
Depth-Aware Video Frame Interpolation
Supplementary Material

Wenbo Bao1 Wei-Sheng Lai3 Chao Ma2 Xiaoyun Zhang1∗ Zhiyong Gao1 Ming-Hsuan Yang3,4

1 Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University
2 MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

3 University of California, Merced 4 Google
https://sites.google.com/view/wenbobao/dain

1. Overview
In this supplementary document, we present additional results to complement the paper. First, we provide the algorithmic

details and network configuration of the proposed model. Second, we conduct additional analysis on the adaptive warping
layer and depth-aware flow projection layer and evaluate the performance of the depth estimation network. Finally, we
present more experimental results on interpolating arbitrary intermediate frames, qualitative comparisons with the state-of-
the-art video frame interpolation methods on the Middlebury and Vimeo90K datasets, as well as discussions of the limitations
on the HD video dataset. More video results are provided on our project website.

2. Algorithm Details and Network Configurations
We provide the derivation of the back-propagation in the proposed depth-aware flow projection layer, the algorithmic

details of the adaptive warping layer, and the configuration of our kernel estimation and frame synthesis networks.

2.1. Back-Propagation in Depth-Aware Flow Projection

Given the input flows (F0→1 and F1→0) and the depth maps (D0 andD1), our depth-aware flow projection layer generates
the intermediate flows Ft→0 and Ft→1. The proposed model jointly optimizes the flow estimation and depth estimation
networks to achieve a better performance for video frame interpolation. The gradient of Ft→0 with respect to the input
optical flow F0→1 is calculated by:

∂Ft→0(x)

∂F0→1(y)
=

−t · w0(y)∑

y′∈S(x)
w0(y′)

, for y ∈ S(x);

0, for y /∈ S(x).

(1)

The gradient of Ft→0 with respect to the depth D0 is calculated by:

∂Ft→0(x)

∂D0(y)
=
∂Ft→0(x)

∂w0(y)
· ∂w0(x)

∂D0(y)
, (2)

where

∂Ft→0(x)

∂w0(y)
=

−t ·

F0→1(y) ·
∑

y′∈S(x)
w0(y

′)−
∑

y′∈S(x)
w0(y) · F0→1(y

′)(∑
y′∈S(x)

w0(y′)
)2 , for y ∈ S(x);

0, for y /∈ S(x).

(3)

and
∂w0(y)

∂D0(y)
= −1 ·

(
D0(y)

)−2
. (4)

1

https://sites.google.com/view/wenbobao/dain

2.2. Adaptive Warping Layer

The adaptive warping layer [2] warps images or features based on the estimated optical flow and local interpolation kernels.
Let I(x) : Z2 → R3 denote the RGB image where x ∈ [1, H]× [1,W], f(x) := (u(x), v(x)) represent the optical flow field
and kl(x) = [klr(x)]H×W (r ∈ [−R+ 1, R]2) indicate the interpolation kernel where R = 2 is the kernel size. The adaptive
warping layer synthesizes an output image by:

Î(x) =
∑

r∈[−R+1,R]2

kr(x)I(x+ bf(x)c+ r), (5)

where the weight kr = klrk
d
r is determined by both the interpolation kernel klr and bilinear coefficient kdr . The bilinear

coefficient is defined by:

kdr =

[1− θ(u)][1− θ(v)], ru ≤ 0, rv ≤ 0,

θ(u)[1− θ(v)], ru > 0, rv ≤ 0,

[1− θ(u)]θ(v), ru ≤ 0, rv > 0,

θ(u)θ(v), ru > 0, rv > 0,

(6)

where θ(u) = u−buc denotes the fractional part of a float point number, and the subscript u, v of the 2-D vector r represent
the horizontal and vertical components, respectively. The bilinear coefficient allows the layer to back-propagate the gradients
to the optical flow estimation network. The interpolation kernels klr have the same spatial resolution as the input image with
a channel size of (2×R)2 = 16, as listed in the last row of Table 1.

2.3. Network Architectures

Our kernel estimation network generates two separable 1D interpolation kernels for each pixel. We use a U-Net architec-
ture and provide the configuration details in Table 1. In our frame synthesis network, we use 3 residual blocks to predict the
residual between the blended warped frames and the ground-truth frame. Table 2 provides the configuration details of the
frame synthesis network.

Table 1. Detailed configuration of the kernel estimation network.

