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1. Riemannian Limited Memory BFGS
We now explain the R-LBFGS optimizer used in our work. To begin with, we recall the foundational BFGS [9], that is

a quasi Newton method operating in the Euclidean space. We then review the simple Riemannian descent algorithms that
employ line-search. Finally, we explain the R-BFGS used to solve our synchronization problem. R-BFGS can be modified
slightly to arrive at the desired limited memory Riemannian BFGS solver.

1.1. Euclidean BFGS

The idea is to approximate the true hessian H with B, using updates specified by the gradient evaluations1. We will
then transition from this Euclidean space line search method to Riemannian space optimizers. For clarity, in Alg. 1 we
summarize the Euclidean BFGS algorithm, that computes B by using the most recent values of the past iterates. Note that
many strategies exist to initialize B0, while a common choice is the scaled identity matrix B0 = γI. Eq. 1 corresponds to
the particular BFGS-update rule. In the limited-memory successor of BFGS, the L-BFGS, the Hessian matrix H is instead
approximated up to a pre-specified rank in order to achieve linear time and space-complexity in the dimension of the problem.

Algorithm 1: Euclidean BFGS

1 input: A real-valued, differentiable potential energy U , initial iterate X0 and initial Hessian approximation B0.
2 k ← 0
3 while xk does not sufficiently minimize f do
4 Compute the direction ηk by solving Bkηk = −∇U(xk) for ηk.
5 Define the new iterate xk+1 ← xk + ηk.
6 Set sk ← xk+1 − xk and yk ← ∇U(xk+1)−∇U(xk).
7 Compute the new Hessian approximation:

Bk+1 = Bk +
yky

>
k

y>k sk
− Bksks>k Bk

s>k Bksk
. (1)

k ← k + 1.

1.2. Riemannian Descent and Line Search

The standard descent minimizers can be extended to operate on Riemannian manifolds M using the geometry of the
parameters. A typical Riemannian update can be characterized as:

xk+1 = Rxk
(τkηk) (2)

1Note that certain implementations can instead opt to approximate the inverse Hessian for computational reasons.

1



where R is the retraction operator, i.e. the smooth map from the tangent bundle TM toM and Rxk
is the restriction of R

to Txk
, the tangent space of the current iterate xk, Rxk

: Txk
→ M. The descent direction is defined to be on the tangent

space ηk ∈ Txk
M. When manifolds are rather simple shapes, the size of the step τk can be a fixed value. However, for most

matrix manifolds, some form of a line search is preferred to compute τk. The retraction operator is used to take steps on the
manifold and is usually derived analytically. When this analytic map is length-preserving, it is called true exponential map.
However, such exactness is not a requirement for the optimizer and as it happens in the case of doubly stochastic matrices,
Rxk

only needs to be an approximate retraction, e.g. first or second order. In fact, for a map to be valid retraction, it is
sufficient to satisfy the following conditions:
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Figure 1. Visualization of the entities
used on a sample toroidal manifold.

1. R is continuously differentiable.

2. Rx(0x) = x, where 0x denotes the zero element of TxM. This is called
the centering property.

3. The curve γηx(τ) = Rx(τηx) satisfies:

dγηx(τ)

dτ

∣∣∣
τ=0

= ηx, ∀ηx ∈ TxM. (3)

This is called the local rigidity property.

Considering all these, we provide, in Alg. 2, a general Riemannian descent algorithm, which can be customized by the
choice of the direction, retraction and the means to compute the step size. Such a concept of minimizing by walking on the
manifold is visualized in Fig. 1.

Algorithm 2: General Riemannian Line Search Minimizer

1 input: A Riemannian manifoldM, a retraction operator R and initial iterate xk ∈M where k = 0.
2 while xk does not sufficiently minimize f do
3 Pick a gradient related descent direction ηk ∈ Txk

M.
4 Choose a retraction Rxk

: Txk
M→M.

5 Choose a step length τk ∈ R.
6 Set xk+1 ← Rxk

(τkηk).
7 k ← k + 1.

It is possible to develop new minimizers by making particular choices for the Riemannian operators in Alg 2. We now
review the Armijo variant of the Riemannian gradient descent [10], that is a common and probably the simplest choice for an
accelerated optimizer on the manifold. Though, many other line-search conditions such as Barzilai-Borwein [14] or strong
Wolfe [20] can be used. The pseudocode for this backtracking version is given in Alg. 3. Note that the Riemannian gradient
gradf(x) is simply obtained by projecting the Euclidean gradient∇f(x) onto the manifoldM and the next iterate is obtained
through a line search so as to satisfy the Armijo condition [3], tweaked to use the retraction R for taking steps. For some
predefined Armijo step size, this algorithm is guaranteed to converge for all retractions [1].

