
In this appendix, we detail statistics regarding the
Scan2CAD dataset in Sec. A. In Sec. B, we detail our evalu-
ation metric for the alignment models. We show additional
details for our keypoint correspondence prediction network
in Sec. C and we show example correspondence predictions.
We provide additional detail for our alignment algorithm in
Sec E. In Sec. G, we describe the implementation details of
the baseline approaches.

A. Dataset

A compilation of our dataset is presented in Fig. 9. As a
full coverage was aimed during the annotation, we can see
the variety and richness of the aligned objects.

Figure 1: Distribution of top 20 categories of annotated ob-
jects in our Scan2CAD dataset.

Statistics We show the object category statistics of our
dataset in Fig. 1. Since our dataset is constructed on scans of
indoor environments, it contains many furniture categories
(e.g., chairs, tables, and sofas). In addition, it also provides
alignments for a wide range of other objects such as back-
packs, keyboards, and monitors.

Timings The annotation timings per object and per scan
are illustrated in Fig. 2 (top) and Fig. 2 (bottom). On an
object level, the timings are relatively consistent with little
variance in time. On a scan level, however, the variation in
annotation time is larger which is due to variation in scene
size. Larger scenes are likely to contain more objects and
hence require longer annotation times.

Symmetries In order to take into account the natural sym-
metries of many object categories during our training and
evaluation, we collected a set of symmetry type annotations
for all instances of CAD models. Fig. 3 shows examples
and total counts for all rotational symmetry annotations.

Figure 2: Annotation timing distributions for each anno-
tated object (top) and for each annotated scene (bottom).
Each row shows a box-whisker plot with the median time
and interquartile range for an annotator. The vertical rule
shows the overall median across annotators.

Figure 3: Examples of symmetry annotations.

B. Evaluation Metric
In this section, we describe the details of the algorithm

for computing the alignment accuracy. To compute the ac-
curacy, we do a greedy matching of aligned CAD models to
the ground truth CAD models.

For a given aligned scene id-scan with N aligned CAD
models, we query the ground truth alignment for the given
scene. The evaluation script then iterates through all aligned
candidate models and checks whether there is a ground truth
CAD model of the same class where the alignment error is



Data: 1 id-scan, N CADs (id, cat, pose)
Result: accuracy in %
Init:
Get N GT-CADs from database with key=id-scan
Set thresholds tt = 20cm, tr = 20◦, ts = 20%
counter = 0;
for c in CADs do

id, cat, pose = c
for c-gt in GT-CADs do

idGT, catGT, poseGT = c-gt
if cat == catGT then

εt = Distance (pose.t, poseGT.t)
εr = Distance (pose.r, poseGT.r, symGT)
εs = Distance (pose.s, poseGT.s)
if εt ≤ tt and εr ≤ tr and εs ≤ ts then

counter ++
remove idGT from GT-CADs
break

end
end

end
end
Output: accuracy = counter/N

Algorithm 1: Pseudo code of our evaluation benchmark.
id, cat, pose denotes the id, category label and 9DoF
alignment transformation for a particular CAD model.
Note that the rotation distance function takes symmetries
into account.

below the given bounds; if one is found, then the counter
(of positive alignments) is incremented and the respective
ground truth CAD model is removed from the ground truth
pool. See Alg. 1 for the pseudo-code.

C. Correspondence Prediction Network
Network details The details of the building blocks for our
correspondence prediction network are depicted in Fig. 4.
See Figure 4 of the main paper for the full architecture. We
introduce the following blocks:

• ConvBlocks are the most atomic blocks and consist
of a sequence of Conv3-BatchNorm-ReLU layers as
commonly found in other literature.

• ResBlocks are essentially residual skip connecting
layers.

• BigBlocks contain two ResBlocks in succession.

Training curves Fig. 5 shows how much data is required
for training the alignment approach. The curves show pre-
dicted compatibility scores of our network. We train our

Figure 4: CNN building blocks for our Scan2CAD architec-
ture. K, S, C stand for kernel-size, stride and num-channels
respectively.

3D CNN approach with different numbers of training sam-
ples (full, half and quarter of the dataset), and show both
training and validation curves for each of the three experi-
ments. When using only a quarter or half of the dataset, we
see severe overfitting. This implies that our entire dataset
provides significantly better generalization.

Figure 5: Training and validation curves for varying train-
ing data sizes showing the probability score predictions.
Experiments are carried out with full, half, and a quarter
of the data set size. We see severe overfitting for half and
quarter dataset training experiments, while our full training
corpus mitigates overfitting.

In Fig. 6, we show the Precision-recall curve of the com-
patibility prediction of a our ablations (see Sec. 7.1 in the
main paper). The PR-curves underline the strength of our
best preforming network variation.

Correspondence predictions Visual results of the corre-
spondence prediction are shown in Fig. 8. One can see
that our correspondence prediction network predicts as well
symmetry-equivalent correspondences. The scan input with
a voxel resolution of 3cm and a grid dimension of 64



Figure 6: Precision-recall curve of our compatibility score
predictions.

can cover 1.92m per dimension. A larger receptive field
is needed for large objects in order infer correspondences
from a more global semantic context (see left-hand side first
and second row.).

