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1. Learning Objective
In this section we provide detailed derivation of the ob-

jective function presented in Section 4.2 of the paper.
Given the loss function ∆ (equation (6) of main paper),

which is tuned for the task of object detection, we compute
the diversity terms as given in equation (7) of the main pa-
per. Recall that the diversity for any two distributions is
the expected loss of the samples drawn from the two dis-
tributions. For the prediction distribution Prp and the con-
ditional distribution Prc, we derive the diversity between
them and their self diversities as follows.

Diversity between prediction net and conditional net:
Following equation (7) of the main paper, the diversity be-
tween prediction and conditional distribution can be written
as,

(1)
DIV∆(Prp,Prc)

= Eyp∼Prp(y|x;θp)[Eyc∼Prc(y|x,h;θc)[∆(yp,yc)]].

The task specific loss function is decomposed over the
bounding boxes as given in equation (5) of the main pa-
per. We then write the expectation with respect to the con-
ditional distribution (the inner distribution) as expectation
over the random variables z with distribution Pr(z) using
Law of the Unconscious Statistician (LOTUS).

DIV∆(Prp,Prc)

= Eyp∼Prp(y|x;θp)[Ez∼Pr(z)[
1

B

B∑
i=1

∆(y(i)
p , ŷk,(i)c )]].

(2)

The expectation over the random variable z with distri-
bution Pr(z) is approximated by taking K samples from
Pr(z),

(3)

DIV∆(Prp,Prc)

= Eyp∼Prp(y|x;θp)[
1

K

K∑
k=1

1

B

B∑
i=1

∆(y(i)
p , ŷk,(i)c )].

We finally compute the expectation with respect to the pre-
diction distribution as,

(4)

DIV∆(Prp,Prc)

=
1

BK

B∑
i=1

K∑
k=1

∑
y
(i)
p

Prp(y
(i)
p ;θp)∆(y(i)

p , ŷk,(i)c ).

Self diversity for conditional net: As above, using equa-
tion (7) of the main paper, we write the self diversity coef-
ficient of the conditional distribution as

(5)DIV∆(Prc,Prc)

= Eyc∼Prc(y|x,h;θc)[Ey′
c∼Prc(y|x,h;θc)[∆(yc,y

′
c)]].

We now write the two expectations with respect to the con-
ditional distribution as the expectation over the random vari-
ables z and z′ respectively. The task specific loss function
is decomposed over the bounding box as shown in equa-
tion (5) of the main paper. Therefore, we re-write the above
equation as

(6)

DIV∆(Prc,Prc)

= Ez∼Pr(z)[Ez′∼Pr(z)[
1

B

B∑
i=1

∆(ŷk,(i)c , ŷ′
k,(i)

c )]].

In order to approximate the expectation over the random
variables z and z′, we use K samples from the distribution
Pr(z) as

(7)

DIV∆(Prc,Prc)

=
1

K

K∑
k=1

1

K − 1

K∑
k′=1,
k′ 6=k

1

B

B∑
i=1

∆(ŷk,(i)c , ŷ′
k′,(i)

c ).

On re-arranging the above equation, we get

(8)

DIV∆(Prc,Prc)

=
1

K(K − 1)B

K∑
k,k′=1K

k′ 6=k

B∑
i=1

∆(ŷk,(i)c , ŷ′
k′,(i)

c ).



Self diversity for prediction net: Similar to the above
two cases, using equation (7) of the main paper, we can
write the self diversity of the prediction net as

(9)
DIV∆(Prp,Prp)

= Eyp∼Prp(y|x;θp)[Ey′
p∼Prp(y|x;θp)[∆(yp,y

′
p)]].

We then decompose the task specific loss function over the
bounding boxes as described in equation (5) of the main
paper,

DIV∆(Prp,Prp)

= Eyp∼Prp(y|x;θp)[Ey′
1∼Prp(y|x;θp)[

1

B

B∑
i=1

∆(y(i)
p ,y′

(i)
p )]]

(10)

Note that the prediction distribution is a fully factor-
ized distribution, and we can compute its exact expectation.
Therefore, we compute the two expectations with respect to
the prediction distribution as,

Eyp∼Prp(y′|x;θp)[
1

B

B∑
i=1

∑
y′(i)

p

Prp(y
′(i)
p ;θp)∆(y(i)

p ,y′
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=
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p ,y′
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(11)

2. Optimization
2.1. Optimization over Prediction Distribution

As parameters θc of the conditional distribution are con-
stant, the learning objective of the prediction distribution
(equation (13) of the main paper) results in a fully super-
vised training of the Fast-RCNN network [2]. Note that the
only difference between training of a standard Fast-RCNN
architecture and our prediction net is the use of the dissim-
ilarity objective function (equation (13) of the main paper)
instead of minimizing the multi-task loss of the Fast-RCNN.