Input Output Kernel size #input
channels

#output
channels Stride Activation Output size

in —— RGBs —— —— 6 —— —— H ×W

encoder

RGBs enc conv1 3× 3 6 16 1 ReLU H ×W
enc conv1 enc conv2 3× 3 16 32 1 ReLU H ×W
enc conv2 enc pool1 2× 2 32 32 2 —— H/2×W/2
enc pool1 enc conv3 3× 3 32 64 1 ReLU H/2×W/2
enc conv3 enc pool2 2× 2 64 64 2 —— H/4×W/4
enc pool2 enc conv4 3× 3 64 128 1 ReLU H/4×W/4
enc conv4 enc pool3 2× 2 128 128 2 —— H/8×W/8
enc pool3 enc conv5 3× 3 128 256 1 ReLU H/8×W/8
enc conv5 enc pool4 2× 2 256 256 2 —— H/16×W/16
enc pool4 enc conv6 3× 3 256 512 1 ReLU H/16×W/16
enc conv6 enc pool5 2× 2 512 512 2 —— H/32×W/32

decoder

enc pool5 dec conv6 3× 3 512 512 1 ReLU H/32×W/32
dec conv6 dec up5 4× 4 512 512 1/2 —— H/16×W/16
enc conv6+dec up5 dec conv5 3× 3 512 256 1 ReLU H/16×W/16
dec conv5 dec up4 4× 4 256 256 1/2 —— H/8×W/8
enc conv5+dec up4 dec conv4 3× 3 256 128 1 ReLU H/8×W/8
dec conv4 dec up3 4× 4 128 128 1/2 —— H/4×W/4
enc conv4+dec up3 dec conv3 3× 3 128 64 1 ReLU H/4×W/4
dec conv3 dec up2 4× 4 64 64 1/2 —— H/2×W/2
enc conv3+dec up2 dec conv2 3× 3 64 32 1 ReLU H/2×W/2
dec conv2 dec up1 4× 4 32 32 1/2 —— H ×W
enc conv2+dec up1 dec conv1 3× 3 32 16 1 ReLU H ×W

out
dec conv1 out conv1 3× 3 16 16 1 ReLU H ×W
out conv1 kernel horizontal 3× 3 16 16 1 —— H ×W
dec conv1 out conv2 3× 3 16 16 1 ReLU H ×W
out conv2 kernel vertical 3× 3 16 16 1 —— H ×W

Table 2. Detailed configuration of the frame synthesis network.

Input Output Kernel size #input
channels

#output
channels Stride Activation Output size

in —— features —— —— 428 —— —— H ×W
features in conv 7 × 7 428 128 1 ReLU H ×W

resblocks

in conv res1 conv1 3 × 3 128 128 1 ReLU H ×W
res1 conv1 res1 conv2 3 × 3 128 128 1 —— H ×W
in conv+res1 conv2 resblock1 —— 128 128 1 ReLU H ×W

resblock1 res2 conv1 3 × 3 128 128 1 ReLU H ×W
res2 conv1 res2 conv2 3 × 3 128 128 1 —— H ×W
resblock1+res2 conv2 resblock2 —— 128 128 1 ReLU H ×W

resblock2 res3 conv1 3 × 3 128 128 1 ReLU H ×W
res3 conv1 res3 conv2 3 × 3 128 128 1 —— H ×W
resblock2+res3 conv2 resblock3 —— 128 128 1 ReLU H ×W

out resblock3 out conv 3 × 3 128 3 1 —— H ×W

3. Additional Analysis
We conduct an additional evaluation to compare the proposed depth-aware flow projection layer and adaptive warping

layer with their alternatives. We also evaluate the accuracy of the depth estimation network.

3.1. Depth-aware flow projection layer

In our depth-aware flow projection layer, we use the inverse of depth value as the weight for aggregating flow vectors,
which is a soft blending of flows. A straightforward baseline is to project the flow with the smallest depth value, which can be
referred to as a hard selection scheme. We show a quantitative comparison between these two schemes in Table 3, where the
soft blending scheme obtains better performance on all the datasets. As shown in Figure 1, the hard selection scheme obtains
broken skateboard in both the black and blue close-ups. We note that the soft blending can better account for the uncertainty
of depth estimation. On the other hand, our flow projection layer allows the network to back-propagate gradients to the depth
estimation module for fine-tuning, which leads to performance gain as shown in the main paper.

