The supplementary material for 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

1. Minkowski Engine

In this section, we provide detailed breakdowns of few algorithms in the main paper as well as the coordinate initialization and the hash function. Please note that the actual implementation may not faithfully reflect the algorithms presented here for optimization.

1.1. Sparse Quantization

First, we provide line-by-line comments for the sparse quantization algorithm. Overall, the algorithm finds unique voxels and creates labels associated with them. If there are different labels within the same voxel, we assign the IGNORE_LABEL. This allows the network to ignore the cross-entropy loss for those voxels during training.

The Alg. 1 starts by converting all coordinates to hash keys and generating a sequence **i**, which is used to identify the original indices. Next, we sort the sequence, label pairs by the hash key (L5). This will place indices and labels that fall into the same cell to be adjacent in the GPU memory. Next, we reduce the index sequence with the key-label pair (L6). This step will collapse all points with the same labels. However, if there are different labels within the same cell, we will have at least two key-label pairs in the same cell. Thus, in L7, we use the reduction function $f((l_x, i_x), (l_y, i_y)) => (IGNORE_LABEL, i_x)$ will simply assign IGNORE_LABEL to the cell. Finally, we use the reduced unique indices \mathbf{i}''' to return unique coordinates, features, and transformed labels.

Algorithm 1 GPU Sparse Tensor Quantization

1: Inputs: coordinates $C_p \in \mathbb{R}^{N \times D}$, features $F_p \in \mathbb{R}^{N \times N_f}$, target labels $\mathbf{l} \in \mathbb{Z}_+^N$, quantization step size v_l 2: $C'_p \leftarrow \text{floor}(C_p / v_l)$ 3: $\mathbf{k} \leftarrow \text{hash}(C'_p)$ 4: $\mathbf{i} \leftarrow \text{sequence}(\mathbf{N})$ 5: $((\mathbf{i}', \mathbf{l}'), \mathbf{k}') \leftarrow \text{SortByKey}((\mathbf{i}, \mathbf{l}), \text{key=k})$ 6: $(\mathbf{i}'', (\mathbf{k}'', \mathbf{l}'')) \leftarrow \text{UniqueByKey}(\mathbf{i}', \text{key=}(\mathbf{k}', \mathbf{l}'))$ 7: $(\mathbf{l}''', \mathbf{i}'') \leftarrow \text{ReduceByKey}((\mathbf{l}'', \mathbf{i}''), \text{key=k}'', \text{fn=}f)$ 8: **return** $C'_p[\mathbf{i}''', :], F_p[\mathbf{i}''', :], \mathbf{l}'''$

1.2. Coordinate Hashing

We used a variation of Fowler–Noll–Vo hash function, *FNV64-1A*, and modified it for coordinates in int 32. We list the algorithm in Alg. 2.

1.3. Creating output coordinates

The first step in the generalized sparse convolution is defining the output coordinates C^{out} . In most cases, we use the same coordinates for the output coordinates. However, when we use a strided convolution or a strided pooling, we use the Alg. 3 to create a new output coordinates. For transposed strided convolutions, we use the same coordinates with the same input-stride to preserve the order of the coordinates.

Algorithm 2 Coordinate Hashing

Require: Inputs: coordinate $\mathbf{c} \in \mathbb{Z}^D$ in int 321: function HASH(\mathbf{c})2: h = UINT64(14695981039346656037)3: for all $\mathbf{c}_i \in \mathbf{c}$ do4: $h = h \oplus \text{UINT32}(c_i)$ 5: $h = h \times \text{UINT64}(1099511628211)$ 6: end for7: return h8: end function

Algorithm	3	Create	output	coordinates
-----------	---	--------	--------	-------------

Require: input stride s_i , layer stride s_l , input coordinates C
1: function CREATEOUTPUTCOORDINATES(\mathbf{C}, s_i, s_l)
2: if $s_l > 1$ then
3: $s \leftarrow s_l \times s_i$
4: $\mathbf{C}' \leftarrow \{\}$ // Create an empty set
5: for all $\mathbf{c}_i \in \mathbf{C}$ do
6: $\mathbf{c} \leftarrow \lfloor \mathbf{c}_i / s \rfloor \times s$
7: if \mathbf{c} is not in \mathbf{C}' then
8: Append c to C'
9: end if
0: end for
1: return C'
2: else
3: return C
4: end if
5: end function