The prediction net takes as the input an image and the
K predictions sampled from the conditional net. Treat-
ing these predictions of the conditional net as the pseudo
ground truth label, we compute the gradient of our dissimi-
larity coefficient based loss function. As the objective given
in equation (13) of the main paper is differentiable with re-
spect to parameters θp, we update the network by employ-
ing stochastic gradient descent.

2.2. Optimization over Conditional Distribution

A non-differentiable training procedure: The con-
ditional net is modeled using a Discrete DISCO Net
which employs a sampling step from the scoring function

Sk(y;x, zk,θc). This sampling step makes the objective
function non-differentiable with respect to the parameters
θc, even though the scoring function Sk(y;x, zk,θc) it-
self is differentiable. However, as the prediction network
is fixed, the above objective function reduces to the one
used in Bouchacourt et al. [1] for fully supervised train-
ing. Therefore, similar to Bouchacourt et al. [1] we solve
this problem by estimating the gradients of our objective
function with the help of temperature parameter ε as,

∇θc
DISCε∆(Prp(θp),Prc(θc))

= ± lim
ε→0

1

ε
(DIV ε∆(Prp,Prc)− γDIV ε∆(Prc,Prc))

(12)

where,

(13)
DIV ε∆(Prp,Prc)

= Eyp∼Prp(θp)[Ezk∼Pr(z)[∇θc
Sk(ŷa;x, zk,θc)

−∇θc
Sk(ŷc;x, zk,θc)]]

(14)
DIV ε∆(Prc,Prc)

= Ezk∼Pr(z)[Ez′
k∼Pr(z)[∇θc

Sk(ŷb;x, zk,θc)

−∇θc
Sk′(ŷ

′
c;x, z

′
k,θc)]]

and,

ŷc = arg max
y∈Y

Sk(y;x, zk,θc)

ŷ′c = arg max
y∈Y

Sk′(y;x, z′k,θc)

ŷa = arg max
y∈Y

Sk(y;x, zk,θc)± ε∆(yp, ŷc)

ŷb = arg max
y∈Y

Sk(y;x, zk,θc)± ε∆(ŷc, ŷ
′
c)

(15)

In our experiments, we fix the temperature parameter ε as,
ε = +1.

Intuition for the gradient computation: We now
present an intuitive explanation of the computation of gra-
dient, as given in equation (12). For an input x and
two noise samples zk, zk′ , the conditional net outputs two
scores Sk(y;x, zk,θc) and Sk′(y;x, z′k,θc), with the cor-
responding maximum scoring outputs ŷc and ŷ′c. The
model parameters θc are updated via gradient descent in
the negative direction of∇θc

DISCε∆(Prp(θp),Prc(θc)).

• The term DIV ε∆(Prp,Prc) updates the model parame-
ters towards the maximum scoring prediction ŷc of the
score Sk(y;θc) while moving away from ŷa, where
ŷa is the sample corresponding to the maximum loss
augmented score Sk(y;x, zk,θc) ± ε∆(yp, ŷc) with
respect to the fixed prediction distribution samples yp.



This encourages the model to move away from the pre-
diction providing high loss with respect to the pseudo
ground truth labels.

• The term γDIV ε∆(Prc,Prc) updates the model to-
wards yb and away from the ŷc. Note the two negative
signs giving the update in the positive direction. Here
yb is the sample corresponding to the maximum loss
augmented score Sk(y;x, zk,θc) ± ε∆(ŷc, ŷ

′) with
respect to the other prediction ŷ′c, encouraging diver-
sity between ŷc and ŷ′c.

