
Figure S1: Learning to map between two CIFAR domains: (a) horse to bird (b) bird to horse.



Figure S2: Learning to map between two imagenet domains: (a) crossword to abacus (b) abacus to crossword.



Figure S3: Learning to map between two imagenet domains: (a) rock beauty to toucan (b) toucan to rock beauty.



Figure S4: Learning to map between two imagenet domains: (a) clock to hourglass (b) hourglass to clock.



Figure S5: Learning to map between two imagenet domains: (a) jack-o-lantern to volcano (b) volcano to jack-o-lantern.



Figure S6: Learning to map between two imagenet domains: (a) cd to cassette (b) cassette to cd.



Quantitative results Quantitative results are summarized
by the FID score (Table 3) and the discriminator score (Ta-
ble 4). We note that these scores were both designed to
evaluate models that attempt to generate the full diversity
of the Imagenet dataset, while in our case we only map to a
single class.

The Fréchet Inception Distance (FID score) [12] calcu-
lates the Fréchet distance between Gaussian models of the
output of a the pre-trained Inception network [34] on real
and generated images, respectively. Lower distances indi-
cate better performance. The results are the mean of the
scores from each direction.

The discriminator score is calculated by training a new
discriminator, distinct from the one used during training, to
distinguish between real and generated images in a domain.
A score of zero means the discriminator was certain every
generated image was fake, while higher scores indicate the
generated images looked more like real images. As in the
FID, the results are the mean of the scores from each direc-
tion.

Optimization and training parameters Optimization
was performed with the adam [21] optimizer with a learn-
ing rate of 0.0002, β1 = 0.5, β2 = 0.9. Gradient descent
was alternated between generator and discriminator, with
the discriminator receiving real and generated images in dis-
tinct batches.

Architecture The TraVeLGAN architecture is as follows.
Let d denote the size of the image. Let cn be a standard
stride-two convolutional layer with n filters, tn be a stride-
two convolutional transpose layer with kernel size four and
n filters, and fn be a fully connected layer outputting n
neurons. The discriminator D has layers until the size of
the input is four-by-four, increasing the number of filters
by a factor of two each time, up to a maximum of eight
times the original number (three layers for CIFAR and five
layers for Imagenet). This last layer is then flattened and
passed through a fully connected layer. The overall archi-
tecture is thus cn − c2n − c4n − c8n − c8n − f1. The
siamese network has the same structure as the discriminator
except its latent space has size 1000, yielding the architec-
ture cn − c2n − c4n − c8n − c8n − f1000. The generator
uses the U-Net architecture [30] that has skip connections
that concatenate the input in the symmetric encoder with
the decoder, yielding layers of cn−c2n−c4n−c4n−c4n−
t8n− t8n− t8n− t4n− t2n− t3. For the cycle-consistency
networks, the architectures of the original implementations
were used, with code from [39], [39], [3], [20], for the
cycle, cycle+identity, cycle+corr, and cycle+featmatch, re-
spectively. All activations are leaky rectified linear units
with leak of 0.2, except for the output layers, which use sig-
moid for the discriminator, hyperbolic tangent for the gen-

erator, and linear for the siamese network. Batch normal-
ization is used for every layer except the first layer of the
discriminator. All code was implemented in Tensorflow [1]
on a single NVIDIA Titan X GPU.

CIFAR While the CIFAR images [22] are relatively
simple and low-dimensional, it is a deceptively complex
task compared to standard domain mapping datasets like
CelebA, where they are all centered close-ups of human
faces (i.e. their shoulders or hair are in the same pixel
locations). The cycle-consistent GANs struggle to iden-
tify the characteristic shapes of each domain, instead either
only make small changes to the images or focusing on the
color tone. The TraVeLGAN, on the other hand, fully trans-
fers images to the target domain. Furthermore, the TraV-
eLGAN preserves semantics like orientation, background
color, body color, and composition in the pair of image
(complete comparison results in Figure S1)

Interpretability As the siamese latent space is learned to
preserve vector transformations between images, we can
look at how that space is organized to tell us what trans-
formation the network learned at a dataset-wide resolution.
Figure S7 shows a PCA visualization of the siamese space
of the CIFAR dataset with all of the original domain one
(bird) and domain two (horse) images. There we can see
that S learned a logical space with obvious structure, where
mostly grassy images are in the bottom left, mostly sky im-
ages in the top right, and so forth. Furthermore, the lay-
out is analogous between the two domains, verifying that
the network automatically learned a notion of similarity be-
tween the two domains. We also show every generated im-
age across the whole dataset in this space, where we see
that the transformation vectors are not just interpretable for
some individual images and not others, but are interpretable
across the entire distribution of generated images.

Salience We next perform a salience analysis of the
TraVeL loss by calculating the magnitude of the gradient at
each pixel in the generated image with respect to each pixel
in the original image (Figure S8). Since the TraVeL loss,
which enforces the similarity aspect of the domain mapping
problem, is parameterized by another neural network S, the
original image contributes to the generated image in a com-
plex, high-level way, and as such the gradients are spread
richly over the entire foreground of the image. This allows
the generator to make realistic abacus beads, which need to
be round and shaded, out of square and uniform pixels in the
crossword. By contrast, the cycle-consistency loss requires
numerical precision in the pixels, and as such the salience
map largely looks like a grayscale version of the real image,
with rigid lines and large blocks of homogeneous pixels still
visible. This is further evidence that the cycle-consistency



Figure S7: Having access to the siamese space output by
S provides an interpretability of the TraVeLGAN’s domain
mapping that other networks lack. PCA visualizations on
the CIFAR example indicate S has indeed learned a mean-
ingfully organized space for G to preserve transformation
vectors within.

Figure S8: A salience analysis exploring how the
TraVeLGAN’s objective loosens the restriction of cycle-
consistency and allows it more flexibility in changing the
image during domain transfer. The TraVeL loss requires
significantly less memorization of the input pixels, and as a
result, more complex transformations can be learned.

loss is preventing the generator from making round beads
with colors that vary over the numerical RGB values.