D. Alignment Error Analysis
Our alignment results have different sensibility for each

parameter block (translation, rotation, scale). In order to
gauge the stringency of each parameter block we varied the
threshold for one parameter block and held the other two
constant at the default value (see Fig. 7). We observe that
for the default thresholds εt = 0.2m, εr = 20◦, εs = 20%
all thresholds

E. Alignment Algorithm Details
In order to remove misaligned objects, we prune objects

after the alignment optimization based on the known free
space of the given input scan. This is particularly important
for the unconstrained (‘in-the-wild’) scenario where the set
of ground truth CAD models to be aligned is not given as
part of the input. For a given candidate transformation Tm
(as described in Sec. 6 in the main paper), we compute:

c =

∑Ωoccupied
CAD

x Oseen
scan(Tworld→vox,scan · T−1

m · Tvox→world,CAD · x)2

|Ωoccupied
CAD |

Ωoccupied
CAD = {x ∈ ΩCAD | OCAD(x) < 1}

Ωseen
scan = {x ∈ Ωscan | Oscan(x) > −τ}
Oseen

scan(x) = Oscan(x) if x ∈ Ωseen
scan else 0

where T−1
m defines the transformation from CAD to scan,

Ω defines a voxel grid space (⊂ N3), τ is the truncation dis-
tance used in volumetric fusion (we use τ = 15cm), and
O are look-ups into the signed distance function or distance
functions for the scan or CAD model. We also require that

at least 30% of the CAD surface voxels Ωoccupied
CAD project into

seen space of the scan voxel grid Ωseen
scan. Finally, we rank all

alignments (of various models) per scene w.r.t. their con-
fidence and prune all lower ranked models that are closer
than 0.3m to a higher ranked model.

F. Alignment Optimization Analysis: Compar-
ison to RANSAC

In Tab. 1, we additionally demonstrate the efficacy of
our new alignment approach compared to alignment by
RANSAC (using our predicted heatmap correspondences).
Our alignment via heatmap optimization is more robust to
outliers while also incorporating symmetries, resulting in
significantly improved performance.

Method avg. acc. in %

Our Heatmap CNN + RANSAC 18.27
Our Heatmap CNN + Heatmap optim. 31.68

Table 1: Our heatmap optimization for alignment in
comparison to RANSAC. The input correspondences for
RANSAC are provided by the maximum response of the
predicted heatmap.

G. Baseline Method Details

In the following, we provide additional details for the
used baseline approaches. FPFH and SHOT work on point
clouds and compute geometric properties between points
within a support region around a keypoint. We use the im-
plementation provided in the Point Cloud Library [2].

The method presented by Li et al. [1] takes the free space
around a keypoint into account to compute a descriptor dis-
tance between a keypoint in scan and another keypoint in
a CAD object. Here, we use the original implementation
from the authors and modified it such that it works within
a consistent evaluation framework together with the other
methods. However, since we are not restricted to real-time
constraints, we neglect the computation of the geometric
primitives around the keypoints, which helps to find good
initial rotation estimations. Instead, we computed all 36 ro-
tation variants to find the smallest distance. We also replace
the original 1-point RANSAC with another RANSAC as de-
scribed below.

3DMatch [3] takes as input a 3D volumetric patch from
a TDF around a keypoint and computes via a series of 3D
convolutions and max-poolings a 512 dimensional feature
vector. In order to train 3DMatch, we assemble a corre-
spondence dataset as described in Sec. 5.3 in the main pa-
per. We train the network for 25 epochs using the origi-
nal contrastive loss with a margin of 1. During test time,



Figure 7: Accuracy vs. varying thresholds for translation (left), rotation (middle) and scale (right). Only one threshold is
varied whereas the remaining ones were held constant at their default value either εt = 0.2m, εr = 20◦, εs = 20%.

we extract the 3D patch around a detected Harris key-
point of both CAD object and scan and separately com-
pute their feature vector. In addition to the evaluation in
the main paper, for 3DMatch, we additionally show the
performance of 3DMatch when trained only on real only
(scan-scan correspondences from ScanNet), as shown in
Tab. 2. This suffers dramatically in matching the differ-
ent characteristics of scan-CAD at test time. Our approach
to predict scan-CAD heatmap correspondences results in
significantly higher alignment accuracy compared to both
3DMatch trained on scan-CAD as well as scan-scan.

For each method, we compute the feature descriptors for
all keypoints in the scan and the CAD objects, respectively.
We then find correspondences between pairs of keypoints if
their height difference is less than 0.8m and if the L2 dis-
tance between the descriptors is below a certain threshold.
Due to potential re-occurring structures in scan and CAD
we select the top-8 correspondences with the smallest de-
scriptor distances for each keypoint in the scan.

After establishing potential correspondences between
the scan and a CAD object, we use a RANSAC outlier re-
jection method to filter out wrong correspondences and find
a suitable transformation to align the CAD object within
the scene. During each RANSAC iteration, we estimate the
translation parameters and the up-right rotation by selecting
3 random correspondences. If the transformation estimate
gives a higher number of inliers than previous estimates, we
keep this transformation. The threshold of the Euclidean
distance for which a correspondence is considered as an in-
lier is set to 0.20m. We use a fixed scale determined by
the class average scale from our Scan2CAD train set. For
a given registration for a specific CAD model, we mark off
all keypoints in the scan which were considered as inliers
as well as all scan keypoints which are located inside the
bounding box of the aligned CAD model. These marked
keypoints will be ignored for the registration of later CAD
models.

To find optimal parameter for FPFH, SHOT, and Li et
al., we construct an additional correspondence benchmark
and ran a hyperparameter search based on the validation set.

Method avg. acc. in %

3D Match + ScanNet (only real data) 0.26
3D Match + our dataset 10.29
Our method + our dataset 31.68

Table 2: Comparison to 3DMatch trained with only real
data, trained on our data, and our result; evaluation on our
test set.
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Figure 8: Sample correspondence predictions over a range of various CAD models. Heatmaps contain symmetry-equivalent
correspondences.



Figure 9: Samples of annotated scenes. Left: 3D scan. Center: annotated CAD model arrangement; right: overlay CAD
models onto scan.