Training algorithm for conditional net: Pseudo-code
for training the conditional network for a single sample
from weakly supervised data is presented in algorithm 1
below. In algorithm 1, statements 1 to 3 describe the sam-
pling process and computing the loss augmented prediction.
We first sampleK different predictions ŷkc corresponding to
each noise vector zk in statement 2. For the sampled pre-
diction ŷkc we compute the maximum loss augmented score
Sk(y;x, zk,θc)± ε∆(yp, ŷc). This is then used to find the
loss augmented prediction ŷa given in statement 3.

In order to compute the gradients of the self diversity of
conditional distribution, we need to find the maximum loss
augmented prediction yb. Here, the loss is computed be-
tween a pair of K different predictions of the conditional
net that we have already obtained. This is shown by state-
ments 4 to 7 in algorithm 1.

For the purpose of optimizing the conditional net using
gradient descent, we need to find the gradients for the ob-
jective function of the conditional net defined in equation
(14) of the main paper. The computation of the unbiased
approximate gradients for the individual terms in the objec-
tive function is shown in statement 8. We finally optimize
the conditional net by the employing gradient descent step
and updating the model parameters by descending to the
approximated gradients as shown in statement 9 of algo-
rithm 1.

3. Implementation Details
In this section, we provide additional implementation

details. For the input pair (x, zk), the classification
branch of the conditional net outputs a score function
Gk(y;x, zk,θc), which is a B × C matrix. We then sam-
ple ŷkc as described in Section 3.2 of the paper. A non-
maximal suppression is applied to further reduce the num-
ber of sampled bounding boxes. Corresponding to these
samples, we mask the bounding box regression branch of
the conditional net such that every bounding box which is
not present in the sampled output ŷkc is multiplied by a 0
row vector. This ensures that only those bounding boxes
which are sampled by the conditional net are retained in
the regression branch. The approximated gradients of the

Algorithm 1: Conditional net training algorithm

Input : Training input (x,a) ∈ W , and prediction
net output yp

Output: ŷ1
c , . . . , ŷ

K
c , sample K predictions from the

model

1 for k = 1 . . .K do
2 Sample noise vector zk, generate output ŷkc :

ŷkc = arg max
y∈Y

Sk(y;x, zk,θc)

3 Find loss augmented prediction ŷka w.r.t. output
from prediction net yp:

ŷka = arg max
y∈Y

Sk(y;x, zk,θc)± ε∆(yp, ŷ
k
c )

4 Compute loss augmented predictions:
5 for k = 1, . . . ,K do
6 for k′ = 1, . . . ,K, k′ 6= k do
7 Find loss augmented prediction ŷkb w.r.t. other

conditional net outputs ŷkc :

ŷk,k
′

b = arg max
y∈Y

Sk(y;x, zk,θc)±ε∆(ŷkc , ŷ
′)

8 Compute unbiased approximate gradients for
DIV ε∆(Prc,Prc) and DIV ε∆(Prc,Prc) as:

(16)

DIV ε∆(Prp,Prc)

=
1

KB

K∑
k=1

B∑
i=1

[
∇θcSk(ŷ(i)

a ;x, zk,θc)

−∇θcSk(ŷ(i)
c ;x, zk,θc)

]
DIV ε∆(Prc,Prc)

=
2

K(K − 1)B

K∑
k,k′=1
k′ 6=k

B∑
i=1

[
∇θc

Sk(ŷ
(i)
b ;x, zk,θc)

−∇θc
Sk′(ŷ

′(i)
c ;x, z′k,θc)

]
(17)

Update model parameters by descending to the
approximated gradients:

θt+1
c = θtc − η∇θc

DISC∆(Prp(θp),Prc(θc))

loss function is then computed and fed explicitly to the non-
differentiable output branch to update the parameters of the



network.

4. Experiments
4.1. Ablation Experiments

In this subsection we discuss the effects of the loss ratio
and the thresholding operation on the score function for the
detection task on VOC 2007 data set.

Effects of the loss ratio: The loss ratio λ, as defined in
Section 4.1 of the main paper, is the ratio of the weight of
the localization loss to the weight of the classification loss.
In other words, with the higher the loss ratio more impor-
tance will be given by the objective function to correctly
regress the bounding box labels. We choose three different
loss ratios λ = {1, 0.33, 3} for evaluation. The result of
detection task on VOC 2007 test set are 52.1%, 51.6% and
52.4% mAP respectively. We empirically observe that as-
signing more weight to the localization loss helps, indicat-
ing that it is important for the networks to tweak the bound-
ing boxes labels generated from the selective search region
proposals.

