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In this supplementary file, we provide,
1. Details of the algorithm provided in the paper.
2. Extension to non-uniform deblurring
3. More examples of our model with and without LMG prior.
4. More comparison results with other state-of-the-art methods.

1. Details of the algorithm
As demonstrated in the paper. Our model with LMG prior is,

min
I,K
‖I ⊗K −B‖2 + β‖2− LMG(I)‖1 + γ‖∇I‖0 + τ‖K‖2. (1)

We split it into 2 sub problems referring to I and K, respectively. AS shown in bellow,
min
I
‖I ⊗K −B‖2 + β‖2− LMG(I)‖1 + γ‖∇I‖0, (2)

min
K
‖I ⊗K −B‖2 + τ‖K‖2. (3)

We now optimize Eq. (2) and (3) independently with another fixed.

1.1. Estimate latent image

We introduce new substitution variable u→ 2− LMG(I) and g → ∇I , Eq. (2) can be rewritten as,

min
I,u,g
‖I ⊗K −B‖2 + β‖u‖1 + γ‖g‖0 + α1‖2− LMG(I)− u‖2 + α2‖∇I − g‖2, (4)

where α1 and α2 are the penalty parameters. We can solve Eq. (4) by optimizing I, u, g alternatively while fixing others.
Update I. As mentioned in Section 3 of the paper, the LMG operation can be seen as a matrix applied to the vector form

image, i.e., LMG(I) = GI, where I denotes the vector form I . Thus, the problem referring to I can be written as,

min
I
‖KI− B‖2 + α1‖2−GI− u‖2 + α2‖∇I− g‖2, (5)

here we use K to denote toeplitz form of blur kernel K, B,u and g to denote vector form of B, u, g, respectively. Eq. (5) is
quadric problem refer to I. Taking derivative of I and set it to 0, we have,

(KT K + α1GT G + α2∇T∇)I = KT B + α1GT (2− u) + α2∇T g. (6)

We can solve it with a conjugate gradient method.However, the size of G will requires tremendous time to convergence. For
example, it takes about 878.16 second to deblur a 255 × 255 image, while our proposed method takes about 65.20 second
to deblur the same object. Thus, we introduce another auxiliary variable q for I in the second term of Eq. (5) as a trade off
between speed and accuracy. We have,

min
I,q
‖KI− B‖2 + α1‖2−Gq− u‖2 + α2‖∇I− g‖2 + α3‖I− q‖2, (7)
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where α3 is a positive penalty parameter. We can solve Eq. (7) by updating I and q in an alternative manner, which is given
by, 

min
I
‖KI− B‖2 + α2‖∇I− g‖2 + α3‖I− q‖2, (8)

min
q
α1‖2− Gq− u‖2 + α3‖I− q‖2. (9)

Taking the derivative of the variables and set them to zeroes, we can easily obtain the optimal solution,
I = F−1F(K)F(B) + α2F(∇)F(g) + α3F(q)

F(K)F(K) + α2F(∇)F(∇) + α3

, (10)

q =
α1GT (2− u) + α3I

GT G + α3

. (11)

where F(·) and F(·) denote FFT and its conjugate, and F−1(·) represent inverse FFT.
Update u. With given I , the problem refer to u is,

min
u
β‖u‖1 + α1‖2−GI− u‖2. (12)

It is an one-dimension shrinkage, and the solution can be written as,

u = sign(2−GI) ·max(|2−GI| − β

2α1
, 0).

Update g. With the other two variable fixed, problem refer to g can be written as,

min
g
λ‖g‖0 + α2‖∇I− g‖2. (13)

The solution is,

u = sign(2−GI) ·max(|2−GI| − β

2α1
, 0).

The overall procedure to estimate latent image is summarized in Algorithm 1.

Algorithm 1: Estimate latent image (refer to Eq. (10) in the paper)
Input: Blurry image B, blur kernel K
I ← B. α1 ← α1init

while α1 < α1max do
Solve for matrix G.
Solve u according to Eq. ((12)).
α2 ← α2init.
while α2 < α2max do

Solve for g according to Eq. ((13)).
α3 ← α3init.
while α3 < α3max do

Solve for q according to Eq. ((9)).
Solve for I according to Eq. ((8)).
α3 ← 2α3

end
α2 ← 2α2

end
α1 ← 2α1

end
Output: Blur kernel K. Intermediate latent image I .
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Algorithm 2: Blur kernel estimation with LMG prior algorithm
Input: Blurry image B
Initialize K from the coarser level.
while iter = 1:maxiter do

Update I with Algorithm 1.
Update K with Eq. (14).

end
Output: Blur kernel K. Intermediate latent image I .

1.2. Estimate kernel

As demonstrated in the paper, we adopt the strategy from [1] for the kernel estimation step. Eq. (3) is redefined as,

min
K
‖∇I ⊗K −∇B‖2 + τ‖K‖2. (14)

We can solve it with FFT directly. The answer is given by,

K =
F(∇I)F(∇B)

F(∇I)F(∇I) + τ
.

The overall algorithm for the deblurring process is summarized in Algorithm 2.

2. Extension to Non-uniform Deblurring
Our model can be easily extended to non-uniform deblurring where the blur kernel in a image is spatial-variant. Based on

the geometric model of camera motion [12, 13], the blurry image can be modeled as a weighted sum of latent image under
geometry transformations,

B =
∑
t

kthtI + n, (15)

where B, I and n denote blurry image, latent image and noise in vector form, respectively; t is the index of camera pose
samples, and kt is the corresponding weight; Ht denotes a homography matrix. Similar to [13], we reformulate Eq. (15) as,

B = HI + n = zk + n, (16)

where H =
∑

t ktht, z = [h1I,h1I, ...,htI], and k = [k1, k2, ..., kt]
T . Based on Eq. (16), the non-uniform deblurring

problem is solved by alternatively minimizing, min
I
‖HI− B‖22 + β‖2− LMG(I)‖1 + γ‖∇I‖0, (17)

min
k
‖zk− B‖22 + τ‖k‖22. (18)

The updating details are similar to the uniform deblurring case, and latent image I and the weight k are estimated by the
fast forward approximation [4]. Example of our non-uniform deblurring effect is shown in Section 4 in this supplementary
material.
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3. Deblurring examples without LMG prior
We have analysed the effectiveness of the LMG prior in the paper in section 5.1. Experimental results demonstrates our

model with LMG is more effective. In this section we will provide more examples to intuitively illustrates the difference
between with and without LMG prior.

Input Without LMG prior With LMG prior

Input Without LMG prior With LMG prior

Input Without LMG prior With LMG prior

Figure 1. Three challenging examples from dataset [7]. Our model without LMG prior is less effective, while our model with LMG
prior generates more visual pleasing results. Demonstrating the effectiveness of the proposed LMG prior. Both theoretical and empirical
analysis demonstrates LMG prior can help restore blurry image.
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Input Without LMG prior With LMG prior

Input Without LMG prior With LMG prior

Input Without LMG prior With LMG prior
Figure 2. Three examples on given specific occasions (noise, face and text). We use the same non-blind deconvolution method from [2]
Our model without LMG prior is less effective, while our model with LMG prior generates more visual pleasing results. Demonstrating
the effectiveness of the proposed LMG prior. Both theoretical and empirical analysis demonstrates LMG prior can help restore blurry
image.
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4. Comparison with state-of-the-art methods
We have conduct experiments on several datasets and compare the results with state-of-the-art methods. As illustrated

in section 4 of the paper, our methods generate better overall results among these methods. In this section, we will provide
more examples to intuitively express the advantage of LMG prior. Comparison objects are deconved by same non-blind
deconvolution methods after kernels are acquired.

Input Yan et al. [16]. Pan et al. [10]. Ours

Input Yan et al. [16]. Pan et al. [10]. Ours

Input Yan et al. [16]. Pan et al. [10]. Ours

Input Yan et al. [16]. Pan et al. [10]. Ours
Figure 3. Four examples on real-world blur images. Our method generates more visual pleasing results that the state-of-the-art L0 based
methods (Details contained in red boxes are best viewed on high-resolution display with zoom in).
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Input Xu and Jia [14]. Ours.

Input Xu and Jia [14]. Ours.

Input Xu and Jia [14]. Ours.

Input Xu and Jia [14]. Ours.
Figure 4. Natural image deblurring examples from [14]. Our method generates visually comparable or even better deblurring results
compared to [14].
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Input Xu and Jia [14]. Ours.

Input Xu and Jia [14]. Ours.

Input Shan et al. [11]. Ours.

Input Shan et al. [11]. Ours.
Figure 5. Deblurring results using given examples. Our method generates visually comparable or even better results.
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Input Cho and Lee[1]. Ours.

Input Cho and Lee[1]. Ours.

Input Fergus et al. [3]. Ours.

Input Krishnan et al. [6]. Ours.
Figure 6. Deblurring results using given examples. Our method generates visually comparable or even better results.
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Input Pan et al. [9]. Ours.

Input Pan et al. [9]. Ours.

Input Pan et al. [9]. Ours.

Input Pan et al. [9]. Ours.

Input Pan et al. [9]. Ours.
Figure 7. Deblurring text blur images. Our method generates visually comparable or even better results specially designed for text deblur-
ring method [9].
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Input Pan et al. [10] (dark). Ours.

Input Pan et al. [8] (face). Ours.
Figure 8. Deblurring face blur images. Our method generates visually comparable or even better results than state-of-the-art methods.
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Input Hu et al. [5]. Ours.

Input Hu et al. [5]. Ours.

Input Hu et al. [5]. Ours.
Figure 9. Deblurring low-illumination blur images. Our method generates visually comparable or even better results than specially designed
method[5].
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Input Whyte et al. [13].

Xu et al. [15] Pan et al. [9]

Ours Estimated kernel
Figure 10. Deblurring non-uniform blurry image. Our method generates compareble result with state-of-the-art methods.
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