1.3. LR-BFGS for Minimization on DPn
Based upon the ideas developed up to this point, we present the Riemannian variant of the L-BFGS. The algorithm is

mainly based on Huang et al. and we refer the reader to their seminal work for more details [13]. It is also worth noting [18].
Similar to the Euclidean case, we begin by summarizing a BFGS algorithm with the difference that it is suited to solving the
synchronization task. This time, B will approximate the action of the Hessian on the tangent space Txk

M. Generalizing
any (quasi-)Newton method to the Riemannian setting thus requires computing the Riemannian Hessian operator, or its
approximation. This necessitates taking a some sort of a directional derivative of a vector field. As the vector fields belonging
to different tangent spaces cannot be compared immediately, one needs the notion of connection Γ generalizing the directional
derivative of a vector field. This connection is closely related to the concept of vector transport T : TM ⊗ TM → TM
which allows moving from one tangent space to the other Tη(ζ) : (η, ζ) ∈ TxM→ TRx(η)M . For the first order treatment
of the Birkhoff Polytope, this vector transport takes a simple form:

Tη(ζ) ∈ TRx(η)DPn , ΠRx(η)(ζ). (5)



Algorithm 3: General Riemannian Steepest Descent with Armijo Line Search

1 input: A Riemannian manifoldM, a retraction operator R, the projection operator onto the tangent space
Πxk

: Rn → Txk
M, a real-valued, differentiable potential energy f , initial iterate x0 ∈M and the Armijo line

search scalars including c.
2 while xk does not sufficiently minimize f do

// Euclidean gradient to Riemannian direction

3 ηk ← −gradf(xk) , Πxk
(−∇f(xk)).

4 Select xk+1 such that:
f(xk)− f(xk+1) ≥ c

(
f(xk)− f(Rx(τkηk))

)
, (4)

5 where τk is the Armijo step size.
6 k ← k + 1.

where ΠX(·) is the projection onto the tangent space of X as defined in the main paper. We give the pseudocode of the
R-BFGS algorithm in Alg. 4 below. To ensure Riemannian L-BFGS always produces a descent direction, it is necessary to
adapt a line-search algorithm which satisfies strong Wolfe (SW) conditions [22, 23]. Roptlib [12] does implement the SW
while ManOpt [4] uses the simpler Armijo conditions, even for the LR-BFGS. Another simple possibility is to take the steps
on the Manifold using the retraction, while performing the line search in the Euclidean space. This results in a projected,
approximate line search, but can terminate quite quickly, making it possible to exploit existing Euclidean space SW LBFGS
solvers such as Ceres [2]. Without delving into rigorous proofs, we provide one such implementation at github.com/
tolgabirdal/MatrixManifoldsInCeres where several matrix manifolds are considered. We leave the analysis of
such approximations for a future study and note that the results in the paper are generated by limited memory form of the R-
BFGS procedure summarized under Alg. 4. While many modifications do exist, LR-BFGS, in essence, is an approximation
to R-BFGS, where O(MN2) storage of the full Hessian is avoided by unrolling the RBFGS descent computation and using
the last m input and gradient differences where m << MN2. This allows us to handle large data regimes.

2. Proof of Proposition 1 and Further Analysis
Proof. Consider the ray cast outwards from the origin: r = R≥01. r exits DPn at 1

n1 but exits the sphere Sn−1 at 1√
n
1.

This creates a gap between the two manifolds whose ratio grows to∞ as n grows. For a perspective of optimization, consider
the linear function λ(P) =

∑
i,j Pij . λ(P) is minimized on DPn at 1

n1 and on the sphere at 1√
n
1,

We now look at the restricted orthogonal matrices and seek to find the difference between optimizing a linear functional
on them andDPn. Note that minimizing functionals is ultimately what we are interested in as the problems we consider here
are formulated as optimization. LetA be the affine linear space of (n−1)×(n−1) matrices whose rows and columns sum to
1, i.e. doubly stochastic but with no condition on the signs or a generalized doubly stochastic matrix. The Birkhoff Polytope
DPn is contained in A, whereas the orthogonal group On is not. So, there exists an affine functional λ that is minimized at
a point on DPn, λ = 0 but not on O. Let AOn = DPn ∩ On, a further restricted manifold. This time unlike the case of
DPn, AOn would not coincide the permutations P due to the negative elements. In fact P ⊂ AOn.

