renderings of the original objects.

After manual tessellation, the render quality of the DR appears to be sharper (a vs. b) and closely matches that of the NR,

which also internally tessellates objects (b vs. c).

S1.3. Evaluation

We recognize that a reality gap will often exist between a render and a real photo. Therefore, we rigorously evaluated

our renders to make sure the reality gap was acceptable for our study. From ∼100 initially-purchased 3D object models, we

selected the 30 highest-quality objects that both (1) passed a visual human Turing test; and (2) were correctly recognized



with high confidence by the Inception-v3 classifier [44].

S1.3.1 Qualitative evaluation

Here, we attempt to provide a qualitative “apples to apples” comparison between renders of our high-quality 3D objects

and photos of their real-world counterparts by generating (real photo, render) pairs. The entire process follows the standard

pose-annotation procedure (e.g., for the Pix3D [43] or YCB-Video [53] datasets) and is described below:

1. We retrieved ∼3 real photos for each 3D object (e.g., a car) from the Internet using descriptive information (e.g., a car’s

make, model, and year).

2. For each real photo, we replaced the object with matching background content via Adobe Photoshop’s Context-Aware

Fill-In feature to obtain a background-only (i.e., no foreground objects) photo B.

3. We then rendered the 3D object on the background B obtained in Step 2 and manually aligned the pose of the 3D object

so that it closely matched the reference photo.

4. Finally, we evaluated the (photo, render) pairs in a side-by-side comparison.

In total, we generated 116 (photo, render) pairs for two sets of 3D objects:

• Set 1: The 30 objects used as the 3D dataset in our main experiments (see Fig. S3). All 30 objects × 2
pairs = 60 pairs are provided at https://drive.google.com/drive/folders/1ti9zo1dzU1e9b-

mpqv0bhTrMeoeUBULm. The pose alignment was done in our GUI tool3. The scenes were rendered via the NR

(i.e., ModernGL).

• Set 2: 17 objects gathered separately from Set 1 only for evaluation. We collected the 17 extra objects because we

were able to find Internet photos of their exact real-world counterparts (e.g., photos of the 2014 Mercedes-Benz E-

Klasse Coupe). These 17 objects are of the same high quality as the 30 main objects. The pose alignment was done

in Blender, and the scenes were rendered with the DR. All 56 pairs generated from these 17 objects are provided at

https://goo.gl/8z42zL.

While discrepancies can be visually spotted in our side-by-side comparisons, we found most of the renders passed our

human visual Turing test if presented alone. That is, it is not easy for humans to tell whether a render is a real photo or not

(if they are not primed with the reference photos).

S1.3.2 Quantitative evaluation

In addition to the qualitative evaluation, we also quantitatively evaluated the Google Inception-v3 [44]’s top-1 accuracy on

renders that use either (a) an empty background or (b) real background images.

a. Evaluation of the renders of 30 objects on an empty background

Because the experiments in the main text used our self-assembled 30-object dataset (Sec. S1.1), we describe the process and

the results of our quantitative evaluation for only those objects.

We rendered the objects on a white background with RGB values of (1.0, 1.0, 1.0), an ambient light intensity of 0.9, and

a directional light intensity of 0.5. For each object, we sampled 36 unique views (common in ImageNet) evenly divided into

three sets. For each set, we set the object at the origin, the up direction to (0, 1, 0), and the camera position to (0, 0,−z)
where z = {4, 6, 8}. We sampled 12 views per set by starting the object at a 10◦ yaw and generating a render at every

30◦ yaw-rotation. Across all objects and all renders, the Inception-v3 top-1 accuracy is 83.23% (comparable to 77.45% on

ImageNet images [44]) with a mean top-1 confidence score of 0.78. The top-1 and top-5 average accuracy and confidence

scores are shown in Table S2.

