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A. A walk-through example

Figure S.1 demonstrates the inference process of COSMO with an without smoothing. An image (panel a) is processed
by two experts: (1) An expert of unseen classes produces a distribution of confidence scores p#* (y,U) (2) An expert of seen
classes produces a distribution of confidence scores p°(y, S). Next, the CBG gating network (Section 4.1) combines these
confidence scores into a belief p&*t¢(U/).

Without smoothing (panel b): Here, p%(y,U) and p°(y, S) are normalized to pZ* (y|U), p°(y|S) and then a joint pre-
diction is estimated by soft combining the modules with Eq. (2). In the example, the unseen expert produces overly confident
prediction for a wrong (distractor) class (red bar). When soft combining the expert decisions, this overwhelms the correct
decision of the seen expert (blue bar), producing a false positive detection of distractor class.

With smoothing (panel c): Here, p“S(y,U) and p°(y, S) are smoothed to p'(y|U), p'(y|S) with Eq. (4) and then a joint
prediction is estimated by soft combining the modules with Eq. (2). In the example, the over confident prediction of the
unseen expert is smoothed (red bar). When soft combining the expert decisions, it allows the model to reach a correct
decision (blue bar).
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Figure S.1. A walk-through example

B. Negative results for OOD methods

We tested two state-of-the-art methods for out-of-distribution detection: ODIN [2] and Ensemble (Ensemble, [3]). We
observed that taking a perturbation hurts OOD metrics with both these methods. In addition, in Ensemble, although quality
metrics improved for the left-out training subsets during training time, the ensemble models learned to overfit the left-out
subsets and failed to generalize to Unseen-Val set, better than using the baseline Max-Softmax-1.



We believe this result may be due to two factors: (1) Fine-grained datasets are harder: CUB, SUN and AWA are fine
grained datasets. For an un-trained eye, all their unseen samples may appear as in-distribution. For example, only a few
fine-grained details discriminate “Black Throated Blue Warbler” (€ S) of “Cerulean Warbler” (€ U). Therefore we believe
that a perturbation would have a similar effect on images from S or /. (2) Shallow vs Deep: In the standard GZSL protocol
we use, each sample is represented as a feature vector extracted from a deep CNN pre-trained on ImageNet. We found that

the best classifier for this data is a shallow logistic regression classifier. This is different than ODIN and Ensemble that make
the perturbation along a deep network.

C. Seen-Unseen curves for COSMO+fCLSWGAN [4]

Figure S.2 provides a full Seen-Unseen curve (pink dots) that shows how COSMO+fCLSWGAN trades-off the metrics.
We compare it with a curve that we computed for the CS+HfCLSWGAN baseline (gray dots) and also show the results
(operation-points) reported for the compared methods (pink-square), selected with cross-validation by choosing the best
Accy on GZSL-Val set.

The pink curve shows that on all datasets, COSMO produces equivalent or better performance compared to f{CLSWGAN

baseline (pink-X). However in most cases the operation-point selected with cross validation (pink-square) is inferior to
fCLSWGAN baseline (olive-square and Table 1).
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Figure S.2. The Seen-Unseen curve for COSMO+fCLSWGAN , compared to: (1) The curve of CS [1] +fCLSWGAN baseline, (2) 15

baseline GZSL models. Dot markers denote samples of each curve. Squares: COSMO cross-validated model and its f{CLSWGAN*-based
baselines. Triangles: non-generative approaches, *X’: approaches based on generative-models.

D. Joint training of all modules

We now explain why the GZSL setup prevents from training the gater jointly with the S and U experts. Basiclaly, in
GZSL, one cannot mix seen and unseen samples during the same learning phase. More specifically, to adhere to the standard
GZSL protocol by [5] in which some test samples come from unseen validation classes, one has two options. (1) Do not use
these classes when training the seen expert S. This decimates S’s accuracy on them. (2) Do use them for training S. In that
case, all labeled samples are seen and the gater cannot learn to discriminate seen from unseen.

We ran two experiments on CUB to evaluate these two options, training the components jointly with a unified loss.
In the first case, accuracy on seen classes degrades from 72.8% to 53%, and on the GZSL task Accy degrades from 50.2%

(COSMO ) to 26.3%. In the second case, there were no samples of unseen classes when training the model. This greatly
hurts the accuracy, leading to: Accys = 0.1%, Accy = 72.8%, Accy =1.9% far worse than original COSMO.
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