Hard selection Soft blending (ours) Ground-truth

Figure 1. Effect of the depth-aware flow projection.

Table 3. Analysis on the depth-aware flow projection. M.B. is short for the OTHER set of the Middlebury dataset. The proposed model
Soft blending scheme shows a substantial improvement against the Hard selection scheme using flow with smallest depth.

Method
UCF101 [10] Vimeo90K [11] M.B. [1]

PSNR SSIM PSNR SSIM IE

Hard selection 34.89 0.9680 34.35 0.9740 2.11
Soft blending (ours) 34.99 0.9683 34.71 0.9756 2.04

3.2. Adaptive warping layer

To understand the effect of the adaptive warping layer, we remove the kernel estimation network from the proposed model
and replace the adaptive warping layer with a bilinear warping layer. The results are presented in Table 4. The adaptive
warping consistently provides significant performance improvement over the bilinear warping layer among the UCF101 [10],
Vimeo90K [11], and Middlebury [1] datasets. The results in Figure 2 demonstrate that the adaptive warping layer generates
clearer textures than bilinear warping.

Bilinear warping Adaptive warping (ours) Ground-truth

Figure 2. Effect of the adaptive warping layer.

Table 4. Comparison between bilinear and adaptive warping layers. M.B. is short for the OTHER set of the Middlebury dataset.

Method
UCF101 [10] Vimeo90K [11] M.B. [1]

PSNR SSIM PSNR SSIM IE

Bilinear warping 34.73 0.9672 33.81 0.9680 2.58
Adaptive warping (ours) 34.99 0.9683 34.71 0.9756 2.04

4. Depth Estimation
Our model learns the relative depth order instead of absolute depth values. Therefore, we use the SDR (SfM Disagreement

Rate) [4] to measure the preservation of depth order. The SDR= / SDR 6= is the disagreement rate for pairs of pixels with
similar / different depth orders. We compare the depth maps from our depth estimation network and the MegaDepth [4]
on the dataset of [4] and show the results in Table 5. We observe that our method improves the SDR6= substantially as our
depth-aware flow projection layer is more effective on the motion boundaries where objects have different depth orders.

Table 5. Evaluation of depth estimation.

Method SDR=% SDR 6=% SDR%

MegaDepth [4] 33.4 26.0 29.2
Ours 59.0 18.9 36.4

5. Experimental Results
5.1. Arbitrary Frame Interpolation

In Figure 3, we demonstrate that our method can generate arbitrary intermediate frames to create 10× slow-motion videos.
An Adobe PDF Reader is recommended to view the videos.

Figure 3. Videos with 10× slow-motion of inputs. Please view in Adobe PDF Reader to play the videos.

5.2. Qualitative Comparisons

We provide more visual comparisons with state-of-the-art methods on the Middlebury and Vimeo90K datasets.

5.2.1 Middlebury Dataset

Overlayed inputs ToFlow [11]

SepConv-L1 [7] EpicFlow [9]

SuperSlomo [3] CtxSyn [6]

MEMC-Net [2] DAIN (Ours)
Figure 4. Visual comparisons on Middlebury [1] EVALUATION set. Our method reconstructs the clearer roof and sharper edges than the
state-of-the-art algorithms.

Overlayed inputs ToFlow [11]

SepConv-L1 [7] EpicFlow [9]

SuperSlomo [3] CtxSyn [6]

MEMC-Net [2] DAIN (Ours)
Figure 5. Visual comparisons on the Middlebury [1] EVALUATION set. Our method reconstructs a straight and complete lamppost,
while the state-of-the-art approaches cannot reconstruct the lamppost well. In addition, our model generates clearer texture behind the
moving car.

Overlayed inputs ToFlow [11]

SepConv-L1 [7] EpicFlow [9]

SuperSlomo [3] CtxSyn [6]

MEMC-Net [2] DAIN (Ours)
Figure 6. Visual comparisons on the Middlebury [1] EVALUATION set. The proposed method reconstructs the falling ball with a clear
shape and generates fewer artifacts on the foot.

Overlayed inputs ToFlow [11]

SepConv-L1 [7] EpicFlow [9]

SuperSlomo [3] CtxSyn [6]

MEMC-Net [2] DAIN (Ours)
Figure 7. Visual comparisons on the Middlebury [1] EVALUATION set. Our method preserves the fine textures of the basketball well
and does not produce blockiness or ghost effect.