3https://github.com/airalcorn2/strike-with-a-pose



Distance 4 6 8 Average

top-1 mean accuracy 84.2% 84.4% 81.1% 83.2%

top-5 mean accuracy 95.3% 98.6% 96.7% 96.9%

top-1 mean confidence score 0.77 0.80 0.76 0.78

Table S2: The top-1 and top-5 average accuracy and confidence scores for Inception-v3 [44] on the renders of the 30 objects

in our dataset.

b. Evaluation of the renders of test objects on real backgrounds

In addition to our qualitative side-by-side (real photo, render) comparisons (Fig. S3), we quantitatively compared Inception-

v3’s predictions for our renders to those for real photos. We found a high similarity between real photos and renders for

DNN predictions. That is, across all 56 pairs (Sec. S1.3.1), the top-1 predictions match 71.43% of the time. Across all pairs,

76.06% of the top-5 labels for real photos match those for renders.

S2. Transferability from the Inception-v3 classifier to the YOLO-v3 detector

Previous research has shown that object detectors can be more robust to adversarial attacks than image classifiers [25].

Here, we investigate how well our AXs generated for an Inception-v3 classifier trained to perform 1,000-way image classifi-

cation on ImageNet [36] transfer to YOLO-v3, a state-of-the-art object detector trained on MS COCO [22].

Note that while ImageNet has 1,000 classes, MS COCO has bounding boxes classified into only 80 classes. Therefore,

among 30 objects, we only selected the 13 objects that (1) belong to classes found in both the ImageNet and MS COCO

datasets; and (2) are also well recognized by the YOLO-v3 detector in common poses.

S2.1. Class mappings from ImageNet to MS COCO

See Table S3a for 13 mappings from ImageNet labels to MS COCO labels.

S2.2. Selecting 13 objects for the transferability test

For the transferability test (Sec. S2.3), we identified the 13 objects (out of 30) that are well detected by the YOLO-v3

detector via the two tests described below.

S2.2.1 YOLO-v3 correctly classifies 93.80% of poses generated via yaw-rotation

We rendered 36 unique views for each object by generating a render at every 30◦ yaw-rotation (see Sec. S1.3.2). Note

that, across all objects, these yaw-rotation views have an average accuracy of 83.2% by the Inception-v3 classifier. We

tested them against YOLO-v3 to see whether the detector was able to correctly find one single object per image and label it

correctly. Among 30 objects, we removed those that YOLO-v3 had an accuracy ≤ 70%, leaving 13 for the transferability

test. Across the remaining 13 objects, YOLO-v3 has an accuracy of 93.80% on average (with an NMS threshold of 0.4 and a

confidence threshold of 0.5). Note that the accuracy was computed as the total number of correct labels over the total number

of bounding boxes detected (i.e., we did not measure bounding-box IoU errors). See class-specific statistics in Table S3.

This result shows that YOLO-v3 is substantially more accurate than Inception-v3 on the standard object poses generated by

yaw-rotation (93.80% vs. 83.2%).

S2.2.2 YOLO-v3 correctly classifies 81.03% of poses correctly classified by Inception-v3

Additionally, as a sanity check, we tested whether poses correctly classified by Inception-v3 transfer well to YOLO-v3.

For each object, we randomly selected 30 poses that were 100% correctly classified by Inception-v3 with high confidence

(p ≥ 0.9). The images were generated via the random search procedure in the main text experiment (Sec. 3.2). Across the

final 13 objects, YOLO-v3 was able to correctly detect one single object per image and label it correctly at a 81.03% accuracy

(see Table S3c).



(a) Label mapping (b) Accuracy on (c) Accuracy on (d) Accuracy on

yaw-rotation poses random poses adversarial poses

ImageNet MS COCO #/36 acc (%) #/30 acc (%) #/1350 acc (%) ∆acc (%)