Effect of thresholding the score function: As seen in
Section 3.2 of the main paper, the conditional net gen-
erates samples from the score function (4) of the main
paper. A low score value indicates that the conditional
net is not certain of the bounding box label for an in-
put image. Thresholding the score function would mean
that we only sample bounding box labels from the con-
ditional net when it has high certainty over the class
distribution. We evaluate the result of the detection
task on VOC 2007 test set for the threshold values of
{0.1, 0.2, 0.3, 0.4, 0.5}. Without any threshold, our method
has a mean average precision of 51.4%. The correspond-
ing mean average precision for the threshold values are
{51.7%, 52.2%, 51.5%, 51.0%, 50.6%}. These results in-
dicate that it helps to apply threshold when the network is
uncertain over the output classes. This is because we would
not like the prediction net to learn from highly uncertain
samples. We get the best results for the threshold value of
0.2. However, we also observe that choosing a large value
for threshold has no effect on the detection accuracy. In
this case, the network is already reasonably certain of the
bounding box label, and we would not like to reject such
samples.

Note that for the choice of loss ratio λ = 3 and threshold
kept at 0.2, our method achieves the best detection average
precision of 52.9% mAP.

4.2. Results on VOC 2012

Here, we compare our proposed method with other state-
of-the art weakly supervised methods. Results for the task

of detection average precision (AP) and correct localization
(CorLoc) are presented in table 1 and table 2 respectively
for PASCAL VOC 2012 data set. Our results are consis-
tent with those observed for VOC 2007 data set and we get
an overall increase of 1.7% over previous state-of-the-art
method, W2F [8]. Our network trained and tested on a sin-
gle scale outperforms W2F [8], which is trained and tested
on multiple scales.

4.3. Results with Region Proposal Networks

In this subsection we show that our method extends to ar-
chitectures with region proposal networks (RPN) [4], thus
eliminating the need for external bounding box proposer
like Selective Search [7]. This enables our framework to
perform inference in real-time, while the entire pipeline is
trained in an end-to-end fashion including the RPN.

For this, we replace our prediction net with Faster-
RCNN [4] as shown in Figure 1. As we wish to use the
same set of bounding boxes for both the networks, we share
the bounding box proposals generated from RPN as shown
in the figure. Furthermore, reusing the computation also
makes our training efficient.

The algorithm proceeds by randomly initializing the
RPN and extracting 300 bounding box proposals for each
image. These proposals are then fed to the conditional net,
which samples the bounding boxes corresponding to the
image-level labels for the given image from the proposals.
Note that as we introduce noise samples in our conditional
net, we get a diverse set of sampled bounding boxes. These
bounding boxes are then used to train the conditional net,
which also updates the RPN thereby gradually improving
the localization of the objects present in the image.

The results when using bounding box proposals from
RPN is presented in Table 3. We compare the results against
those achieved by using Selective Search bounding boxes.
Note that, 300 bounding box proposals generated from the
randomly initialized RPN has a recall rate of 44.5%±13.2%
on VOC 2007 data set. However, after several iterations of
training, the final recall rate achieved from 300 bounding
box proposals from RPN is 94.7%. This is still low when
compared to the recall rate achieved by 2000 bounding box
proposals from Selective Search method. We argue that due
to this difference, we observe a 2% drop in accuracy. This
makes a case of using more bounding box proposals for a
better recall rate or using better RPN, like the one proposed
in [6]. Finally, our choice of employing Faster-RCNN for
the prediction net enables our framework to perform infer-
ence in real-time.



Table 1. Detection average precision (%) for different methods on VOC 2012 test set.
Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike pson plant sheep sofa train tv mAP

Jie et al. [3] 60.8 54.2 34.1 14.9 13.1 54.3 53.4 58.6 3.7 53.1 8.3 43.4 49.8 69.2 4.1 17.5 43.8 25.6 55 50.1 38.3