Overlayed inputs ToFlow [11]

SepConv-L1 [7] EpicFlow [9]

SuperSlomo [3] CtxSyn [6]

MEMC-Net [2] DAIN (Ours)
Figure 8. Visual comparisons on the Middlebury [1] EVALUATION set. Our method generates favorable results in the highly textured
region.

MIND [5] ToFlow [11]

EpicFlow [9] SPyNet [8]

SepConv-L1 [7] MEMC-Net [2]

DAIN (Ours) Ground-truth

Figure 9. Visual comparisons on the Middlebury [1] OTHER set. Our method preserves the shapes of the balls well.

MIND [5] ToFlow [11]

EpicFlow [9] SPyNet [8]

SepConv-L1 [7] MEMC-Net [2]

DAIN (Ours) Ground-truth
Figure 10. Visual comparisons on the Middlebury [1] OTHER set. The fine structure around the shadow of the lid constructed by our
method is more consistent with the ground truth than by the state-of-the-art approaches.

MIND [5] ToFlow [11]

EpicFlow [9] SPyNet [8]

SepConv-L1 [7] MEMC-Net [2]

DAIN (Ours) Ground-truth
Figure 11. Visual comparisons on the Middlebury [1] OTHER set. Our method reconstructs the fine details of the fur and preserves the
shape of the shoe well.

5.2.2 Vimeo90K dataset

Overlayed inputs MIND [5]

ToFlow [11] SepConv-Lf [7]

SepConv-L1 [7] MEMC-Net [2]

DAIN (Ours) Ground-truth

Figure 12. Visual comparisons on the Vimeo90K [11] test set. Our method reconstructs the legs well.

Overlayed inputs MIND [5]

ToFlow [11] SepConv-Lf [7]

SepConv-L1 [7] MEMC-Net [2]

DAIN (Ours) Ground-truth

Figure 13. Visual comparisons on the Vimeo90K [11] test set. Our method maintains the structures of both the fingers in gloves and the
steel bar of the devices well.

5.3. HD video results

The HD video results are available in our website. Although we show in the main paper that our DAIN model achieves
better PSNR and SSIM values against the MEMC-Net [2] algorithm on the HD dataset, we observe that there are some
annoying artifacts in the Bluesky and Sunflower videos. Specifically, we discover that these artifacts are introduced by
the frame synthesis network. In Figure 14, we present the 4-th frame results of the Bluesky video. The three images are
generated by the adaptive warping layer, the frame synthesis network and the corresponding ground-truth frame respectively.
The artifacts appeared in the flat sky area of the synthesized result suggest us that a more robust network should be proposed
to deal with high-resolution images.

Warped Results

Synthesized Results

Ground-Truth

Figure 14. Limitations of the proposed method on HD dataset.

References
[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and evaluation methodology for optical flow.

IJCV, 2011. 3, 4, 6, 7, 8, 9, 10, 11, 12, 13
[2] W. Bao, W.-S. Lai, X. Zhang, Z. Gao, and M.-H. Yang. MEMC-Net: Motion Estimation and Motion Compensation Driven Neural

Network for Video Interpolation and Enhancement. arXiv, 2018. 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
[3] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and J. Kautz. Super SloMo: High Quality Estimation of Multiple

Intermediate Frames for Video Interpolation. In CVPR, 2018. 6, 7, 8, 9, 10
[4] Z. Li and N. Snavely. Megadepth: Learning single-view depth prediction from internet photos. In CVPR, 2018. 4
[5] G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu. Learning image matching by simply watching video. In ECCV, 2016.

11, 12, 13, 14, 15
[6] S. Niklaus and F. Liu. Context-aware synthesis for video frame interpolation. In CVPR, 2018. 6, 7, 8, 9, 10
[7] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via adaptive separable convolution. In ICCV, 2017. 6, 7, 8, 9, 10, 11, 12,

13, 14, 15
[8] A. Ranjan and M. J. Black. Optical flow estimation using a spatial pyramid network. In CVPR, 2017. 11, 12, 13
[9] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Epicflow: Edge-preserving interpolation of correspondences for optical

flow. In CVPR, 2015. 6, 7, 8, 9, 10, 11, 12, 13
[10] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. In CRCV-TR-12-01,

2012. 3, 4
[11] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman. Video enhancement with task-oriented flow. arXiv, 2017. 3, 4, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15

	anm0:
	anm1:

