
Supplementary: The Domain Transform Solver

Akash Bapat and Jan-Michael Frahm

Department of Computer Science, The University of North Carolina at Chapel Hill

{akash,jmf}@cs.unc.edu

In Sec.(1), we describe the similarities of our optimiza-

tion objective to that of the Fast Bilateral Solver (FBS) [1].

In Sec.(2), we provide qualitative and quantitative results

for the image colorization task. Additionally, we colorize

smartphone images, which are increasingly becoming high-

resolution. Finally, in Sec.(3), we provide visualizations for

synthetic defocus using our method and highlight the ad-

vantages of our edge-aware technique.

1. Comparison with FBS solution

Here, we highlight the relation of our objective to the

optimization function of FBS. Recall the optimal solution

for our method, DTS, for the simplified objective (Eq. (2)

in the main paper) is:

zi =
λz̄Ni

+ ωiciti

λ + ωici

. (1)

On the other hand, FBS’s optimization objective is

min
z

λF BS

2

∑

i,j

Wi,j (zi − zj)
2

+
∑

i

ci (zi − ti)
2

. (2)

Inspecting the derivative of Eq. (2) at the minimum, we ob-

tain:

zi =

λF BS z̄Ni
+

citi
∑

j Wi,j

λF BS +
ci

∑

j Wi,j

. (3)

This optimal solution is, in fact, the same as that of the

DTS (see Eqn. (2) from the main paper). However, DTS

uses a different solving scheme that only approximates the

solution. The domain transform is isometric only when the

domain is 1D [2], but we use the pixel space as our do-

main which is 2D. Hence, DTS must iteratively solve for

the ideal solution in the X and Y directions independently.

On any given pass, the lateral neighbors of each swept pixel

are not considered, and thus only an approximate solution

is obtained. In addition, Eq.(1) assumes
∂z̄Ni

∂zi

= 0, which

is exact when Wii = 0. While filtering using moving av-

erage in the domain transform space, however, this is only

approximately maintained for pixels with neighborhoods of

sufficient weight.

1.1. Derivation for domain transform with L2 norm

In the following, we provide a detailed derivation for

Eqn.(4) and (5) from the paper. Eqn.(4) follows from the

definition of domain transform, that the L2 distance in DT

space for two close by points x and x + h is same as L2

in space (h2) and in color ((I(x + h) − I(x))2. This by

definition results in Eqn.(4) which is repeated here.

(DT (x + h) − DT (x))
2 def

= h
2 +

c
∑

k=1

(I(x + h) − I(x))
2

Rearranging the above,
(

DT (x + h) − DT (x)

h

)2

= 1 +

c
∑

k=1

(

I(x + h) − I(x)

h

)2

taking limit, h → 0

(

DT
′

(x)
)2

= 1 +

c
∑

k=1

(

I
′

(x)
)2

DT
′

(x) =

√

√

√

√1 +
c

∑

k=1

(I ′(x))
2

Integrating and assuming DT (0) = 0

DT (u) =

∫ u

0

√

√

√

√1 +

c
∑

k=1

(I ′(x))
2
dx

2. Colorization

Levin et al. [3] presented a method to convert a grayscale

image into a color image using a few color strokes as in-

put. Now we show in detail how we can accomplish the

same task in a more computationally efficient manner us-

ing our DTS framework. Fig. 1a shows the grayscale image

that we convert into the YCbCr color space to extract the

Y channel. We use this Y channel as our guide image to

compute the bilateral weights Wi,j . Fig. 1b shows the im-

ages with user annotated color strokes, which we convert

to YCbCr to extract their Cb and Cr channels. We then

apply our DTS twice with each Cb and Cr as target, to esti-

mate the edge-aware and completely filled Cb/Cr channels.

1



Our method performs the computation at 0.267s/megapixel,

which is more than a 3x speedup in comparison to FBS [1].

Recall that FBS uses a grid for optimization. Hence we

can get even higher speed-ups when the image resolution

is large and the blur windows are small. Fig. 2 shows ex-

amples taken from Levin et al. [3] with the user annota-

tions, our result, and results from Levin et al. [3]. Note that

our colorization results are visually indistinguishable from

theirs, yet computed significantly faster.

