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Section A1 lists the hyperparameters we used for our
bundle adjustment, whilst Sec. A2 provides some more de-
tails about the dataset we automatically generated from Ki-
netics.

A1. Experimental Details
A1.1. Bundle adjustment hyperparameters

Table A1 shows the values of our bundle adjustment hy-
perparameters for our experiments.

Table A1. Bundle adjustment hyperparameters used for experi-
ments

Hyperparameter Human 3.6M [1] Kinetics [4]

λR 1× 10−3 1× 10−3

λI 10 1
λβ 0.2 0.05
λJ 1× 10−4 1 ×10−4

λ1 5 0.2
λ2 1× 10−4 1× 10−3

λ3 2 20
τR – 50
τI – 2× 10−2

Note that the 2D joint positions, x are measured in pix-
els, and that the largest spatial dimensions of a video frame
is typically around 450. On the other hand, the 3D joint po-
sitions, X and camera parameters are typically in the range
[−1, 1]. As the range of the 2D joint positions is higher,
the values of λR and λ2, are small, even though they have a
significant effect on the bundle adjustment.
λI and λβ are higher on Human 3.6M than they are on

Kinetics. These weights are used in the prior term that en-
courages the bundle adjustment result to stay close to the
initialisation (Eq. 8 of main paper). The initialisation that
we get from HMR [2] is far better on Human 3.6M than
on Kinetics, which is why λI and λβ are higher on Human
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Table A2. Ablation study of our HMR retraining schemes. PA-
only 3D means during our retraining of HMR, we discard the
losses on SMPL joints and absolute 3D locations and only use
losses on joints after Procrustes alignment. No 2D means dis-
abling all HMR datasets that contain only 2D data (and therefore
disabling the adversarial prior which is only used on 2D datasets).

3DPW HumanEVA

Original data, original training 77.2 85.7
Original data, PA-only 3D 78.7 86.2
Original data, PA-only 3D, no 2D 144.6 99.2

Original + Kinetics data, original training 91.1 90.0
Original + Kinetics data, PA-only 3D, no 2D 72.2 82.1

3.6M. It is expected that HMR performs better on Human
3.6M as it has been trained with 3D supervision from this
dataset.

A1.2. HMR training modification and ablation

When training with Kinetics data, we find that it is ben-
eficial to not use any of the original 2D data used by HMR,
and thus also to not use the adversarial pose prior since it
is only used on 2D pose datasets [2]. We suspect that this
is because the adversarial pose prior encourages predictions
that are closer to the mean pose, and since we use HMR
to initialise our bundle adjustment, our Kinetics data may
also have a slight bias towards this mean pose. Applying
the same prior while retraining may aggravate this problem.

We also find it’s important to train only on 3D key-
points after Procrustes alignment, rather than training di-
rectly on SMPL joint angles and absolute 3D keypoint lo-
cations. Note this means that HMR only learns to predict
the camera orientation by minimizing 2D reprojection er-
ror. We suspect that this strategy is effective because Ki-
netics has a very large range of camera orientations, which
may not match well with evaluation datasets that have less
variety in camera pose.

Table A2 shows that our modifications to the HMR train-
ing procedure help only when we train with additional Ki-
netics data. When using the original training data, our modi-
fied training procedure does not improve results. Removing
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the original 2D data from training also has a large negative
impact on performance. This is because the original train-
ing data has a relatively small amount of 3D supervision
(Human 3.6M [1] and MPI-3DHP [5]).

A1.3. 3DPW Evaluation Protocol

The 3DPW dataset contains 60 clips, consisting of out-
door videos captured from a moving mobile phone and 17
IMUs attached to the subjects [6]. The IMU data allowed
the authors to accurately compute 3D poses which we use
as ground truth. We evaluate on the test set comprising 24
videos, using the 14 keypoints that are common on both
the MS-COCO and SMPL skeletons as also done by [3].
We only evaluate on frames where enough of the person
is visible to estimate a 3D pose for it. This is performed
by discarding examples where less than 7 ground-truth 2D
keypoints are visible. We compute the Procrustes-aligned
error independently for each pose, and then average errors
for each tracked person within each video, before finally av-
eraging over the entire dataset (thus videos with two people
count twice as much as videos with one).

We follow the standard HMR pre-processing when eval-
uating input images: the bounding box around the person is
scaled such that the height of the person is about 150 pixels.
As we are not evaluating the 2D person bounding-box per-
formance of our algorithm, we use the ground truth person
bounding-box. The height of the person is estimated by tak-
ing the difference of the highest and lowest valid keypoints,
where a keypoint is considered valid if its score is greater
than 0.1.

A2. Dataset statistics

Figure A1 visualises the distribution of Kinetics action
classes in our dataset. We can see that the distribution has
a fairly long tail: Our bundle adjustment method works
well for a variety of object classes, including many types of
dancing and various outdoor activities, where there are usu-
ally not many people in the video clip and the whole body is
visible. There are also many classes for which only a hand-
ful of videos are automatically selected. These are typically
classes such as “tying tie”, “bending metal” and “knitting”
where the person is usually not fully visible. Note that there
are 400+ clips for each action in the Kinetics-400 dataset
[4] that we use, and that we have always selected at least
one video of each action class.
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(a) Number of clips selected per action class. For legibility, the action classes are not shown in the x axis, and the most-
and least-common classes are shown below instead.

0 50 100 150 200
Number of clips per action class in Kinetics

hula hooping
roller skating

playing tennis
salsa dancing
dancing ballet

tap dancing
spinning poi

dribbling basketball
playing drums
rock climbing
belly dancing
crawling baby

playing cello
shearing sheep
tango dancing

riding or walking with horse
hitting baseball

pushing cart
opening present

pull ups
zumba

playing badminton
dancing gangnam style

jumpstyle dancing
squat

riding mechanical bull
playing harp

abseiling
blowing out candles

chopping wood
punching bag

hammer throw
playing violin

bench pressing
robot dancing

pushing car
ice skating

ice climbing
shoveling snow

playing accordion
air drumming

making snowman
bartending

snatch weight lifting
dancing charleston

juggling balls
deadlifting

swing dancing
slacklining

tickling

(b) The number of clips selected per class for the 50 most common Kinetics action classes.
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tossing salad
using computer

surfing crowd
gargling

waiting in line
applying cream

sniffing
cooking chicken

shaving legs
sharpening pencil

tying knot (not on a tie)
cracking neck

massaging feet
playing controller

making jewelry
doing nails

vault
peeling potatoes

playing cards
recording music

tossing coin
making tea

riding mountain bike
checking tires

assembling computer
texting

folding paper
sharpening knives

writing
filling eyebrows

diving cliff
grinding meat
making sushi
headbutting

yawning
news anchoring

faceplanting
knitting

swimming butterfly stroke
drawing

shredding paper
cooking on campfire

building cabinet
ski jumping
applauding

frying vegetables
bending metal

scrambling eggs
tying tie

breading or breadcrumbing

(c) The number of clips selected per class for the 50 least common Kinetics action classes.

Figure A1. Number of video clips selected per action class in the Kinetics dataset. (a) shows the overall distribution of video clips selected
per action class, whilst (b) and (c) show the most- and least-common Kinetics action classes respectively.