2. Derivation of Trilateral Stationary-Conditional Random Field Fixed Point Update Equation

The TS-CRF optimization $\arg \max_{\mathbf{X}} P(X)$ is intractable. Instead, we use the variational inference to minimize a divergence between the optimal $P(\mathbf{X})$ and an approximated distribution $Q(\mathbf{X})$. Commonly, the divergence is measured using the Iprojection: $\mathbf{D}(Q||P)$, the number of bits lost when coding a distribution Q using P. To simplify the approximated distribution, we use the meanfield approximation, $Q = \prod_i Q_i(x_i)$ as the closed form solution exists. From the Theorem 11.9 in [4], Q is a local maximum if and only if

$$Q_i(x_i) = \frac{1}{Z_i} \exp \mathop{\mathbf{E}}_{\mathbf{X}_{-i} \sim Q_{-i}} \left[\phi_u(x_i) + \sum_{j \in \mathcal{N}(x_i)} \phi_p(x_i, x_j) \right]$$
(1)

. where \mathbf{X}_{-i} and Q_{-i} indicate all variables except for the *i*-th variable.

$$Q_i(x_i) = \frac{1}{Z_i} \exp \mathop{\mathbf{E}}_{\mathbf{X}_{-i} \sim Q_{-i}} \left[\phi_u(x_i) + \sum_{j \in \mathcal{N}(x_i)} \phi_p(x_i, x_j) \right]$$
(2)

$$= \frac{1}{Z_{i}} \exp \left[\mathbf{E}_{\mathbf{X}_{-i} \sim Q_{-i}} \phi_{u}(x_{i}) + \mathbf{E}_{\mathbf{X}_{-i} \sim Q_{-i}} \sum_{j \in \mathcal{N}(x_{i})} \phi_{p}(x_{i}, x_{j}) \right]$$
(3)

$$= \frac{1}{Z_i} \exp\left[\phi_u(x_i) + \sum_{j \in \mathcal{N}(x_i)} \mathbf{E}_{j \in \mathcal{N}(x_i)} \phi_p(x_i, x_j)\right]$$
(4)

$$= \frac{1}{Z_i} \exp\left[\phi_u(x_i) + \sum_{j \in \mathcal{N}(x_i)} \sum_{x_j} \phi_p(x_i, x_j) Q_j(x_j)\right]$$
(5)

Thus, the final fixed-point update equation is

$$Q_{i}^{+}(x_{i}) = \frac{1}{Z_{i}} \exp\left\{\phi_{u}(x_{i}) + \sum_{j \in \mathcal{N}(x_{i})} \sum_{x_{j}} \phi_{p}(x_{i}, x_{j})Q_{j}(x_{j})\right\}$$
(6)

3. Experiments and Analysis

We present per-class IoU numbers for all experiments and more qualitative results. We also visualize the entire RueMongue 2014 (Varcity) dataset on Fig. 1. The dataset is quite small for deep learning so the Minkowski Networks results are all saturated around 66% mIoU.

Figure 1: Visualization of the RueMonge 2014 dataset ground-truth. The left half of the pointcloud is the training set and the right half is the test set (Black: IGNORE_LABEL).