Proposition 3. The ratio between the time a ray leaves DPn and the same ray leaves AOn can be as large as n− 1.

Proof. Consider the line through 1
n1 and I : l(x) = 1+x

n 1− xI. Such a ray leaves DPn at x = 1
n−1 and for all x ∈ [−1, 1]

is in the convex hull of AOn. When x = 1, it is an orthogonal matrix, i.e. on On. Hence, the ray can be on AOn for n− 1
times as long as in DPn. This quantity also grows to infinity as n→∞. If same analysis is done for the case of the sphere,
the ratio is found to be (n− 1)3/2, grows quicker to infinity and is a larger quantity.

github.com/tolgabirdal/MatrixManifoldsInCeres
github.com/tolgabirdal/MatrixManifoldsInCeres


Algorithm 4: Riemannian BFGS for Synchronization on DPn
1 input: Birkhoff Polytope DP with Riemannian (Fisher information) metric g, first order retraction R, the parallel

transport T , a real-valued, differentiable potential energy function of synchronization U , initial iterate X0 and
initial Hessian approximation B0.

2 while xk does not sufficiently minimize f do
3 Compute the Euclidean gradients using:

∇Xi
U(X) =

∑
(i,j)∈E

−2(Pij −XiX
>
j )Xj ∇Xj

U(X) =
∑

(i,j)∈E

−2(Pij −XiX
>
j )Xi (6)

4 Compute the Riemannian gradient grad U(Xk)←, ΠXk
(−∇U(Xk)).

5 Compute the direction ηk ∈ TXk
DPn by solving Bkηk = −grad U(Xk).

6 Given ηk, execute a line search satisfying the strong Wolfe conditions [22, 23, 13]. Set step size τk.
7 Set xk+1 = Rxk

(τkηk).
8 Use vector transport to define:

Sk = Tτkηk
(τkηk) , Yk = grad U(Xk+1)− Tτkηk

(grad U(xk)). (7)

9 Compute B̃k = Tτkηk
◦Bk ◦ T+

τkηk
where T+ is denotes (pseudo-)inverse of the transport.

10 Compute the linear operator Bk+1 : Txk+1
M→ Txk+1

M:

B̃k+1Z = B̃kZ +
g(Yk,Z)

g(yk,Sk)
Yk −

g(Sk, B̃Z)

g(Sk, B̃Sk)
∀Z ∈ Txk+1

DPn. (8)

11 k ← k + 1.

3. Proof of Proposition 2
Proof. The conclusion of the proposition states that p(X) and p(P|X) have the following form:

p(X) =
1

C
exp
(
−β

∑
(i,j)∈E

‖Xij‖2F
) ∏

(i,j)∈E

Zij (9)

p(P|X) =
∏

(i,j)∈E

p(Pij |Xi,Xj) (10)

=
∏

(i,j)∈E

exp
(

2β tr(P>ijXij)
) 1

Zij
(11)

= exp
(
β
∑

(i,j)∈E

2tr(P>ijXij)
) ∏

(i,j)∈E

1

Zij
(12)

where

Zij :=

Bij∏
b=1

ZX(β, θij,b). (13)

Our goal is to verify that the following holds with the above definitions:

p(P,X) =
1

Z
exp
(
−β

∑
(i,j)∈E

‖Pij −XiX
>
j ‖2F

)
=

1

Z

∏
(i,j)∈E

ψ(Pij ,Xi,Xj), (14)



where Z is a positive constant (cf. Section 4 in the main paper). Then, we can easily verify this equality as follows:

p(P,X) = p(P|X)p(X) (15)

=
1

C
exp
(
−β

∑
(i,j)∈E

‖Xij‖2F
)

exp
(
β
∑

(i,j)∈E

2tr(P>ijXij)
)

(16)

=
1

C
exp
(
−β

∑
(i,j)∈E

(
‖Xij‖2F − 2tr(P>ijXij)

))
(17)

=
1

C
exp
(
−β

∑
(i,j)∈E

(
‖Xij‖2F − 2tr(P>ijXij)− n+ n

))
(18)

=
1

C
exp(βn|E|) exp

(
−β

∑
(i,j)∈E

(
‖Xij‖2F − 2tr(P>ijXij) + ‖Pij‖2F

))
(19)

=
1

Z
exp
(
−β

∑
(i,j)∈E

‖Pij −XiX
>
j ‖2F

)
(20)

where we used the fact that ‖Pij‖2F = n in Equation 19 since Pij ∈ Pn and Z = C exp(−βn|E|).