1 park bench bench 31 86.11 22 73.33 211 15.63 57.70

2 bald eagle bird 34 94.11 24 80.00 597 44.22 35.78

3 school bus bus 36 100.00 18 60.00 4 0.30 69.70

4 beach wagon car 34 94.44 30 100.00 232 17.19 82.81

5 tiger cat cat 26 72.22 25 83.33 181 13.41 69.93

6 German shepherd dog 32 88.89 28 93.33 406 30.07 63.26

7 motor scooter motorcycle 36 100.00 18 60.00 384 28.44 31.56

8 jean person 36 100.00 29 96.67 943 69.85 26.81

9 street sign stop sign 31 86.11 26 86.67 338 25.04 61.15

10 moving van truck 36 100.00 24 80.00 15 1.11 78.89

11 umbrella umbrella 35 97.22 25 83.33 907 67.19 16.15

12 police van car 36 100.00 25 83.33 55 4.07 79.26

13 trailer truck truck 36 100.00 22 73.33 26 1.93 71.41

Average 93.80 81.03 24.50 56.53

Table S3: Adversarial poses generated for a state-of-the-art ImageNet image classifier (here, Inception-v3) transfer well to

an MS COCO detector (here, YOLO-v3). The table shows the YOLO-v3 detector’s accuracy on: (b) object poses generated

by a standard process of yaw-rotating the object; (c) random poses that are 100% correctly classified by Inception-v3 with

high confidence (p ≥ 0.9); and (d) adversarial poses, i.e., 100% misclassified by Inception-v3.

(a) The mappings of 13 ImageNet classes onto 12 MS COCO classes.

(b) The accuracy (“acc (%)”) of the YOLO-v3 detector on 36 yaw-rotation poses per object.

(c) The accuracy of YOLO-v3 on 30 random poses per object that were correctly classified by Inception-v3.

(d) The accuracy of YOLO-v3 on 1,350 adversarial poses (“acc (%)”) and the differences between c and d (“∆acc (%)”).

S2.3. Transferability test: YOLO-v3 fails on 75.5% of adversarial poses misclassified by Inception-v3

For each object, we collected 1,350 random adversarial poses (i.e., incorrectly classified by Inception-v3) generated via

the random search procedure (Sec. 3.2). Across all 13 objects and all adversarial poses, YOLO-v3 obtained an accuracy

of only 24.50% (compared to 81.03% when tested on images correctly classified by Inception-v3). In other words, 75.5%

of adversarial poses generated for Inception-v3 also escaped the detection4 of YOLO-v3 (see Table S3d for class-specific

statistics). Our result shows adversarial poses transfer well across tasks (image classification → object detection), models

(Inception-v3 → YOLO-v3), and datasets (ImageNet → MS COCO).

S3. Adversarial poses do exist in the real world

Our main experiments showed that adversarial poses exist in 3D simulation. Here, we provide evidence that adversarial

poses also transfer to and exist in the real world.

First, we collected 5 photos × 30 objects = 150 photos from the Internet that were misclassified by the Inception-v3

classifier and repeated the same experiment as described in Sec. S1.3.1 to produce (real photo, render) pairs (see Fig. S20).

We found that when the real photos appear out-of-distribution, 98.3% of the renders are also misclassified. However, when

the real failure photos appear ImageNet-like, ∼45% of the renders are correctly classified (i.e., our 3D objects are easier to

recognize than their real-world counterparts). This transferability result confirms the high realism of our 3D object renders

and suggests that the adversarial poses do exist in the real world.

Second, we found that real-world, high-confidence adversarial poses can be found by simply taking photos from strange

angles of a familiar object. We took real-world videos of four example objects (cellular phone, jeans, street sign,

4We were not able to check how many misclassification labels by YOLO-v3 were the same as those by Inception-v3 because only a small set of 80 the

MS COCO classes overlap with the 1,000 ImageNet classes.



and umbrella) and extracted the misclassified frames from the videos. While Inception-v3 [44] correctly recognized these

objects in canonical poses, the model misclassified the same objects in unusual poses (Fig. S17).



Figure S2: We tested Inception-v3’s predictions on the renders generated by the differentiable renderer (DR). We show here

the top-5 predictions for one random pose per object. However, in total, we generated 36 poses for each object by (1) varying

the object distance to the camera; and (2) rotating the object around the yaw axis. See https://goo.gl/7LG3Cy for all

the renders and DNN top-5 predictions. Across all 30 objects, on average, Inception-v3 correctly recognizes 83.2% of the

renders. See Sec. S1.3.2 for more details.