Method	bath	bed	bksf	cab	chair	cntr	curt	desk	door	floor	othr	pic	ref	show	sink	sofa	tab	toil	wall	wind	mIoU
ScanNet [1]	20.3	36.6	50.1	31.1	52.4	21.1	0.2	34.2	18.9	78.6	14.5	10.2	24.5	15.2	31.8	34.8	30.0	46.0	43.7	18.2	30.6
SSC-UNet [3]	35.3	29.0	27.8	16.6	55.3	16.9	28.6	14.7	14.8	90.8	18.2	6.4	2.3	1.8	35.4	36.3	34.5	54.6	68.5	27.8	30.8
PointNet++ [9]	58.4	47.8	45.8	25.6	36.0	25.0	24.7	27.8	26.1	67.7	18.3	11.7	21.2	14.5	36.4	34.6	23.2	54.8	52.3	25.2	33.9
ScanNet+SDF	29.7	49.1	43.2	35.8	61.2	27.4	11.6	41.1	26.5	90.4	22.9	7.9	25.0	18.5	32.0	51.0	38.5	54.8	59.7	39.4	38.3
SPLATNet [11]	47.2	51.1	60.6	31.1	65.6	24.5	40.5	32.8	19.7	92.7	22.7	0.0	0.1	24.9	27.1	51.0	38.3	59.3	69.9	26.7	39.3
TangetConv [12]	43.7	64.6	47.4	36.9	64.5	35.3	25.8	28.2	27.9	91.8	29.8	14.7	28.3	29.4	48.7	56.2	42.7	61.9	63.3	35.2	43.8
SurfaceConv [7]	50.5	62.2	38.0	34.2	65.4	22.7	39.7	36.7	27.6	92.4	24.0	19.8	35.9	26.2	36.6	58.1	43.5	64.0	66.8	39.8	44.2
3DMV [2]	48.4	53.8	64.3	42.4	60.6	31.0	57.4	43.3	37.8	79.6	30.1	21.4	53.7	20.8	47.2	50.7	41.3	69.3	60.2	53.9	48.4
3DMV-FTSDF	55.8	60.8	42.4	47.8	69.0	24.6	58.6	46.8	45.0	91.1	39.4	16.0	43.8	21.2	43.2	54.1	47.5	74.2	72.7	47.7	50.1
MinkowskiNet42 (5cm)	81.1	73.4	73.9	64.1	80.4	41.3	75.9	69.6	54.5	93.8	51.8	14.1	62.3	75.7	68.0	72.3	68.4	89.6	82.1	65.1	67.9
MinkowskiNet42 (2cm)	83.7	80.4	80.0	72.1	84.3	46.0	83.5	64.7	59.7	95.3	54.2	21.4	74.6	91.2	70.5	77.1	64.0	87.6	84.2	67.2	72.1

Table 1: ScanNet [1] 3D Segmentation Benchmark Results

Test labels not available publicly. All numbers from http://kaldir.vc.in.tum.de/scannet_benchmark/. Entries without citation are from unpublished works. [‡]: uses 2D images additionally.

Table 2: Results on the Stanford 3D Indoor Spaces Dataset Area 5 Test (Fold #1) (S3DIS)

Method	ceiling	floor	wall	beam	clmn	windw	door	chair	table	bkcase	sofa	board	clutter	mIOU	mAcc
PointNet [8]	88.80	97.33	69.80	0.05	3.92	46.26	10.76	52.61	58.93	40.28	5.85	26.38	33.22	41.09	48.98
SegCloud [13]	90.06	96.05	69.86	0.00	18.37	38.35	23.12	75.89	70.40	58.42	40.88	12.96	41.60	48.92	57.35
TangentConv* [12]	90.47	97.66	73.99	0.0	20.66	38.98	31.34	77.49	69.43	57.27	38.54	48.78	39.79	52.8	60.7
3D RNN [15]	95.2	98.6	77.4	0.8	9.83	52.7	27.9	76.8	78.3	58.6	27.4	39.1	51.0	53.4	71.3
PointCNN [6]	92.31	98.24	79.41	0.00	17.60	22.77	62.09	80.59	74.39	66.67	31.67	62.05	56.74	57.26	63.86
SuperpointGraph [5]	89.35	96.87	78.12	0.0	42.81	48.93	61.58	84.66	75.41	69.84	52.60	2.1	52.22	58.04	66.5
PCCN [14]	90.26	96.20	75.89	0.27	5.98	69.49	63.45	66.87	65.63	47.28	68.91	59.10	46.22	58.27	67.01
MinkowskiNet20	91.55	98.49	84.99	0.8	26.47	46.18	55.82	88.99	80.52	71.74	48.29	62.98	57.72	62.60	69.62
MinkowskiNet32	91.75	98.71	86.19	0.0	34.06	48.90	62.44	89.82	81.57	74.88	47.21	74.44	58.57	65.35	71.71

*Data from the authors

Table 3: Semantic segmentation results on the 4D Synthia dataset

Method	Bldn	Road	Sdwlk	Fence	Vegittn	Pole	Car	T. Sign	Pedstrn	Bicycl	Lane	T. Light	mIOU	mAcc
MinkNet20	89.394	97.684	69.425	86.519	98.106	97.256	93.497	79.450	92.274	0.000	44.609	66.691	76.24	89.31
MinkNet20 + TA	88.096	97.790	78.329	87.088	96.540	97.486	94.203	78.831	92.489	0.000	46.407	67.071	77.03	89.198
4D MinkNet20	90.125	98.262	73.467	87.187	99.099	97.502	94.010	79.041	92.622	0.000	50.006	68.138	77.46	88.013
4D Tesseract MinkNet20	89.346	97.291	60.712	86.451	98.000	96.632	93.191	74.906	91.030	0.000	47.113	69.343	75.335	89.272
4D MinkNet20 + TS-CRF	89.438	98.291	79.938	86.254	98.707	97.142	95.045	81.592	91.540	0.000	54.596	67.067	78.30	90.23
4D MinkNet32 + TS-CRF	89.694	98.632	86.893	87.801	98.776	97.284	94.039	80.292	92.300	0.000	49.299	69.060	78.67	90.51

Table 4: Semantic segmentation results on the RueMongue [10] (Varcity) dataset

Method	window	wall	balcony	door	roof	sky	shop	mIOU
3D MinkNet20	61.978	80.813	64.303	47.256	61.486	76.901	72.498	66.462
4D MinkNet20	61.938	81.591	65.394	35.089	68.554	80.546	72.846	66.565
4D MinkNet20 + TS-CRF	62.600	81.821	63.599	40.795	66.229	80.464	70.639	66.592

Figure 2: Visualization of the 4D Synthia predictions and ground truth labels.

Figure 3: Visualization of the RueMonge 2014 dataset TASK3 results.

Figure 4: The confusion matrix of the MinkowskiNet32 predictions on the Stanford dataset Area 5 (Fold #1).

Figure 5: Visualization of the Stanford dataset Area 5 test result.

Figure 6: Visualization of the noisy 4D Synthia dataset and predictions.

Figure 7: Visualization of MinkNet predictions on the Scannet validation set.

References

- Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proc. Computer Vision and Pattern Recognition (CVPR), IEEE*, 2017. 3
- [2] Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-view prediction for 3d semantic scene segmentation. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2018. 3
- [3] Ben Graham. Sparse 3d convolutional neural networks. British Machine Vision Conference, 2015. 3
- [4] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques Adaptive Computation and Machine Learning. The MIT Press, 2009. 2
- [5] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation with superpoint graphs. *arXiv preprint arXiv:1711.09869*, 2017. 4
- [6] Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen. Pointcnn. arXiv preprint arXiv:1801.07791, 2018. 4
- [7] Hao Pan, Shilin Liu, Yang Liu, and Xin Tong. Convolutional neural networks on 3d surfaces using parallel frames. *arXiv preprint arXiv:1808.04952*, 2018. **3**
- [8] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. arXiv preprint arXiv:1612.00593, 2016. 4
- [9] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in Neural Information Processing Systems, 2017. 3
- [10] Hayko Riemenschneider, András Bódis-Szomorú, Julien Weissenberg, and Luc Van Gool. Learning where to classify in multi-view semantic segmentation. In *European Conference on Computer Vision*. Springer, 2014. 4
- [11] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Vangelis Kalogerakis, Ming-Hsuan Yang, and Jan Kautz. Splatnet: Sparse lattice networks for point cloud processing. arXiv preprint arXiv:1802.08275, 2018. 3
- [12] Maxim Tatarchenko*, Jaesik Park*, Vladlen Koltun, and Qian-Yi Zhou. Tangent convolutions for dense prediction in 3D. *CVPR*, 2018.
 3, 4
- [13] Lyne P Tchapmi, Christopher B Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese. Segcloud: Semantic segmentation of 3d point clouds. *International Conference on 3D Vision (3DV)*, 2017. 4
- [14] Shenlong Wang, Simon Suo, Wei-Chiu Ma3 Andrei Pokrovsky, and Raquel Urtasun. Deep parametric continuous convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2589–2597, 2018. 4
- [15] Xiaoqing Ye, Jiamao Li, Hexiao Huang, Liang Du, and Xiaolin Zhang. 3d recurrent neural networks with context fusion for point cloud semantic segmentation. In *The European Conference on Computer Vision (ECCV)*, September 2018. 4