
Supplementary Material for the Paper: ‘Local to Global Learning: Gradually
Adding Classes for Training Deep Neural Networks’

Hao Cheng1∗, Dongze Lian1∗, Bowen Deng1, Shenghua Gao1, Tao Tan2, Yanlin Geng3†

1 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
2 Dept of Mathematics and Computer Science, Centre of Analysis, Eindhoven University of Technology

3 State Key Lab. of ISN, Xidian University, Xi’an 710071, China
{chenghao, liandz, dengbw, gaoshh}@shanghaitech.edu.cn, t.tan1@tue.nl, ylgeng@xidian.edu.cn

Abstract

This is the supplementary material for the paper “Local
to Global Learning: Gradually Adding Classes for Train-
ing Deep Neural Networks”. Section 1 derives the training
time of LGL. Section 2 explains the LGL algorithm from an
information-theoretic perspective.

1. Training Time of LGL

Proposition 1 Suppose the training set has K clusters and
each cluster has an equal number of samples. We contin-
ually add K

m clusters to DNN and train DNN for an equal
number of epochs at each step when performing the LGL al-
gorithm. Then the whole training time of LGL is 1

2 t(m+1),
where t is the training time of the baseline which trains DNN
on all the training set from the beginning without LGL strat-
egy.

Proof 1 LGL trains DNN for m times. At the beginning of
step c, c ∈ {1, 2, . . . ,m}, there are Kc

m clusters in the train-
ing set, which takes tc

m time to train. The whole training time
is

m∑
c=1

tc

m
=

tm(m+ 1)

2m
=

t(m+ 1)

2
. (1)

We can see the training time of LGL is linear in t and m.
We can set m to control the training time when performing
the LGL algorithm. Also in practice, we do not need to
train DNN for an equal number of epochs as the baseline
at each step since DNN can converge faster when there are
few clusters in the training set. Thus the practical training
time of LGL can be less than 1

2 t(m+ 1).

2. Information-Theoretic Perspective of LGL
for Deep Neural Networks

The term ‘entropy’ first comes from thermodynamic the-
ory to represent the system’s disorganisation. The system
tends to be stable when it has a low entropy. Later, en-
tropy was introduced to the information theory to measure
unpredictability of the state. Inspired by the definition of
entropy, we use H(T |X) to represent DNN’s stability. We
want to emphasize that the meaning of entropy here is dif-
ferent from the entropy defined in Section 4.4 from our pa-
per. In Section 4.4, the entropy is used to represent the sim-
ilarity of trained clusters and untrained clusters. While in
this section, we utilize entropy to represent the stability of
DNN. The former concentrates on the data and the latter
concentrates on the model. H(T |X) is written as:

H(T |X) =
∑
x∈X

p(x)H(T |X = x) (2)

= −
∑
x∈X

p(x)
∑
t∈T

p(t|x) log2 p(t|x) (3)

≤ log2 C(X) (4)

C(X) denotes the number of classs of the training set X .
Suppose X has M samples, then for each x ∈ X , p(x) =
1
M . T denotes the output of the softmax layer. For each
t ∈ T , p(t|x) denotes the probability of x belonging to the
class with respect to t. From the property of the entropy:

• H(T |X) achieves the maximum, which is log2 C(X)
from (4), if for each x ∈ X , p(t|x) follows the uni-
form distribution on T . This means that DNN assigns
x to each class with equal probability (this is the most
unstable state, since we do not know which class x be-
longs to).

• H(T |X) achieves the minimum, which is 0, if for each
x ∈ X , there exists a t such that p(t|x) = 1. This
means that DNN assigns x to a class with probability

1, and other classes with probability 0 (the most stable
state).

Figure 1 depicts the changes of H(T |X) during training
DNN.

0 20 40 60 80 100 120

Epoch

0

1

2

3

4

H
(T

|X
)

CIFAR-10

0 20 40 60 80 100 120

Epoch

0

2

4

6

H
(T

|X
)

CIFAR-100

Figure 1. This figure depicts the changes of H(T |X) during train-
ing neural networks. X represents the validation data of CIFAR-
10 and CIFAR-100. The model is VGG-16.

From Figure 1, DNN can be seen as a system with a large
H(T |X) (high unstability) at initial state, then a training
algorithm is performed to decrease the H(T |X) of DNN to
a stable state (convergence, low H(T |X)). Thus H(T |X)
is a proper criterion to measure the stability of DNN.

For random initialization, the initial state of DNN (blue
circles in Figure 2) almost lies on the maximum bound of
H(T |X) since the weights of DNN do not have any infor-
mation of the training data, the output of the softmax layer
tends to form a uniform distribution. Whereas for LGL, the
initial H(T |X) of DNN is lower than random initialization
each time we add new clusters (yellow circles of Figure 2),
which means the training of DNN starts with a more stable
point. Section 5.1 in the paper shows the stability of LGL
when the model or data distribution varies. Thus the benefit
of LGL algorithm is that LGL can lower the initial H(T |X)
to make the training of DNN starts at a more stable state.

0 50 100 150

C (Number of Classes)

0

2

4

6

8

H
(T

|X
)

Bound of H(T|X) : log2 C(X)

Evolution of H(T|X) of LGL

Initial state of random initialization

Initial state of LGL

Figure 2. This figure depicts the initial H(T |X) of traditional
initialization method and LGL. X represents the validation data
of CIFAR-100. The model is VGG-16. The red line contains 4
segments showing the evolution of H(T |X) with training epochs
when performing LGL (starts at 25 classes and add 25 each time).
Within each segment, the abscissa axis is the training epochs (100
epochs each time). (Best viewed in color)

It is worth noticing that H(T |X) is not completely re-
lated to the accuracy since H(T |X) does not include the
label. We only use H(T |X) to represent the DNN’s stabil-
ity, and then understand why LGL works better.