Fig. 3 illustrates how the color propagates as a function

of the iterations of gradient descent: (a-g) depicts illustrates

the colorization result at 2, 5, 10, 20, 50, 70, 90 iterations,

and (h) shows our final result. Note that (e-h) look the same,

and further iterations produce only slight changes. This

shows that we can adjust the accuracy/time trade-off and

stop at 50-70 iterations if time is important. All of the input

images were obtained from the author’s website [7].

These colorization images are less than 1k×1k in resolu-

tion and do not fully exploit the highly parallel nature of our

algorithm. To highlight the parallelism of our method, we

captured 3k×2k images using an iPhone 6 Plus. We sam-

pled 20% of the pixels at random to create a target image

for our method, (Fig. 4a). Since these images are of high

resolution, in addition to our result (Fig. 4b), we also show

results using a parallel implementation of HFBS [4] which

matches our PSNR but is 3.64x slower than our method

(Fig. 4c). We will refer to this case as HFBS(equal qual-

ity).

To explore the quality/speed trade-off for HFBS we

lower the number of iterations to match DTS’s run time

and then examine the quality of the output of HFBS result

(Fig. 4d). We will refer to this as HFBS(equal runtime).

This results in visually noticeable artifacts, and this dete-

rioration in quality is also reflected by lower PSNR and

SSIM [6] scores for the Cb and Cr channels, as seen in

Table 1. In the table, we show SSIM and PSNR scores

for our results for the above three cases. Our DTS results

and HFBS (equal quality) have similar SSIM and PSNR re-

sults. This is also reflected in visually indistinguishable re-

sults in (Fig. 4c), (Fig. 4b), Fig.(5 b,c) and Fig.(6 b,c), but

HFBS is much slower. When we compare our results with

HFBS (equal runtime) in Fig.(4d), we can notice speckles

and spots, zooms of which are shown in Fig.(5 b,d) and

Fig.(6 b,d).

3. Synthetic defocus from depth

A good synthetic defocus effect requires the estimated

depth to align well with the color edges. Figs. 7–9 show

near- and far-focus renderings using depthmaps refined us-

ing DTS and estimated using MC-CNN [8] for scenes from

the Middlebury dataset [5]. The ground-truth defocus was

created using the ground-truth depth. The Figs. 7–9 show

that our edge-aware optimization framework removes any

jarring artifacts and ringing and creates visually pleasing

synthetic defocus. These artifacts are the most noticeable

at object boundaries and occur due to inaccurate depth esti-

mates in the MC-CNN defocus results.

References

[1] Jonathan T Barron and Ben Poole. The fast bilateral solver.

In European Conference on Computer Vision, pages 617–632.

Springer, 2016. 1, 2

[2] Eduardo SL Gastal and Manuel M Oliveira. Domain trans-

form for edge-aware image and video processing. In ACM

Transactions on Graphics (ToG), volume 30, page 69. ACM,

2011. 1

[3] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization

using optimization. In ACM Transactions on Graphics (ToG),

volume 23 (3), pages 689–694. ACM, 2004. 1, 2, 3, 4

[4] Amrita Mazumdar, Armin Alaghi, Jonathan T Barron, David

Gallup, Luis Ceze, Mark Oskin, and Steven M Seitz. A

hardware-friendly bilateral solver for real-time virtual real-

ity video. In Proceedings of High Performance Graphics,

page 13. ACM, 2017. 2, 3, 5

[5] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg

Krathwohl, Nera Nešić, Xi Wang, and Porter Westling. High-

resolution stereo datasets with subpixel-accurate ground truth.

In German Conference on Pattern Recognition, pages 31–42.

