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These supplementary materials contain the following ex-
tra information:

• Hyperparameters and architectural details for the ex-
periments from section 4.

• Example images of the soap series.

• Results on collision avoidance in an extra lengthy sim-
ulated corridor.

• Details and extra results on the real-world collision
avoidance with the Turtlebot.

• Closing discussion and guidelines on the application
of continual learning in an online setting.

Small corrections: Please note that in the ablation study
the formula for decaying importance weights (l.645) should
have been Ωt = (Ωt−1 + Ω∗)/2.

Also, for the real-world experiment the Turtlebot was not
pretrained in simulation (as mentioned in l.741) but three
times randomly initialized.

∗Rahaf Aljundi and Klaas Kelchtermans contributed equally to this
work and listed in alphabetical order.

Exp 1 Exp 2 Exp 3
Architecture Alexnet Tiny v2 Tiny v2
Initialization imagenet random random
Learning rate 0.0001 0.01 0.01

Optimizer SGD SGD SGD
Hard Buffer Size 100 40 30

Regularization Weight 100 0.5 0.5
Threshold Mean Loss 0.3 0.5 0.5

Threshold Variance Loss 0.1 0.1 0.02
Length Window Loss 5 5 5

Table 1: Hyperparameters for different experiments: exp 1
∼ Soap Series (4.1), exp 2 ∼ Simulated Corridor (4.2) and
exp 3 ∼ Real Turtlebot (4.3).

1. Hyperparameters and architectural details
As to be able to reproduce the results, we provide the

reader with the used hyperparameters and networks, see ta-
ble 1. Regularization weight corresponds to λ, the continual
learning weight in Equation 5.

The Tiny v2 network for the collision avoidance task is a
network build especially small in order to allow faster train-
ing. The details of the network can be found in figure 1.

2. Examples of the soap series data (Sec. 4.1)
In figure 2, 4 example frames are shown for each of the

different soap series: Big Bang Theory, Breaking Bad and
Mad Men. These examples demonstrate the scene diversity
and large variance in imaging conditions. As mentioned in
the paper, Breaking Bad is more actor-centric with a major-
ity of the frames showing only the main character, making
it less suited for the self-supervised setup.

3. Larger experiment on collision avoidance in
simulation (Sec. 4.2)

To demonstrate both the strengths and weaknesses of our
continual learning method, we expanded the corridor exper-
iment of Sec. 4.2 to a sequence of 10 corridors, equal to
about 20 minutes flying time or around 10.000 frames. The
sequence of different corridors is depicted in figure 5, ex-
hibiting a large variety in textures and obstacles. The length
of the sequence allows us to see the longer trend of contin-
ual learning.

While training the models online, we evaluate the accu-
racy on different corridors separately. Due to an imbalance
over actions within one corridor, we perform an evaluation
based on the total accuracy averaged over the different ac-
tions, referred as ’Weighted Accuracy’. When a model be-
comes degenerated, thus only predicting the most common
action in a corridor, an unnormalized accuracy would re-
main high.

We observe that this data imbalance also affects the on-
line learning as often multiple gradient steps are taken in
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Figure 1: Architecture of the Tiny v2 network used in the monocular collision avoidance experiments (4.2 and 4.3).

Figure 2: Four example images for each soap series, from left to right: Big Bang Theory, Breaking Bad and Mad Men.

favor of only some actions. To bypass this impediment, we
experiment here with an additional normalization constraint
on the hard buffer forcing an equal distribution over all ac-
tions.
Results

Figure 3: Accuracy’s for all 10 corridors at the end of training on the
corridor sequence without (top) and with (bottom) the normalization con-
straint on the hard buffer.

In fig. 3, we show the improvement obtained by our

proposed online continual learning method over the on-
line baseline, both with and without the normalization con-
straint on the buffer with hard examples. The bars ex-
press the final accuracy of each corridor as a mean over
three models trained with different seeds. The normaliza-
tion constraint has a positive effect on both continual and
normal online learning. Our online continual learning pro-
cess clearly outperforms the online baseline for most of the
corridors. Without the action normalization, the models
fail to learn certain corridors, like 1 and 4, resulting in no
knowledge that can be preserved by our continual learning
method. However if the model grasps information while
going through a corridor, it succeeds at preserving it with
continual learning, outperforming the online baseline with
15 to 20% accuracy. Moreover with the action normaliza-
tion, continual learning succeeds at acquiring knowledge in
each corridor, outperforming the baseline in all but last cor-
ridors.

Figure 6 provides a more in-depth analysis. Here, we
show the evolution over time of the cross-entropy loss and
the total accuracy over all corridors. We also report the evo-
lution over time of the weighted accuracy, for each corri-
dor separately. From these plots, one can conclude that the
buffer normalization clearly has beneficial effects for on-
line learning, especially in the green areas (corresponding
to learning taking place on imbalanced corridors). However,
the constraint leaves less room in the hard buffer for recent
samples causing a slower adaptation of the model during
training, as can be observed in the red areas, allowing the
models without normalization to improve faster.

In multiple examples, highlighted with blue, the contin-



ual learning allows a preservation of knowledge seen be-
fore, demonstrating the success of our method. The trend is
most clear for the early corridors as the forgetting tends to
be worse over time. This phenomenon is also responsible
for the total accuracy reaching 80% for continual learning
instead of only 70% for normal online learning. This pos-
itive trend can be expected to increase when learning over
even longer sequences.

In some cases, highlighted in orange, the baseline per-
formance of an old corridor improves while training in a
new corridor, reaching a similar accuracy as our continual
learning method. In other words, the impact of forgetting
seems less as the baseline is able to learn the same knowl-
edge again.

This lengthy experiment demonstrates the strengths of
continual learning, including the expected positive trend
when applying it to longer sequences of data.

4. Collision avoidance on real Turtlebot
(Sec. 4.3)

Figure 4: Performance expressed as the average number of collisions -
i.e. the total number of collisions divided by the total number of gradient
steps.

In this proof-of-concept, an neural network steers a
turtlebot around one big yellow object (see figure 7 in the
paper). Each frame is kept in a buffer containing the 40
most recent frames combined with expert labels. Every 10
frames a gradient step is taken. When a collision is detected
by the Lazer Range Finder, the training is paused and the
Turtlebot turns automatically such that the closest obstacle
is at its back. The hyperparameters can be found in table
1. Each model is trained three times and takes about 20
minutes, or 300 gradient steps, till convergence.

Extra results and baselines are shown in figure 4, plotting
the total number of collisions divided by the total number
of gradient steps. Driving straight leads to an average of 0.6
collisions per gradient step. Adding action normalization in
the hard buffer and applying continual learning both have a

clear positive influence. The action normalization allows an
even larger improvement of our continual learning method
over the baseline.

This real-world experiment differs in two significant
ways from the previous experiments. First, the agent stays
in one domain that does not vary over time. Second, the
agent acts within the environment to create new data mak-
ing the setup on-policy and online. Although there are no
domain or task changes over time, our continual learning
method has a clear positive effect. This result fully supports
our claim of ”Task-Free” continual learning, namely that it
is not required to have significant changes in your data in
order to do better than a normal online learner. The contin-
ual learning method inherently stabilizes the online learning
in an on-policy setup.

However, a major challenge in online/on-policy learning
is dealing with uninformative states. These states lead to
less information in a batch and thus slower training. Sam-
ples that do contain relevant information, are better pre-
served in the online-continual setting, resulting in faster
learning. Unfortunately, the exact moment of large infor-
mation gain varies over different runs resulting in a higher
variance. This explains the larger variance in figure 4 and
figure 7 in the main paper.

5. Closing discussion / General guidelines
When considering applying continual learning to a spe-

cific problem, it is best to keep two guidelines in mind:
The mean and variance threshold of the loss window

should be carefully chosen. If both thresholds are too low,
the model will not use the MAS regularization; conversely,
if too high, the model will slow down the learning by pre-
serving irrelevant information as the importance weights
are updated too frequently. The latter case in combination
with global averaging usually deteriorates the final perfor-
mance. Therefore, it is recommended to place the threshold
low enough while still allowing importance weight updates.
As relaxing the threshold, results in more updates, a decay-
ing update rule allows the model to forget irrelevant previ-
ous knowledge. In practice, we discovered that the mean
threshold could remain quite high, as long as the variance
threshold is low. Moreover, meta-learning techniques, such
as learning-to-learn, could automate these settings.

A trainable task is a necessary condition: In order to
have the MAS regularization exceed in performance over
the baseline, the task must be actually trainable. Although
this seems obvious, it is far from trivial in an online learn-
ing setting, due to the non-i.i.d. nature. Predicting whether
continual learning will perform better than typical online
learning depends on stable training. For instance, in the
collision avoidance task, including an action normalization
constraint in the hard buffer, clearly improves the stability
of online learning.



Figure 5: Example views in the longer corridor sequence, corresponding to 10 environments depicted in lexicographic order.

Figure 6: Cross-Entropy loss and accuracy’s on total and separate corridors while training online on the sequence of 10 corridors. Blue squares indicate
continual learning outperforming baseline models. Green squares indicate positive normalization effects for both continual and baseline models. Red squares
indicate slower learning due to normalization constraint. Orange squares indicate learning forgotten knowledge by the baseline model.

In conclusion, we successfully extended continual learn-
ing to a task-free online learning algorithm and demon-
strated its advantage in following applications: face recog-
nition in soap series, and monocular collision avoidance
both on a drone in simulation and on a Turtlebot in the real-
world.