In the rest of the proof, we will characterize the normalizing constant Zij =
∫
Pn

exp(2βtr(P>ijXij)dPij . Here, we
denote the the counting measure on Pn as dPij .

We start by decomposing Xij via Birkhoff-von Neumann theorem:

Xij =

Bij∑
b=1

θij,bMij,b,

Bij∑
b=1

θij,b = 1, Bij ∈ Z+, θij,b ≥ 0, Mij,b ∈ Pn, ∀b = 1, . . . , Bij . (21)

Then, we have:

Zij =

∫
Pn

exp
(

2βtr(P>ijXij

)
dPij (22)

=

∫
Pn

exp
(

2βtr(P>ij

Bij∑
b=1

θij,bMij,b

)
dPij (23)

=

∫
Pn

exp
(

2β

Bij∑
b=1

θij,btr(P
>
ijMij,b)

)
dPij (24)

≥ exp
(∫
Pn

2β

Bij∑
b=1

θij,btr(P
>
ijMij,b)dPij

)
(25)

= exp
(Bij∑
b=1

∫
Pn

2βθij,btr(P
>
ijMij,b)dPij

)
(26)

where we used Jensen’s inequality in (25). Here, we observe that
∫
Pn

2βθij,btr(P
>
ijMij,b)dPij is similar to the normalization

constant of a Mallows model [8], and it only depends on β and θij,b. Hence, we conclude that

Zij ≥
Bij∏
b=1

exp
(∫
Pn

2βθij,btr(P
>
ijMij,b)dPij

)
(27)

:=

Bij∏
b=1

f(β, θij,b) (28)

where f is an increasing function of β, θij,b since tr(P>ijMij,b) ≥ 0. This completes the proof.



4. Derivation of the Retraction Euler Integrator
We start by recalling the SDE

dX̃t = (−G−1∇X̃Uλ(X̃t) + Γt)dt+
√

2/βG−1dBt. (29)

By [24], we know that

Γt =
1

2
G−1∇X̃ log |G|. (30)

By using this identity in Equation 29, we obtain:

dX̃t = −G−1(∇X̃Uλ(X̃t) +
1

2
∇X̃ log |G|)dt+

√
2/βG−1dBt. (31)

By using a similar notation to [15], we rewrite the above equation as follows:

dX̃t = −G−1(∇X̃Uλ(X̃t) +
1

2
∇X̃ log |G|)dt+ G−1M>N (0, 2βI) (32)

where N denotes the Gaussian distribution and [M]ij = ∂[X]ij/∂[X̃]ij . We multiply each side of the above equation by M
and use the property∇X̃ = M>∇X [15], which yields:

dXt = −MG−1M>∇XU(Xt)dt+ MG−1M>N (0, 2βI) (33)

= M(M>M)−1M>
(
−∇XU(Xt)dt+N (0, 2βI)

)
. (34)

Here we used the area formula (Equation 11 in the main paper) and the fact that G = M>M.

The term M(M>M)−1M> turns out the be the projection operator to the tangent space of X [6]. Therefore, the usual
geodesic integrator would consist of the following steps at iteration k:

• Set a small step size h

• Compute the term −h∇XU(Xt) +
√

2h/βZ, with Z ∼ N (0, I)

• Obtain the ‘direction’ by projecting the result of the previous step on the tangent space

• Move the current iterate on the geodesic determined by the direction that was obtained in the previous step.

Unfortunately, the last step of the integrator above cannot be computed in the case of DPn. Therefore, we replace it with
moving the current iterate by using the retraction operator, which yields the update equations given in the main paper.

5. Details on the Synthetic Dataset
We now give further details on the synthetic data used in the paper. We synthesize our data by displacing a 4× 4 2D grid

to simulate 5 different images and scrambling the order of correspondence. Shown in Fig. 2a, the ground truth corresponds
to an identity ordering where the ith element of each grid is mapped to ith node of the other. Note that the graph is fully
connected but we show only consecutive connections. To simulate noisy data, we introduce 16 random swaps into the ground
truth as shown in Fig. 2b. We also randomize the initialization in a similar way. On this data we first run a baseline method
where instead of restricting ourselves to the Birkhoff Polytope, we use the paths of the orthogonal group O(N). Our second
baseline is the prosperous method of Maset et al. [17]. Note that, regardless of the initialization (Fig 2e,f) our method is
capable of arriving at visually more satisfactory local minimum. This validates that for complex problems such as the one at
hand, respecting the geometry of the constraints is crucial. Our algorithm is successful at that and hence is able to find high
quality solutions. In the figure the more parallel the lines are, the better, depicting closeness to the ground truth.

