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1. Converting latent vectors into a soft decision
forest

Soft internal decision function The soft decision func-
tion held by each internal decision node in the soft decision
forest is defined as:

dn(z,Θ) = σ(zn − tn) (1)

σ(z) = (1 + e−z)−1 denotes a sigmoid function and Θ rep-
resents the parameters of the decision forest. zn is the acti-
vation value of the latent vector and tn is a threshold value
for the decision node dn which zn is compared against. The
blending function µ`(z,Θ) dictates the portions allocated
to the values q` held by each leaf ` towards a tree’s final
output:

µ`(z|Θ) =
∏
n∈N

dn(z,Θ)1`↙n d̄n(z,Θ)1`↘n (2)

d̄n(z,Θ) is the complement of dn(z,Θ) (i.e. 1−dn(z,Θ)).
The indicator function is denoted by 1C with a condition:

1C =

{
1, if C = 1

0, otherwise
(3)

The conditions `↙ n and `↘ n are defined as:

`↙ n =

{
1, if zn ≤ tn
0, otherwise

(4)

`↘ n =

{
1, if zn > tn

0, otherwise
(5)

The soft decision tree outputs a weighted sum prediction
given by:

Q(z,Θ) =
∑
`

µ`(z|Θ)q` (6)
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Soft residual decision forest For combining the ensem-
ble of soft decision trees, we employ the residual method
in [5], and multiplicatively combine distributions to gener-
ate the final output. Hence the transformed latent vector, z′g
, is learned as the product of each individual decision tree’s
given output i.e:

z′g =

T∏
t=1

Qt(Dt(z,Θt)) (7)

WhereDt represents the internal decision node functions in
the decision tree t.

2. Ablation Study on the choice of F
Various configurations were evaluated as preliminary

tests to verify the effectiveness of optimal transport on a
low dimension representation. Here, we show performance
in Inception Score and FID Score across various configura-
tions:
1) We tested naı̈ve L2 regularisation by omitting Algorithm
1 and using the L2 cost between randomly sampled zr, zg
(WGAN-GP+L2).
2) Using c(a, b) = ‖a− b‖2 as the cost function (POT-
GAN (L2))
3) Using c(a, b) = ‖a−Fθ(b)‖2 as the cost function,
where Fθ is a 3-layer Multi-Layer Perceptron (MLP) pa-
rameterised by θ (POT-GAN (MLP)).

Inception Score (CIFAR-10)
WGAN-GP

+L2

POT-GAN
(L2)

POT-GAN
(MLP)

POT-GAN
(LTF)

5.92±0.08 6.62±0.05 6.72±0.05 6.87±0.04
FID Score (CIFAR-10)

65.3 34.1 33.5 32.5

3. Critic Loss Curves
Fig. 1 shows the critic loss curves for POT-GAN and

WGAN-GP over 100k training iterations on the CIFAR-10
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dataset. These loss curves correlate well with the improved
convergence rates of our proposed method.
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Figure 1: Critic loss curves over a 100k training iterations
for POT-GAN and WGAN-GP on CIFAR-10

4. Architectures
GAN architecture Our GAN architecture is similar to
generator and discriminator networks in [3]. The genera-
tor network is composed of 2-strided 5 × 5 deconvolution
layers with batch normalisation and ReLU activation. The
critic network consists of 2-strided 5 × 5 convolution lay-
ers with Leaky ReLU activation. Layer normalisation [1] is
used as a drop-in replacement for batch normalisation in the
critic network following the recommendation of [2]. Up-
sampling and downsampling is achieved via these strided
deconvolution and convolution layers respectively.

VAE architecture Our VAE architecture is based off the
architecture in [3]. The decoder network is made of 2-
strided 5 × 5 deconvolution layers with batch normalisa-
tion and ReLU activation. The encoder network consists
of 2-strided 5× 5 convolution layers with batch normalisa-
tion and ReLU activation. Upsampling and downsampling
is achieved via these strided deconvolution and convolution
layers respectively.

Soft decision forest architecture Our soft decision for-
est is composed of 8 soft decision trees, each of 6-depth.
Each decision tree contains 26 − 1 = 63 internal decision
nodes and 26 = 64 leaf nodes. Hence, in total the soft
decision forest contains 8 × 63 = 504 decision nodes and
8×64 = 512 leaf nodes. The latent vector zg is first upsam-
pled from 128 dimensions to 504 dimensions to match the
required number of decision nodes using a fully connected
linear layer. Each decision node is assigned one threshold
value, and each leaf node is assigned a 128 vector to match
the output transformed vector z′g .



Generator G(z)

Kernel Size Batch Norm Activation Resample Output Shape

z - No - - 128
Linear + Reshape - Yes ReLU - 512 × 4 × 4

Deconv 5 × 5 Yes ReLU ↑ 512 × 8 × 8
Deconv 5 × 5 Yes ReLU ↑ 256 × 16 × 16
Deconv 5 × 5 Yes ReLU ↑ 128 × 32 × 32

Deconv + Tanh 5 × 5 Yes - ↑ 3 × 64 × 64

Table 1: Generator network architecture. ↑ represents upsampling via strided deconvolution

Critic D(x)

Kernel Size Batch Norm Activation Resample Output Shape

Conv 5 × 5 No Leaky ReLU ↓ 64 × 32 × 32
Conv 5 × 5 No Leaky ReLU ↓ 128 × 16 × 16
Conv 5 × 5 No Leaky ReLU ↓ 256 × 8 × 8
Conv 5 × 5 No Leaky ReLU ↓ 512 × 4 × 4

Reshape + Linear - No - - 1

Table 2: Critic network architecture. ↓ represents downsampling via strided convolution

Decoder Dec(z)

Kernel Size Batch Norm Activation Resample Output Shape

z - - 128
Linear + Reshape - No ReLU - 512 × 4 × 4

Deconv 5 × 5 Yes ReLU ↑ 256 × 8 × 8
Deconv 5 × 5 Yes ReLU ↑ 128 × 16 × 16
Deconv 5 × 5 Yes ReLU ↑ 64 × 32 × 32

Deconv + Tanh 5 × 5 Yes - ↑ 3 × 64 × 64

Table 3: Decoder network architecture. ↑ represents upsampling via strided deconvolution

Encoder Enc(x)

Kernel Size Batch Norm Activation Resample Output Shape

Conv 5 × 5 Yes ReLU ↓ 64 × 32 × 32
Conv 5 × 5 Yes ReLU ↓ 128 × 16 × 16
Conv 5 × 5 Yes ReLU ↓ 256 × 8 × 8
Conv 5 × 5 Yes ReLU ↓ 512 × 4 × 4

Reshape + Linear - No - - 128

Table 4: Encoder network architecture. ↓ represents downsampling via strided convolution



(a) DCGAN [3] (b) VEEGAN [4] (c) WGAN-GP [2] (d) POT-GAN (Ours)

Figure 2: Additional qualitative results on the CIFAR-10 dataset.
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