Figure S3: 12 random pairs of real photos (left) and renders (right) among 116 pairs produced in total for our 3D object

rendering evaluation (Sec. S1.3.1). The renders are produced by ModernGL. More comparison images are available at

https://drive.google.com/drive/folders/1ti9zo1dzU1e9b-mpqv0bhTrMeoeUBULm. While discrep-

ancies can be spotted in our side-by-side comparisons, we found that most of the renders passed our human visual Turing test

if presented alone.



Figure S4: For each object, we collected 30 high-confidence (p ≥ 0.9) correctly classified images by Inception-v3. The

images were generated via the random search procedure. We show here a grid t-SNE of AlexNet [20] fc7 features for all 30
objects × 30 images = 900 images. Correctly classified images for each object tend to be similar and clustered together. The

original, high-resolution figure is available at https://goo.gl/TGgPgB.

To better visualize the clusters, we plotted the same t-SNE but used unique colors to denote the different 3D objects in the

renders (Fig. S5). Compare and contrast this plot with the t-SNE of only misclassified poses (Figs. S6 & S7).



Figure S5: The same t-SNE found in Fig. S4 but using a unique color to denote the 3D object found in each rendered image.

Here, each color also corresponds to a unique Inception-v3 label. Compare and contrast this plot with the t-SNE of only

misclassified poses (Fig. S7). The original, high-resolution figure is available at https://goo.gl/TGgPgB.



Figure S6: Following the same process as described in Fig. S4, we show here a grid t-SNE of generated adversarial poses.

For each object, we assembled 30 high-confidence (p ≥ 0.9) adversarial examples generated via a random search against

Inception-v3 [44]. The t-SNE was generated from the AlexNet [20] fc7 features for 30 objects × 30 images = 900 images.

The original, high-resolution figure is available at https://goo.gl/TGgPgB. Adversarial poses were found to be both

common across different objects (e.g., the top-right corner) and unique to specific objects (e.g., the traffic sign and

umbrella objects in the middle left).

To better understand how similar misclassified poses can be found across many objects, see Fig. S7. Compare and contrast

this plot with the t-SNE of correctly classified poses (Figs. S4 & S5).



Figure S7: The same t-SNE as that in Fig. S6 but using a unique color to denote the 3D object used to render the adversarial

image (i.e., Inception-v3’s misclassification labels are not shown here). The original, high-resolution figure is available at

https://goo.gl/TGgPgB.

Compare and contrast this plot with the t-SNE of correctly classified poses (Fig. S5).



S4. Experimental setup for the differentiable renderer

For the gradient descent method (DR-G) that uses the approximate gradients provided by the differentiable renderer [19]

(DR), we set up the rendering parameters in the DR to closely match those in the NR. However, there were still subtle

discrepancies between the DR and the NR that made the results (DR-G vs. FD-G in Sec. 4.4) not directly comparable.

Despite these discrepancies (described below), we still believe the FD gradients are more stable and informative than the DR

gradients (i.e., FD-G outperformed DR-G).5

DR setup. For all experiments with the DR, the camera was centered at (0, 0, 16) with an up direction (0, 1, 0). The object’s

spatial location was constrained such that the object center was always within the frame. The depth values were constrained

to be within [−14, 14]. Similar to experiments with the NR, we used the medium lighting setting. The ambient light color

was set to white with an intensity 1.0, while the directional light was set to white with an intensity 0.4. Fig. S8 shows an

example school bus rendered under this medium lighting at different distances.

(a) School bus at (0, 0,−14) (b) School bus at (0, 0, 0) (c) School bus at (0, 0, 14)

Figure S8: School bus rendered by the DR at different distances.

The known discrepancies between the experimental setups of FD-G (with the NR) vs. DR-G (with the DR) are:

1. The exact medium lighting parameters for the NR described in the main text (Sec. 4.1) did not produce similar light-

ing effects in the DR. Therefore, the DR lighting parameters described above were the result of manually tuning to

qualitatively match the effect produced by the NR medium lighting parameters.

2. While the NR uses a built-in tessellation procedure that automatically tessellates input objects before rendering, we had

to perform an extra pre-processing step of manually tessellating each object for the DR. While small, a discrepancy still

exists between the two rendering results (Fig. S1b vs. c).

S5. Gradient descent with the DR gradients

In preliminary experiments (data not shown), we found the DR gradients to be relatively noisy when using gradient descent

to find targeted adversarial poses (i.e., DR-G experiments). To mitigate this problem, we experimented with (1) parameter

augmentation (Sec. S5.1); and (2) multi-view optimization (Sec. S5.2). In short, we found parameter augmentation helped

and used it in DR-G. However, when using the DR, we did not find multiple cameras improved optimization performance

and thus only performed regular single-view optimization for DR-G.

S5.1. Parameter augmentation

We performed gradient descent using the DR gradients (DR-G) in an augmented parameter space corresponding to 50

rotations and one translation to be applied to the original object vertices. That is, we backpropagated the DR gradients into

5In preliminary experiments with only the DR (not the NR), we also empirically found FD-G to be more stable and effective than DR-G (data not shown).



the parameters of these pre-defined transformation matrices. Note that DR-G is given the same budget of 100 steps per

optimization run as FD-G and ZRS for comparison in Sec. 4.4.

The final transformation matrix is constructed by a series of rotations followed by one translation, i.e.,

M = T ·Rn−1Rn−2 · · ·R0

where M is the final transformation matrix, Ri the rotation matrices, and T the translation matrix.

We empirically found that increasing the number of rotations per step helped (a) improve the success rate of hitting the

target labels; (b) increase the maximum confidence score of the found AXs; and (c) reduce the number of steps, i.e., led to

faster convergence (see Fig. S9). Therefore, we empirically chose n = 50 for all DR-G experiments reported in the main

text.

(a) y-axis: success rate (b) y-axis: max confidence (c) y-axis: mean number of steps

Figure S9: We found that increasing the number of rotations (displayed in x-axes) per step helped:

(a) improve the success rate of hitting the target labels;

(b) increase the maximum confidence score of the found adversarial examples;

(c) reduce the average number of steps required to find an AX, i.e., led to faster convergence.

S5.2. Multi-view optimization

Additionally, we attempted to harness multiple views (from multiple cameras) to increase the chance of finding a target

adversarial pose. Multi-view optimization did not outperform single-view optimization using the DR in our experiments.

Therefore, we only performed regular single-view optimization for DR-G. We briefly document our negative results below.

Instead of backpropagating the DR gradient to a single camera looking at the object in the 3D scene, one may set up

multiple cameras, each looking at the object from a different angle. This strategy intuitively allows gradients to still be

backpropagated into the vertices that may be occluded in one view but visible in some other view. We experimented with six

cameras and backpropagating to all cameras in each step. However, we only updated the object following the gradient from

the view that yielded the lowest loss among all views. One hypothesis is that having multiple cameras might improve the

chance of hitting the target.

In our experiments with the DR using 100 steps per optimization run, multi-view optimization performed worse than

single-view in terms of both the success rate and the number of steps to converge. We did not compare all 30 objects due to

the expensive computational cost, and only report the results from optimizing two objects bald eagle and tiger cat in

Table S4. Intuitively, multi-view optimization might outperform single-view optimization given a large enough number of

steps.



bald eagle tiger cat

Steps Success rate Steps Success rate

Single-view 71.80 0.44 90.70 0.15

Multi-view 81.28 0.23 96.84 0.04

Table S4: Multi-view optimization performed worse than single-view optimization in both (a) the number of steps to converge

and (b) success rates. We show here the results of two runs of optimizing with the bald eagle and tiger cat objects. The

results are averaged over 50 target labels ×50 trials = 2, 500 trials. Each optimization trial for both single- and multi-view

settings is given the budget of 100 steps.

S6. 3D transformation matrix

A rotation of θ around an arbitrary axis (x, y, z) is given by the following homogeneous transformation matrix.

R =

�

�

�

�

�

�

�

�

xx(1− c) + c xy(1− c)− zs xz(1− c) + ys 0
xy(1− c) + zs yy(1− c) + c yz(1− c)− xs 0
xz(1− c)− ys yz(1− c) + xs yz(1− c) + c 0
0 0 0 1

�

�

�

�

�

�

�

�

(8)

where s = sin θ, c = cos θ, and the axis is normalized, i.e., x2 + y2 + z2 = 1. Translation by a vector (x, y, z) is given by

the following homogeneous transformation matrix.

T =

�

�

�

�

�

�

�

�

1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1

�

�

�

�

�

�

�

�

(9)

Note that in the optimization experiments with random search (RS) and finite-difference gradients (FD-G), we dropped

the homogeneous component for simplicity, i.e., the rotation matrices of yaw, pitch, and roll are all 3× 3. The homogeneous

component is only necessary for translation, which can be achieved via simple vector addition. However, in DR-G, we used

the homogeneous component because we had some experiments interweaving translation and rotation. The matrix represen-

tation was more convenient for the DR-G experiments. As they are mathematically equivalent, this arbitrary implementation

choice should not alter our results.



Object Accuracy (%)

ambulance 3.64

backpack 8.63

bald eagle 13.26

beach wagon 0.60

cab 2.64

cell phone 14.97

fire engine 4.31

forklift 5.20

garbage truck 4.88

German shepherd 9.61

Object Accuracy (%)

golfcart 2.14

jean 2.71

jeep 0.29

minibus 0.83

minivan 0.66

motor scooter 20.49

moving van 0.45

park bench 5.72

parking meter 1.27

pickup 0.86

Object Accuracy (%)

police van 0.95

recreational vehicle 2.05

school bus 3.48

sports car 2.50

street sign 26.32

tiger cat 7.36

tow truck 0.87

traffic light 14.95

trailer truck 1.27

umbrella 49.88

Table S5: The percent of three million random samples that were correctly classified by Inception-v3 [44] for each object.

That is, for each lighting setting in {bright,medium, dark}, we generated 106 samples. See Sec. 3.2 for details on the

sampling procedure.

(a) bright (b) medium (c) dark

Figure S10: Renders of the school bus object using the NR [1] at three different lighting settings. The directional light

intensities and ambient light intensities were (1.2, 1.6), (0.4, 1.0), and (0.2, 0.5) for the bright, medium, and dark settings,

respectively.

S7. Adversarial poses were not found in ImageNet classes via a nearest-neighbor search

We performed a nearest-neighbor search to check whether adversarial poses generated (in Sec. 4.1) can be found in the

ImageNet dataset.

Retrieving nearest neighbors from a single class corresponding to the 3D object. We retrieved the five nearest training-

set images for each adversarial pose (taken from a random selection of adversarial poses) using the fc7 feature space from

a pre-trained AlexNet [20]. The Euclidean distance was used to measure the distance between two fc7 feature vectors. We

did not find qualitatively similar images despite comparing all ∼1,300 class images corresponding to the 3D object used

to generate the adversarial poses (e.g., cellphone, school bus, and garbage truck in Figs. S11, S12, and S13). This

result supports the hypothesis that the generated adversarial poses are out-of-distribution.

Searching from the validation set. We also searched the entire 50,000-image validation set of ImageNet. Interestingly, we

found the top-5 nearest images were sometimes from the same class as the targeted misclassification label (see Fig. S19).



Figure S11: For each adversarial example (leftmost), we retrieved the five nearest neighbors (five rightmost photos) from all

∼1,300 images in the cellular phone class. The Euclidean distance between a pair of images was computed in the fc7

feature space of a pre-trained AlexNet [20]. The nearest photos from the class are mostly different from the adversarial poses.

This result supports the hypothesis that the generated adversarial poses are out-of-distribution. The original, high-resolution

figure is available at https://goo.gl/X31VXh.

S8. DNN failure rates for ball-like objects

To investigate the role of object geometry in DNN pose failures, we re-ran our random search procedure on five purchased

ball objects: three different soccer balls, a volleyball, and a ping-pong ball. The error rates were 4%, 4%, 5%, 47%, and 48%,

respectively; however, the incorrect labels for the volleyball and ping-pong ball objects were qualitatively often reasonable

(e.g., golf ball and billiard ball for the ping-pong ball). Clearly, the DNN can gracefully handle much of the

pose space for these “easy” objects, but whether this robustness is due to the specific features of the classes (e.g., black and

white corners where hexagons meet on a soccer ball) or data variability in the training set requires further research.



Figure S12: For each adversarial example (leftmost), we retrieved the five nearest neighbors (five rightmost photos) from all

∼1,300 images in the school bus class. The Euclidean distance between a pair of images was computed in the fc7 feature

space of a pre-trained AlexNet [20]. The nearest photos from the class are mostly different from the adversarial poses. This

result supports the hypothesis that the generated adversarial poses are out-of-distribution. The original, high-resolution figure

is available at https://goo.gl/X31VXh.

S9. Adversarial training

Training. We augmented the original 1,000-class ImageNet dataset with an additional 30 AX classes. Each AX class

included 1,350 randomly selected high-confidence (p ≥ 0.9) misclassified images split 1,300/50 into training/validation sets.

Our AlexNet trained on the augmented dataset (AT) achieved a top-1 accuracy of 0.565 for the original ImageNet validation

set and a top-1 accuracy6 of 0.967 for the AX validation set.

Evaluation. To evaluate our AT model vs. a pre-trained AlexNet (PT), we used RS to generate 106 samples for each of our

3D training objects. In addition, we collected seven held-out 3D objects not included in the training set that belong to the

6In this case, a classification was “correct” if it matched either the original ImageNet positive label or the negative, object label.



Figure S13: For each adversarial example (leftmost), we retrieved the five nearest neighbors (five rightmost photos) from all

∼1,300 images in the garbage truck class. The Euclidean distance between a pair of images was computed in the fc7

feature space of a pre-trained AlexNet [20]. The nearest photos from the class are mostly different from the adversarial poses.

This result supports the hypothesis that the generated adversarial poses are out-of-distribution. The original, high-resolution

image is available at https://goo.gl/X31VXh.

same classes as seven training-set objects (example renders in Fig. S14). We followed the same sampling procedure for the

held-out objects to evaluate whether our AT generalizes to unseen objects.

For each of these 30 + 7 = 37 objects and for both the PT and our AT, we recorded two statistics: (1) the percent of

misclassifications, i.e. errors; and (2) the percent of high-confidence (i.e., p ≥ 0.7) misclassifications (Table 3).

We hypothesize that augmenting the dataset with many more 3D objects may improve DNN generalization on held-out

objects. Here, AT might have used (1) the grey background to separate the 1,000 original ImageNet classes from the 30 AX

classes; and (2) some non-geometric features sufficient to discriminate among only 30 objects. However, as suggested by

our work (Sec. 2.4), acquiring a large-scale, high-quality 3D object dataset is costly and labor-intensive. Currently, no such

public dataset exists, and thus we could not test this hypothesis.



Figure S14: In Sec. S9, we trained an AlexNet classifier on the 1000-class ImageNet dataset augmented with 30 additional

classes that contain adversarial poses corresponding to the 30 known objects used in the main experiments. We also tested

this model on 7 held-out objects. Here, we show the renders of 7 pairs of (training-set object, held-out object). The 3D

objects are rendered by the NR [1] at a distance of (0, 0, 4). Below each image is its top-5 predictions by Inception-v3 [44].

The original, high-resolution figure is available at https://goo.gl/Li1eKU.



(a) ambulance

(b) school bus

(c) street sign

Figure S15: 30 random adversarial examples misclassified by Inception-v3 [44] with high confidence (p ≥ 0.9) generated

from 3 objects: ambulance, school bus, and street sign. Below each image is the top-1 prediction label and confi-

dence score. The original, high-resolution figures for all 30 objects are available at https://goo.gl/rvDzjy.