6. Examples on the Willow Dataset
Finding the Optimum Solution We now show matches visualized after running our synchronization on the Willow
dataset [7]. For the sake of space, we have omitted some of those results from the paper. Fig 3 plots our findings, where
our algorithm is able to converge from challenging initial matches. Note that these results only show our the MAP estimates
explained in the main paper. It is possible to extend our approach with some form of geometric constraints as in Wang et
al. [21]. We leave this as a future work.
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(b) Random Initialization
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(c) Gradient Descent on Orthogonal Group
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(d) MatchEIG
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(e) Result of Our Method Initialized Randomly
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(f) Result of Our Method Initialized from MatchEIG (d)
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Figure 2. Results from running our method on the synthetic dataset as well as some baseline methods such as Maset et al. [17] and
minimizing our energy on the orthogonal group. Note that while using the same energy function, considering the Birkhoff Polytope (ours)
rather than the orthogonal group leads to much more visually appealing results with higher recall.

Uncertainty Estimation There are not many well accepted standards in evaluating the uncertainty. Hence in the main
paper, we resorted what we refer as the top-K error. We will now briefly supply more details on this. The purpose of the
experiment is to measure the quality of the sample proposals generated by our Birkhoff-RLMC. To this end, we introduce a
random sampler that generates, K arbitrary solutions that are highly likely to be irrelevant (bad proposals). These solutions
alone do not solve the problem. However if we were to consider the result correct whenever either the found optimum or
the random proposal contains the correct match i.e. append the additional K − 1 samples to the solution set, then, even with
a random sampler we are guaranteed to increase the recall. Similarly, samples from Birkhoff-RLMC will also yield higher
recall. The question then is: Can Birkhoff-RLMC do better than a random sampler? To give an answer, we basically record
the relative improvement in recall both for the random sampler and Birkhoff-RLMC. The top-K error for different choices
of K is what we presented in Table 2 of the main paper. We further visualize these solutions in the columns (c) to (f) of the
same table. To do so, we simply retain the assignments with the K-highest scores in the solutions X. Note that the entire X
acts as a confidence map itself (Column d). We then use the MATLAB command imagesc on the X with the jet colormap.

Next, we provide insights into how the sampler works in practice. Fig. 4 plots the objective value attained as the iterations
of the Birkhoff-RLMC sampler proceeds. For different values of β these plots look different. Here we use β = 0.08 and
show both on Motorbike and Winebottle samples (used above) and for 1000 iterations, the behaviour of sample selection. In
the paper, we have accumulated these samples and estimated the confidence maps. Note that occasionally, the sampler can
discover better solutions than the one being provided. This is due to two reasons: 1) rarely, we could jump over local minima,
2) the initial solution is a discrete one and it is often plausible to have a doubly stochastic (relaxed) solution matrices that
have lower cost.

7. Application to Establishing 3D Correspondences
We now apply our algorithm to solve correspondence problems on isolated 3D shapes provided by the synthetic Tosca

dataset [5] that is composed of non-rigidly deforming 3D meshes of various objects such as cat, human, Centaur, dog, wolf
and horse. The cat object from this dataset along with ten of its selected ground truth correspondences is shown in Fig. 5.
This is of great concern among the 3D vision community and the availability of the complete shapes plays well with the
assumptions of our algorithm, i.e. permutations are total. It is important to mention that when initial correspondences are
good (∼ 80%) all methods, including ours can obtain 100% accuracy [11]. Therefore, to be able to put our method to test,
we will intentionally degrade the initial correspondence estimation algorithm we use.