Springer, 2014. 2

[6] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing,

13(4):600–612, 2004. 2

[7] Weiss Yair. Colorization Using Optimization web-

page. http://www.cs.huji.ac.il/˜yweiss/

Colorization/. Online; accessed 12 March 2018. 2

[8] Jure Zbontar and Yann LeCun. Stereo matching by training a

convolutional neural network to compare image patches. Jour-

nal of Machine Learning Research, 17(1-32):2, 2016. 2



SSIM (Cb, Cr) PSNR (Cb, Cr) Time

dB dB ms/megapixels

Fig.(5) Fig.(6) Fig.(5) Fig.(6)

DTS (ours) 0.981, 0.983 0.979, 0.975 45.41, 45.60 44.65, 44.00 19.10

HFBS equal quality [4] 0.979, 0.976 0.973, 0.965 45.79, 45.01 45.10, 44.20 69.54

HFBS equal runtime [4] 0.948, 0.944 0.915, 0.884 43.60, 42.91 42.30, 41.18 19.09

Table 1: The table lists the SSIM and PSNR scores for Cb anc Cr channels for the high-resolution images. HFBS can match

the performance of DTS (ours) but, takes 3.64x more time. If we limit the time taken by HFBS to that of DTS, HFBS has

worse PSNR and SSIM scores.

(a) Grayscale image (b) Marked color strokes (c) Our result (d) Levin et al. [3]

Figure 1: Colorization: (a) input grayscale image (our reference image), (b) user-annotated strokes (our target image), (c)

our result using DTS, and (d) result of Levin et al. [3]. Note that (c) and (d) look the same with only small differences in the

hair.



(a) User annotated scribbles (b) DTS (ours) (c) Levin et al. [3]

Figure 2: Colorization: (a) user-annotated color scribbles, (b) our results, and (c) results using Levin et al. [3].



(a) Iteration 2 (b) Iteration 5 (c) Iteration 10 (d) Iteration 20

(e) Iteration 50 (f) Iteration 70 (g) Iteration 90 (h) Our result

Figure 3: Propagation of colors: (a-h) shows how the colors from the user-annotated strokes propagate through the image

while not crossing strong image edges using DTS. After iteration 50, the changes are small and can be ignored as a trade-off

for speed.

(a) 20% randomly sampled color. (b) DTS (ours) (c) HFBS [4], equal PSNR. (d) HFBS [4], equal time budget.

Figure 4: Colorization for high-resolution images. (a) The target images retain color in only 20% of the pixels. (b) DTS –

our result. (c) HFBS can match the performance of DTS but, takes 3.64x more time. (d) When HFBS is limited to the time

of DTS, it has substantially worse PSNR and SSIM scores.



(a) Ground truth. (b) DTS (c) HFBS equal quality (d) HFBS equal time

Figure 5: Zoom-ins for Fig. 4 first row: Notice the speckles in (d) on the handle of the chest and red portion of the meat.

(a) Ground truth. (b) DTS (c) HFBS equal quality (d) HFBS equal time

Figure 6: Zoom-ins for Fig. 4 second row: Notice the speckles in (d) reddish spots on the orange, and red spots on the vase.



(a) DTS (ours) (b) MC-CNN

(c) Ground truth, near focus. (d) DTS (ours) (e) MC-CNN

(f) DTS (ours) (g) MC-CNN

(h) Ground truth, far focus. (i) DTS (ours) (j) MC-CNN

Figure 7: PianoL scene: (a,b) Our and MC-CNN’s result where the stool is in focus, (c-e) shows a zoomed-in region. (f,g)

The guitar is in focus. In (e) and (j), notice the rough edges at the right side of the guitar and on the left side of the leg of the

table, which are reduced in our results (d,i).



(a) DTS (ours) (b) MC-CNN

(c) Ground truth, near focus. (d) DTS (ours) (e) MC-CNN

(f) DTS (ours) (g) MC-CNN

(h) Ground truth, far focus. (i) DTS (ours) (j) MC-CNN

Figure 8: PlaytableP scene: (a,b) Oour and MC-CNN’s result where the front of the table is in focus, (c-e) shows a zoomed-in

region. (f,g) The orange bucket is in focus. In (e) and (j), notice the jarring changes in blur due to incorrect depth, which is

reduced in our results (d,i).



(a) DTS (ours) (b) MC-CNN

(c) Ground truth, near focus. (d) DTS (ours) (e) MC-CNN

(f) DTS (ours) (g) MC-CNN

(h) Ground truth, far focus. (i) DTS (ours) (j) MC-CNN

Figure 9: Shelves scene: (a,b) Our and MC-CNN’s result where the blue bag is in focus, (c-e) shows a zoomed-in region.

(f,g) The hanger is in focus. In (e) and (j), notice the ringing near the boundary of the bag, which is removed in our results

(d,i).