Figure S16: For each target class (e.g., accordion piano), we show five adversarial poses generated from five unique 3D

objects. Adversarial poses are interestingly found to be homogeneous for some classes, e.g., safety pin. However, for

most classes, the failure modes are heterogeneous. The original, high-resolution figure is available at https://goo.gl/

37HYcE.



(a) cellular phone

(b) jeans

(c) street sign

(d) umbrella

Figure S17: Real-world, high-confidence adversarial poses can be found by taking photos from strange angles of a familiar

object, here, cellular phone, jeans, street sign, and umbrella. While Inception-v3 [44] can correctly predict the

object in canonical poses (the top-left image in each panel), the model misclassified the same objects in unusual poses.

Below each image is its top-1 prediction label and confidence score. We took real-world videos of these four objects and

extracted these misclassified poses from the videos. The original, high-resolution figures are available at https://goo.

gl/zDWcjG.



��������
�������������
�������������
���������
���������

�����������
����������
����������

��������������������
����������

������
�������������

����������
����������

�������������
�������
�������

����
����

��������
���������������

�������������
��������

�����������
������������������

���
�����������

����������
��������

���������

������� ���

��������
�������������
�������������
���������
���������

�����������
����������
����������

��������������������
����������

������
�������������

����������
����������

�������������
�������
�������

����
����

��������
���������������

�������������
��������

�����������
������������������

���
�����������

����������
��������

���������

������� �����

� �� �� �� �� ���

���������

��������
�������������
�������������
���������
���������

�����������
����������
����������

��������������������
����������

������
�������������

����������
����������

�������������
�������
�������

����
����

��������
���������������

�������������
��������

�����������
������������������

���
�����������

����������
��������

���������

�������

� �� �� �� �� ���

���������

����

Figure S18: Inception-v3 [44] is sensitive to single parameter disturbances of object poses that had originally been correctly

classified. For each object, we found 100 correctly classified 6D poses via a random sampling procedure (Sec. 4.3). Given

each such pose, we re-sampled one parameter (shown on top of each panel, e.g., yaw) 100 times, yielding 100 classifications,

while holding the other five pose parameters constant. In each panel, for each object (e.g., ambulance), we show an error

plot for all resultant 100 × 100 = 10, 000 classifications. Each circle denotes the mean misclassification rate (“Fail Rate”)

for each object, while the bars enclose one standard deviation. Across all objects, Inception-v3 is more sensitive to changes

in yaw, pitch, roll, and depth (“z delta”) than spatial changes (“x delta” and “y delta”).



Figure S19: For each adversarial example (leftmost), we retrieved the five nearest neighbors (five rightmost photos) from the

50,000-image ImageNet validation set. The Euclidean distance between a pair of images was computed in the fc7 feature

space of a pre-trained AlexNet [20]. Below each adversarial example (AX) is its Inception-v3 [44] top-1 prediction label and

confidence score. The associated ground-truth ImageNet label is beneath each retrieved photo. Here, we show an interesting,

cherry-picked collection of cases where the nearest photos (in the fc7 feature space) are also qualitatively similar to the

reference AX and sometimes come from the exact same class as the AX’s predicted label. More examples are available at

https://goo.gl/8ib2PR.



(a) ambulance

(b) street sign

(c) tow truck

Figure S20: Adversarial poses do transfer to the real world. We collected a set of 150 real photos (5 photos × 30 objects)

from the Internet that caused the Inception-v3 classifier to misclassify. For each pair, given the real, misclassified photo

(left), we produced a render of the corresponding object (right) and gathered its top-5 predictions. We found that when

the real photos appear out-of-distribution, 98.3% of the renders are also misclassified, sometimes with the same top-1 label

e.g., spatula in (b) or lawn mower in (c). Here, we show 5 pairs for each of the three example objects: (a) ambulance,

(b) street sign, and (c) tow truck. The original, high-resolution figures for all 30 objects are available at https:

//drive.google.com/open?id=18p-S9qO4dhE9toJbRRlAIWRcVqVH6Zsd.