Initialization Analogous to the 2D scenario, we obtain the initial correspondences by running a siamese Point-Net [19]
like network regressing the assignments between two shapes. Unlike 2D, we do not need to take care of occlusions, visibility
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Figure 3. Matching results on sample images from the Winebottle (top-2-rows) and Motorbike (bottom-2-rows) datasets in the form of
correspondences. The first sub-row of each row shows the initial matches computed via running a pairwise Hungarian algorithm, whereas
the second row (tagged Optimized) shows our solution. Colored dots are the corresponding points. A line segment is shown in red if it is
found to be wrong when checked against the ground truth. Likewise, a blue indicates a correct match. For both of the datasets we use the
joint information by optimizing for the cycle consistency, whereas the pairwise solutions make no use of such multiview correspondences.
Note that thanks to the cycle consistency, once a match is correctly identified, its associated point has the tendency to be correctly matched
across the entire dataset.
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(a) Sampling on the Winebottle
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(b) Sampling on the Motorbike

Figure 4. Iterates of our sampling algorithm. With β = 0.085, our Birkhoff-RLMC sampler wanders around the local mode and draws
samples on the Birkhoff Polytope. It can also happen that better solutions are found and returned. Purple line indicates the starting point,
that is only a slight perturbation of the found solution.

or missing keypoint locations as 3D shapes can be full and clean as in this dataset. On the average, we split half of the
datasets for training and the other half for testing. Note that such amount of data is really insufficient to train this network,
resulting in suboptimal predictions. We gradually downsample the point sets uniformly to sizes of Ns = {200, 50, 20} to
get the keypoints. At this point, it is possible to use sophisticated keypoint prediction strategies to establish the optimum
cardinality and the set of points under correspondence. Note that it is sufficient to compute the keypoints per shape as we do
not assume the presence of a particular order. Each keypoint is matched to another by the network prediction. The final stage
of the prediction results in a soft assignment matrix on which we apply Hungarian algorithm to give rise to initial matches.
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Figure 5. Visualizations of the cat object from the Tosca dataset with the ground truth correspondences depicted.

Quantitative Results We run, on these initial sets of correspondences, our algorithm and the state of the art methods as
described in the main paper. We count and report the percentage of correctly matched correspondences (recall) in Tab. 1 for
only two objects, Cat and Michael. Running on the full dataset is a future work. It is seen that our algorithm consistently
outperforms the competing approaches. The difference is less visible when the number of samples start dominating the
number of edges. This is because none of the algorithms are able to find enough consistency votes to correct for the errors.

Table 1. Correspondence refinement on 3D inputs. We show our results on the meshes of Tosca [5] dataset. The cells show the percentage
of correctly detected matches (recall).

N=200 N=50 N=20

Initial MatchEIG Wang et al. Ours Initial MatchEIG Wang et al. Ours Initial MatchEIG Wang et al. Ours

Cat 38.42% 32.92% 37.83% 39.08% 53.38% 55.42% 56.13% 56.93% 35.56% 37.33% 38.33% 40.33%
Michael 30.64% 34.39% 35.92% 36.12% 46.40% 52.23% 54.93% 54.62% 45.76% 51.05% 51.63% 55.95%

8. Final Words and Future Work for Extension to Partial Matches
We mention in our paper that we leave the synchronization of partial matching as a future work. Nevertheless, here we

would like to present certain directions for managing this within our existing framework.
In the case of partiality, we are given an N ×M partial permutation matrix with M > N (or vice versa). It is known

that the partial doubly stochastic projection can be converted to doubly stochastic projection by introducing slack variables,
a standard technique from linear programming [16]. This is similar to soft-assigning the non-assigned features to virtual
ones. The slacked M × M matrix would now live on the Birkhoff Polytope. Convergence of Sinkhorn operator is still
guaranteed [16] and the new variables can be treated within our framework. The desired end result is a sub-space of this lifted,
higher dimensional space, on which the optimization is carried out. Detailed analysis, application, evaluation, computational
aspects and convergence proofs for such an approach (especially with inexact retractions) are still to be investigated and we
leave them for future research.



References
[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. Princeton Univer-

sity Press, 2009.
[2] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://ceres-solver.org.
[3] Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific Journal of mathe-

matics, 16(1):1–3, 1966.
[4] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization on manifolds. Journal

of Machine Learning Research, 15, 2014.
[5] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Numerical geometry of non-rigid shapes. Springer

Science & Business Media, 2008.
[6] Simon Byrne and Mark Girolami. Geodesic monte carlo on embedded manifolds. Scandinavian Journal of Statistics,

40(4):825–845, 2013.
[7] Minsu Cho, Karteek Alahari, and Jean Ponce. Learning graphs to match. In Proceedings of the IEEE International

Conference on Computer Vision, pages 25–32, 2013.
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