
A. Route Generation
We generate each route by randomly sampling two

panoramas in the environment graph, and querying the
Google Direction API6 to obtain a route between them that
follows correct road directions. Although the routes fol-
low the direction of allowed traffic, the panoramas might
still show moving against the traffic in two-way streets de-
pending on which lane was used for the original panorama
collection by Google. The route is segmented into multiple
routes with length sampled uniformly between 35 and 45.
We do not discard the suffix route segment, which may be
shorter. Some final routes had gaps due to our use of the
API. If the number of gaps is below three, we heuristically
connect the detached parts of the route by adding interme-
diate panoramas, otherwise we remove the route segment.
Each of the route segments is used in a separate instruction-
writing task. Because panoramas and route segments are
sampled randomly, the majority of route segments stop in
the middle of a block, rather than at an intersection. This
explicit design decision requires instruction-writers to de-
scribe exactly where in the block the follower should stop,
which elicits references to a variety of object types, rather
than simply referring to the location of an intersection.

B. Additional Data Analysis
We perform linguistically-driven analysis to two addi-

tional navigation datasets: SAIL [21, 7] and LANI [25],
both using simulated environments. Both datasets include
paragraphs segmented into single instructions. We performs
our analysis at the paragraph level. We use the same cat-
egories as in Section 5. Table 6 shows the analysis re-
sults. In general, in addition to the more complex visual
input, TOUCHDOWN displays similar or increased linguis-
tic diversity compared to LANI and SAIL. LANI contains a
similar amount of coreference, egocentric spatial relations,
and temporal conditions, and more examples than TOUCH-
DOWN of imperatives and directions. SAIL contains a sim-
ilar number of imperatives, and more examples of counts
than TOUCHDOWN. We also visualize some of the common
nouns and modifiers observed in our data (Figure 8).

C. SDR Pixel-level Predictions
Figures 9–14 show SDR pixel-level predictions for com-

paring the four models we used: LINGUNET, CONCAT,
CONCATCONV, and CONCAT. Each figure shows the SDR
description to resolve followed by the model outputs. We
measure accuracy at a threshold of 80 pixels. Red-overlaid
pixels visualize the Gaussian smoothed annotated target lo-
cation. Green-overlaid pixels visualize the model’s proba-
bility distribution over pixels.

6https://developers.google.com/maps/documentation/directions/start

D. SDR Experimental Setup Details
D.1. Models

We use learned word vectors of size 300. For all mod-
els, we use a single-layer, bi-directional recurrent neu-
ral network (RNN) with long short-term memory (LSTM)
cells [15] to encode the description into a fixed-size vector
representation. The hidden layer in the RNN has 600 unit.
We compute the text embedding by averaging the RNN hid-
den states.

We provide the model with the complete panorama. We
embed the panorama by slicing it into eight images, and
projecting each image from a equirectangular projection to
a perspective projection. Each of the eight projected images
is of size 800⇥460. We pass each image separately through
a RESNET18 [14] pretrained on ImageNet [30], and extract
features from the fourth to last layer before classification;
each slice’s feature map is of size 128 ⇥ 100 ⇥ 58. Finally,
the features for the eight image slices are concatenated into
a single tensor of size 128 ⇥ 100 ⇥ 464.
CONCAT We concatenate the text representation along
the channel dimension of the image feature map at each fea-
ture pixel and apply a multi-layer perceptron (MLP) over
each pixel to obtain a real-value score for every pixel in the
feature map. The multilayer perceptron includes two fully-
connected layers with biases and ReLu non-linearities on
the output of the first layer. The hidden size of each layer
is 128. A SOFTMAX layer is applied to generate the final
probability distribution over the feature pixels.
CONCATCONV The network structure is the same as
CONCAT, except that after concatenating the text and image
features and before applying the MLP, we mix the features
across the feature map by applying a single convolution op-
eration with a kernel of size 5 ⇥ 5 and padding of 2. This
operation does not change the size of the image and text ten-
sor. We use a the same MLP architecture as in CONCAT on
the outputs of the convolution, and compute a distribution
over pixels with a SOFTMAX.
TEXT2CONV Given the text representation and the fea-
turized image, we use a kernel conditioned on the text
to convolve over the image. The kernel is computed
by projecting the text representation into a vector of size
409,600 using a single learned layer without biases or non-
linearities. This vector is reshaped into a kernel of size
5⇥5⇥128⇥128, and used to convolve over the image fea-
tures, producing a tensor of the same size as the featurized
image. We use a the same MLP architecture as in CONCAT
on the outputs of this operation, and compute a distribution
over pixels with a SOFTMAX.
LINGUNET We apply two convolutional layers to the im-
age features to compute F1 and F2. Each uses a learned

https://developers.google.com/maps/documentation/directions/start


Phenomenon
SAIL [21] LANI [25] TOUCHDOWN
Paragraphs Paragraphs Overall Navigation SDR
c µ c µ c µ c µ c µ

Reference to unique entity 24 4.0 25 7.2 25 10.7 25 9.2 25 3.2
Coreference 12 0.6 22 2.9 22 2.4 15 1.1 22 1.5
Comparison 0 0.0 2 0.1 6 0.3 3 0.1 5 0.2
Sequencing 4 0.2 2 0.1 22 1.9 21 1.6 9 0.4
Count 16 1.7 2 0.1 11 0.5 9 0.4 8 0.3
Allocentric spatial relation 9 0.4 3 0.2 25 2.9 17 1.2 25 2.2
Egocentric spatial relation 13 0.8 24 4.1 25 4.0 23 3.6 19 1.1
Imperative 23 4.5 25 9.0 25 5.3 25 5.2 4 0.2
Direction 23 4.5 25 5.8 24 3.7 24 3.7 1 0.0
Temporal condition 14 0.7 19 2.0 21 1.9 21 1.9 2 0.1
State verification 11 0.5 0 0.0 21 1.8 18 1.5 16 0.8

Table 6. Linguistic analysis of 25 randomly sampled development examples in TOUCHDOWN, SAIL, and LANI.

kernel of size 5⇥5 and padding of 2. We split the text repre-
sentation into two vectors of size 300, and use two separate
learned layers to transform each vector into another vector
of size 16,384 that is reshaped to 1 ⇥ 1 ⇥ 128 ⇥ 128. The
result of this operation on the first half of the text represen-
tation is K1, and on the second is K2. The layers do not
contain biases or non-linearities. These two kernels are ap-
plied to F1 and F2 to compute G1 and G2. Finally, we use
two deconvolution operations in sequence on G1 and G2 to
compute H1 and H2 using learned kernels of size 5⇥5 and
padding of 2.

D.2. Learning
We initialize parameters by sampling uniformly from

[�0.1, 0.1]. During training, we apply dropout to the word
embeddings with probability 0.5. We compute gradient up-
dates using ADAM [17], and use a global learning rate of
0.0005 for LINGUNET, and 0.001 for all other models. We
use early stopping with patience with a validation set con-
taining 7% of the training data to compute accuracy at a
threshold of 80 pixels after each epoch. We begin with a
patience of 4, and when the accuracy on the validation set
reaches a new maximum, patience resets to 4.

D.3. Evaluation
We compare the predicted location to the gold location

by computing the location of the feature pixel correspond-
ing to the gold location in the same scaling as the predicted
probability distribution. We scale the accuracy threshold
appropriately.

E. Navigation Experimental Setup Details
E.1. Models

At each step, the agent observes the agent con-

text. Formally, the agent context s̃ at time step t
is a tuple (x̄n, It, ↵t, h(I1, ↵1, a1), . . . , (It�1, ↵t�1at�1)i),

where x̄n is the navigation instruction, It is the
panorama that is currently observed at heading ↵t, and
h(I1, ↵1, a1), . . . , (It�1, ↵t�1at�1)i is the sequence of pre-
viously observed panoramas, orientations, and selected ac-
tions. Given an agent context s̃, the navigation model com-
putes action probabilities P (a | s̃).

We use learned word vectors of size 32 for all models.
We map the instruction x̄n to a vector x using a single-
layer uni-directional RNN with LSTM cells with 256 hid-
den units. The instruction representation x is the hidden
state of the final token in the instruction.

We generate RESNET18 features for each 360�

panorama It. We center the feature map according agent’s
heading ↵t. We crop a 128 ⇥ 100 ⇥ 100 sized feature map
from the center. We pre-compute mean value along the
channel dimension for every feature map and save the re-
sulting 100⇥100 features. This pre-computation allows for
faster learning. We use the saved features corresponding to
It and the agent’s heading ↵t as Ît.
RCONCAT We modify the model of Mirowski et al. [24]
for instruction-driven navigation. We use an RNN to embed
the instruction instead of a goal embedding, and do not em-
bed a reward signal. We apply a three-layer convolutional
neural network to Ît. The first layer uses 32 8 ⇥ 8 kernels
with stride 4, and the second layer uses 64 4 ⇥ 4 kernels
with stride 4, applying ReLu non-linearities after each con-
volutional operation. We use a single fully-connected layer
including biases of size 256 on the output of the convolu-
tional operations to compute the observation’s representa-
tion I0t. We learn embeddings a of size 16 for each action
a. For each time step t, we concatenate the instruction rep-
resentation x, observation representation I0t, and action em-
bedding at�1 into a vector s̃t. For the first time step, we
use a learned embedding for the previous action. We use a
single-layer RNN with 256 LSTM cells on the sequence of
time steps. The input at time t is s̃t and the hidden state is
ht. We concatenate a learned time step embedding t 2 R32

with ht, and use a single-layer perceptron with biases and a
SOFTMAX operation to compute P (at|s̃t).



Method TC SPD SED
Development Results
RCONCAT 6.8 23.4 0.066
GA 6.5 24.0 0.064

Test Results
RCONCAT 9.0 22.6 0.086
GA + SUP 7.9 23.4 0.076

Table 7. Development and test navigation results using raw RGB
images.

GA We apply a three-layer convolutional neural network
to Ît. The first layer uses 128 8 ⇥ 8 kernels with stride
4, and the second layer uses 64 4 ⇥ 4 kernels with stride
2, applying ReLu non-linearities after each convolutional
operation. We use a single fully-connected layer including
biases of size 64 on the output of the convolutional oper-
ations to compute the observation’s representation I0t. We
use a single hidden layer with biases followed by a sigmoid
operation to map x into a vector g 2 R64. For each time
step t, we apply a gated attention on I0t using g along the
channel dimension to generate a vector ut. We use a single
fully-connected layer with biases and a ReLu non-linearity
with ut to compute a vector vt 2 R256. We use a single-
layer RNN with 256 LSTM cells on the sequence of time
steps. The input at time t is vt and the hidden state is ht.
We concatenate a learned time step embedding t 2 R32

with ht, and use a single-layer perceptron with biases and a
SOFTMAX operation to compute P (at|s̃t).

E.2. Learning
We train using asynchronous learning with six clients,

each using a different split of the training data. We use su-
pervised learning with HOGWILD! [27] and ADAM [17].
We generate a sequence of agent contexts and actions
{(s̃i, ai)}N

i=1 from the reference demonstrations, and maxi-
mize the log-likelihood objective:

J = max
✓

NX

i=1

ln p✓(ai | s̃i) ,

where ✓ is the model parameters.
Hyperparameters We initialize parameters by sampling
uniformly from [�0.1, 0.1]. We set the horizon to 55 dur-
ing learning, and use an horizon of 50 during testing. We
stop training using SPD performance on the development
set. We use early stopping with patience, beginning with a
patience value of 5 and resetting to 5 every time we observe
a new minimum SPD error. The global learning rate is fixed
at 0.00025.
Experiments with RGB Images We also experiment
with raw RGB images similar to Mirowski et al. [24]. We
project and resize each 360� panorama It to a 60� perspec-
tive image Ît of size 3 ⇥ 84 ⇥ 84, where the center of the
panorama is the agent’s heading ↵t. Table 7 shows the de-
velopment and test results using RGB images. We observe
better performance using RESNET18 features compared to
RGB images.



Figure 8. An illustration of the referential language in our navigation (top) and SDR (bottom) instructions. We ranked all nouns by
frequency and removed stop words. We show the top five/eight nouns (most inner circle) for navigation and SDR. For each noun, we show
the most common modifiers that prefix it. The size of each segment is not relative to the frequency in the data.



the dumpster has a blue tarp draped over the end closest to you. touchdown is on the top of the blue tarp on the dumpster.

LINGUNET The model correctly predicts the location of Touchdown, putting most of the predicted distribution (green)
on the top-left of the dumpster at the center.

3

TEXT2CONV The model incorrectly predicts the location of Touchdown to the top of the car on the far right. While some
of the probability mass is correctly placed on the dumpster, the pixel with the highest probability is on the car.

3

CONCATCONV The model correctly predicts the location of Touchdown. The distribution is heavily concentrated at a
couple of nearby pixels.

3

CONCAT The prediction is similar to CONCATCONV.

3

Figure 9. Three of the models are doing fairly well. Only TEXT2CONV fails to predict the location of Touchdown.



turn to your right and you will see a green trash barrel between the two blue benches on the right. click to the base of the

green trash barrel to find touchdown.

LINGUNET The model accurately predicts the green trash barrel on the right as Touchdown’s location.

41

TEXT2CONV The model predicts successfully as well. The distribution is focused on a smaller area compared to LIN-
GUNET closer to the top of the object. This possibly shows a learned bias towards placing Touchdown on the top of objects
that TEXT2CONV is more suceptible to.

41

CONCATCONV The model prediction is correct. The distribution is focused on fewer pixels compared to LINGUNET.

41

CONCAT The model prediction is correct. Similar to CONCATCONV, it focuses on a few pixels.

41

Figure 10. All the models predict the location of Touchdown correctly. Trash can is a relatively common object that workers use to place
Touchdown in the dataset .



on your right is a parking garage, there is a red sign with bikes parked out in front of the garage, the bear is on the red

sign.

LINGUNET The model predicted the location of Touchdown correctly to the red stop sign on the right side.

59

TEXT2CONV The model predicts the location of Touchdown correctly.

59

CONCATCONV The model predicts the location of Touchdown correctly.

59

CONCAT The model predicts the location of Touchdown correctly.

59

Figure 11. All the models predict the location of Touchdown correctly. Reference to a red sign are relatively common in the data (Figure 8)
potentially simplifying this prediction.



touch down will be chillin in front of a sign on your right hand side about half way down this street,before you get to the

sign there will be a multi color mural on the right w multiple colors and some writing on it.

LINGUNET The model fails to correctly predict the location of Touchdown, but is relatively close. The selected pixel is
104px from the correct one. The model focuses on the top of the sign instead of the bottom, potentially because of the
more common reference to the top, which is visually distinguished.

46

TEXT2CONV The model fails to correctly predict the location of Touchdown, but is relatively close. The selected pixel is
96px from the correct one.

46

CONCATCONV The model fails to predict the location of Touchdown, instead focusing on a person walking on the left.

46

CONCAT The model fails to predict the location of Touchdown, instead of focusing the person walking on the left, the
colorful sign mentioned in the description, and a car on the far right.

46

Figure 12. All the models fail to correctly identify the location of Touchdown. The predictions of LINGUNET, TEXT2CONV, and CON-
CATCONV seem to mix biases in the data with objects mentioned in the description, but fail to resolve the exact spatial description.



a row of blue bikes, touchdown is in the fifth bike seat in the row, from the way you came.

LINGUNET The model correctly identifies that a bike is mentioned, but fails to identify the exact bike or the location on
the bike seat. Instead the the distribution is divided between multiple bikes.

22

TEXT2CONV Similar to LINGUNET, the model identifies the reference to bikes, but fails to identify the exact bike. The
uncertainty of the model is potentially illustrated by how it distributes the probability mass.

22

CONCATCONV The model correctly predicts the location of Touchdown. While the distribution is spread across multiple
bikes observed, the highest probability pixel is close enough (i.e., within 80 pixels) of the correct location.

22

CONCAT Similar to CONCATCONV, the model correctly predicts the location of Touchdown.

22

Figure 13. LINGUNET and TEXT2CONV fail to correctly identify the location, although their predicted distribution is focused on the
correct set of objects. In contrast, the simpler models, CONCAT and CONCATCONV, correctly predict the location of Touchdown.



on your right is a parking garage, there is a red sign with bikes parked out in front of the garage, the bear is on the red

sign.

LINGUNET The model misidentifies the red sign on the left hand side as the correct answer. It fails to resolve the spatial
description, instead focusing on a more salient red object.

61

TEXT2CONV The model fails to predict the correct location, instead focusing on the red sign closer to the center.

61

CONCATCONV The model fails to predict the correct location, instead focusing on the red sign closer to the center.

61

CONCAT The model fails to predict the correct location, instead focusing on the red sign close to the center of the image.

61

Figure 14. All the models fail to identify the correct location. They focus unanimously on the red sign on the left hand side. They all ignore
the reference to the garage, which is hard to resolve visually.