OICR [5] 71.4 69.4 55.1 29.8 28.1 55.0 57.1 24.4 17.2 59.1 21.8 26.6 57.8 71.3 1.0 23.1 52.7 37.5 33.5 56.6 42.5

W2F [8] 73.0 69.4 45.8 30.0 28.7 58.8 58.6 56.7 20.5 58.9 10.0 69.5 67.0 73.4 7.4 24.6 48.2 46.8 50.7 58.0 47.8

PredNet (VGG) 73.1 71.4 56.3 30.8 28.7 57.6 62.1 44.6 23.4 61.7 26.4 44.4 62.7 80.0 9.1 24.4 56.8 40.2 52.8 60.8 48.4

PredNet (Ens) 74.4 72.3 57.8 33.6 31.5 60.1 63.0 45.3 21.6 64.0 27.2 44.5 63.8 78.2 10.2 28.3 59.4 38.4 55.1 61.9 49.5

Table 2. CorLoc (in %) for different methods on VOC 2012 trainval set.
Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike pson plant sheep sofa train tv mean

Jie et al. [3] 82.4 68.1 54.5 38.9 35.9 84.7 73.1 64.8 17.1 78.3 22.5 57.0 70.8 86.6 18.7 49.7 80.7 45.3 70.1 77.3 58.8

OICR [5] 89.3 86.3 75.2 57.9 53.5 84.0 79.5 35.2 47.2 87.4 43.4 43.8 77.0 91.0 10.4 60.7 86.8 55.7 62.0 84.7 65.6

W2F [8] 88.8 85.8 64.9 56.0 54.3 88.1 79.1 67.8 46.5 86.1 26.7 77.7 87.2 89.7 28.5 56.9 85.6 63.7 71.3 83.0 69.4

Pred Net (VGG) 88.8 85.1 68.7 52.3 47.2 91.0 92.1 64.3 29.4 85.6 54.5 64.9 85.9 89.8 27.5 58.5 81.3 67.6 77.2 79.5 69.5

Pred Net (Ens) 89.1 87.1 70.3 54.2 49.8 92.5 92.5 64.6 25.1 87.0 54.8 60.5 88.3 85.4 32.6 62.7 83.4 63.2 79.9 81.7 70.2

Figure 1. The overall architecture. (a) Prediction Network: a standard Faster-RCNN architecture is used to model the prediction net. For
an input image, the region proposal network (RPN) generates a set of bounding box proposals. Features from each of these proposals
are computed by the region of interest (ROI) pooling layers, which are then passed through the classifier and regressor to predict the
final bounding box. (b) Conditional Network: a modified Fast-RCNN architecture is used to model the conditional net. For a single
input image x and three different noise samples {z1, z2, z3} (represented as red, green and blue matrix), three different bounding boxes
{y(1),y(2),y(3)} are sampled for the given image-level label (bird in this example). Here the noise filter is concatenated as an extra
channel to the final convolutional layer. The bounding box proposals required for the conditional net are acquired from the RPN of the
prediction net. For both the networks, the initial conv-layers are fixed during training.

Selective Search RPN

mAP % CorLoc % mAP % CorLoc %

VOC 2007 52.9 70.9 50.9 69.1

VOC 2012 49.5 70.2 46.1 67.3
Table 3. Comparison of results when using bounding box propos-
als from Selective Search and RPN.



References
[1] Diane Bouchacourt. Task-Oriented Learning of Structured

Probability Distributions. PhD thesis, University of Oxford,
2017.

[2] Ross Girshick. Fast R-CNN. In ICCV, 2015.
[3] Zequn Jie, Yunchao Wei, Xiaojie Jin, Jiashi Feng, and Wei

Liu. Deep self-taught learning for weakly supervised object
localization. In CVPR, 2017.

[4] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with region
proposal networks. In NIPS, 2015.

[5] Peng Tang, Xinggang Wang, Xiang Bai, and Wenyu Liu. Mul-
tiple instance detection network with online instance classifier
refinement. In CVPR, 2017.

[6] Peng Tang, Xinggang Wang, Angtian Wang, Yongluan Yan,
Wenyu Liu, Junzhou Huang, and Alan Yuille. Weakly super-
vised region proposal network and object detection. In ECCV,
2018.

[7] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers,
and Arnold WM Smeulders. Selective search for object recog-
nition. IJCV, 2013.

[8] Yongqiang Zhang, Yancheng Bai, Mingli Ding, Yongqiang Li,
and Bernard Ghanem. W2F: A weakly-supervised to fully-
supervised framework for object detection. In CVPR, 2018.


