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Experimental setup

Image We use the pretrained Faster-RCNN [10] by [1]
on Visual Genome [9] to extract objects features from each
image. Two setups have been proposed in the literature. A
first one that extract 36 regions per image and a second one
that extract 10 to 100 regions depending on a threshold. For
the sake of simplicity, we choose the first setup in order to
always represent our image as R36%2048 " We do not fine
tune any pf the Faster-RCNN parameters.

Question We use the same preprocessing as [4], which
apply a lower case transformation and remove all the punc-
tuation. We only consider the questions that are associated
to the 3000 most occurring answers (1480 for the TDIUC
dataset) while containing less than 26 words. We use a pre-
trained Skip-thought encoder by [8] with a two glimpses
self attention mechanism [ 1] to represent our question in a
4800-dimensional space. We fine tune every parameters of
the Skip-thoughts including the embedding layer.

Optimization process We use the Adam optimizer [7]
with a learning rate of 5 * 1075 and a batch size of 256.
During the first 7 epochs, we linearly increase the learning
rate to 2 * 1074, After the epoch 14, we decrease it by a
factor 0.25 every two epochs until convergence. We also
apply a gradient clipping of 0.25. We use early stopping
based on the validation accuracy. This process is inspired
from [12, 5].

Loss function We use the standard cross-entropy loss
function for multi-class classification problems.

Comparison with classic attention

MuRel leverages the bilinear strategy in a different way
than the classical VQA models [2, 3, 4, 6]. Instead of
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Figure 1. Comparing MuRel visualization w.r.t. classic attention.
As MuRel uses pairwise representations between regions, we can
infer the most important interaction, here between the woman’s
face and the donut, enabling correct answer prediction.

scalar question-guided visual attention maps, the fusion be-
tween question and each region is represented as a vector.
This more expressive multidimensional representation al-
lows MuRel to focus on specific features of a particular re-
gion given a textual context.

An other important aspect of MuRel lies in its pairwise
module which models the relations between regions over
multiple steps. Besides bringing more capacity, this pair-
wise modeling also allows to visualize the strongest region
interactions, as we show in Figure 1, which is not possible
with a classic attention model.
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